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2 | Introduction/premise

*»Objective of the project: make single axis tracking more
efficient

“*Align solar panels with Sun

“»Current approach merely follows where Sun should be,
not current conditions

**When clouds are in front of the Sun, panel should be
more horizontal
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What models need to do: 700 -
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1. Estimate angular irradiance profiles
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2. Find optimal movement I= angle of max. irrad. of the
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3 ‘ Data Sources

The (custom) MPIS sensor ASI-16 Sky Camera
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+ I Model Input: Solar Position + Sky Images

“*The Sun moves predictably, and its position can be easily calculated
“»*This is useful to know when the Sun is obstructed by clouds

**This calculation is already implemented in pvlib
“»But not with respect to the image
“*This may be part of what the model learns
+Or just a simple irradiance calculation
“Fisheye” sky
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s I Model Output: Multi Planar Irradiance Sensor (MPIS)

+*Sensor rotates from east to west
over about a second

“*Measures in half-degree
increments from horizon to horizon

++0-180 degrees

“*Developed by Augustyn &
Company, Berkeley, California

2 US Patent #1028155% @
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¢ I Model Output: Multi Planar Irradiance Sensor (MPIS)

Sample MPIS Irradiance Profiles
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+*»Sensor rotates from east to west
over about a second 800

“*Measures in half-degree
increments from horizon to horizon

++0-180 degrees
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Company, Berkeley, California
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¢ This neural network takes two
inputs
*» Sky image from ASI 16
¢ Solar position (vector of
length 6) from pvlib
*» And vector output
(regression)
¢ Trained on the MPIS
sensor readings as the
ground truth
¢ Full model structure shown in
paper
¢ Primarily consists of
convolutional and dense
layers
** ANN: learns arbitrary function
given data
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Resampling MPIS signal with various degrees of freedom
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It is difficult to model a high dimensional k
regression problem 5 g4
“»Curse of dimensionality E
= 02
“*However, the MPIS signal is very smooth
**Variance between angles is locally small 0.0
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“»*Solution: downsample signal Angle

“*Using Fourier method
“*Remove mirrored middle band frequencies
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+*This introduces additional source of
error/jaggedness

+*That can be smoothed with Gaussian kernel
+*Also reduces natural error in model
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9 ‘ Normalization

“*The MPIS signal must be normalized in some way to account for seasonality/camera fluctuations

“*SKky image is too qualitative to predict entire irradiance profile directly
+» But can predict shape of the curve

+*» Traditional min-max normalization fails to preserve relative magnitudes

“*Solution: normalize by ideal clear-sky GHI at solar noon
+» Easily calculable with pvlib

+* Simple rescale operation for days within a week
+ Still preserves magnitudes as opposed to using true GHI at time ¢

Unnormalized Normalized via calculated clear-sky noon GHI
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Pradiction error
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10 I Results
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*»Predictions for test
samples shown below

“*Model was not trained on
these exact samples

+*Most error occurs in less
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Comparision of curves on test data

Model predictions, smoothed with o=4
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11 C O n CI u S i O n / F u t u re WO rk Error distribution for angle of maximal irradiance
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“*Through use of resampling, nonstandard normalization, and _ .|
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other techniques, this high dimensional regression problem 8 150 ]
becomes feasible 100 |
“*Model correctly learns shape of MPIS irradiance profile and can o |

rescale to absolute irradiance values
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“*QOverarching project goal: inform movement of single axis

tracker Error distribution for irradiance at the angle of maximal irradiance

**Most important quantity: angle of maximal irradiance %0 |
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“*Model accurately predicts (within error of 2.5 degrees) over |
70% of 1000-sample test set £ 300 ]
“*The remaining samples all fall within ~10 degrees —
*In the future, we are developing algorithms to move a tracker N
<*One prototype: move based on projected change of angle of max o
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12 ‘ Helping the neural network

“*Values will be constrained in range [0, €]
“*Due to normalization process

“*€ constant for dataset, calculated with max

“+*Use custom activation function to limit values
to this range
+*Modified Rel.u

“*Linear in range [0, €]

**Gradient clipping

“*Truncate gradicnt when it gets too large

“*Weight decay

‘:‘“Complcxi ty penalty”

“*Dropout
“*Viewed as ensembling

M5E Loss
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