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Introduction

Experimental Procedures

Formation of Aromatic Species in Flames

» ldentification of aliphatically bridged multi-core PAHs
Low-Temperature Oxidation Studies

» ldentification and quantification of peroxides
Ozone-Assisted Combustion

» ldentification of the Criegee Intermediate reaction network

Rotational (Microwave) Spectroscopy
Summary and Outlook
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Complex Systems of Reactions and Combustion
Mechanism Development

v

Studying the chemistry of complex systems of reaction networks
v

Gaining insights into the scientifically relevant aspects (key intermediates and chemical pathways) by
addressing the “right” level of detail for

» formation of polycyclic aromatic hydrocarbons (PAHs)

» low-temperature oxidation and ignition chemistry (detection, identification, and quantification of KHPs)

experiments and analysis procedures, theory, and new experiments




Gaining Experimental Insights Into Complex
Systems of Reactions Under Ideallzed Condltlons
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v’ Orthogonal extraction reflectron time-of-flight ™=

v Detection limit: ~0.5 ppm

v" Mass resolution m/Am ~ 4000

v’ Electron and photon ionization (at the Advanced Light Source)

v’ Continuous ionization, rapid (35 kHz) ion extraction u




Gaining Experimental Insights Into Complex

Systems of Reactions Under Idea

1. Sample from Complex Systems and record Mass Spectra
at various positions from and temperatures in the reactors
2. Identify Components

based on m/z ratios, ionization thresholds, fragmentation
patterns, PIE curves

Signal / ion counts

3. Determine the Quantitative Composition of the Reactors
calibrate the system (mass discrimination factors), measure (or
calculate) photo- and electron ionization cross sections

4. Identify Relevant Reaction Pathways
from species” identities and their mole fraction data
combine measurements of mole fractions with kinetic modeling
results

5. Gaining Insights into Relevant Chemical Aspects
for low-temperature oxidation and PAH formation
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Formation of Benzene

Surface reaction
and coagulation

Particle inception

PAH formation

Precursor
molecules
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Molecular-Growth From The First Aromatic Ring

to Pyrene ““

v' What are the first aromatic species and how are they formed?

CaHs Kot v Formation of Indene

? ¢ n-CsHs and Naphthalene
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Molecular-Growth From The First Aromatic Ring

to Pyrene

mn

Signal S (normalised to Ar) / a.u.
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Molecular-Growth From The First Aromatic Ring
to Pyrene
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PAH and Soot Formation Chemistry

Surface reaction
and coagulation

Particle inception

PAH formation

Precursor
molecules
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Number of Isomers
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Challenges:

» Already the formation of the ,first” aromatic ring is governed by many
different reactions involving many different reactants

» Number of possible isomers increases with molecular size
» The isomer-selective approach will break down

What is the right level of detail?



PAH and Soot Formation Chemistry

4

Surface reaction
and coagulation

Particle inception

PAH formation

Precursor
molecules
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PAH formation is governed by basic gas-phase organic chemistry,
i.e. radical-radical and radical-molecule reactions

we know how PAH radicals react, or more generally we know the
outcomeof A+B2C

= Wherever five- and six-membered rings can form, they do
the goal is not to identify all possible isomeric structures

the goal is to identify the important intermediates at the right
level of detail

= re-occurring reactive structural features
The diagnostic technique should be able to:

» identify five-membered ring structures
aliphatically bridged PAHs

reactive side chains

lUU%zb ’

Y V VYV

functional groups, etc.



Addressing the Complexity of Reaction Systemes:
Tandem Mass Spectrometry

N N
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The fragmentation pattern of molecular ions  Refiectron
should provide structural information.

@ @E’t B. D. Adamson, S. A. Skeen, M. Ahmed, N. Hansen, J. Phys. Chem. A, 2018, 122(48), 9338-9349

Precursor
molecules
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Tandem Mass Spectrometry:
General Performance of the Mass Spectrometer

atmospheric pressure
photoionization (APPI)
two modes of operation:
» time-of-flight mode
» MS-MS mode (Am ~1)
Resolution: TOF ~8000
collission gas: Ar
sensitivity: thd
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Signal Intensity / a.u.

Tandem Mass Spectrometry
TOF-Mode: Identification of core-PAH Structures

Evidence for aliphatically bridged PAHs  Identification of core-PAH structures
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Tandem Mass Spectrometry
TOF-IVIode: |dentification of core-PAH Structures
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Identification of Main Reaction Pathways:
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2D-Color Maps of PAHs in Co-Flow Diffusion
Flames
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Tandem Mass Spectrometry (MS-MS Mode):
|dentification of aliphatically substituted PAHs
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Tandem Mass Spectrometry (MS-MS Mode):
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Introduction
Peroxy Radicals and Their Subsequent Reactions

U Low-Temperature Combustion

RH, 0,
v' Temperature, pressure, and fuel friieom .
structure determine whether  F============== ---: ks
these reactions are chain- E :"""""""""'-—'-'52."!1'-—0?- R*+ small alkenes
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O Earth’s Atmosphere . o | 2 RO" ‘0
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O. Herbinet, F. Battin-Leclerc, Int. J. Chem. Kin., 2014, 46(10), 619-639
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Low-Temperature Oxidation and Ignition Chemistry
Molecular-Beam Sampling Jet-Stirred Reactor
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@ @E,t K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374 u
v K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901



Low-Temperature Oxidation and Ignition Chemistry

Molecular-Beam Sampling Jet-Stirred Reactor
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Low-Temperature Oxidation Chemistry of
Dimethyl Ether (DME)
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@ @E,t K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374 a
K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901
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Low-Temperature Oxidation of DME
|dentification of the Ketohydroperoxide HPMF

Fragment pattern gives additional evidence for
the experimental detection of HPMF
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K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374
K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901
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Detection of carbonic acid provides evidence for the Korcek
decomposition mechanism!



Low-Temperature Oxidation of DME
Quantification of the Main Species
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K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374
K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901



Low-Temperature Oxidation of DME
Quantification of Some Intermediates

« Experiment ——USTC mech,

----- NUI mech. - - - CNRS mech. CH, O = Experiment
(a) H,0 e o — USTC mech.
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@ @E,t K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374 a
K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901
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Low-Temperature Oxidation of DME

Quantification of CH;O00H and the Ketohydroperoxide HPMF

» using calculated photoionization cross sections

ePolyScat (version E3)

F. A. Gianturco et al., J. Chem.
Phys., 1994, 100, 6464-6471

A.P.P. Natalense et al., J. Chem. r r |
Phys., 1999, 111, 5344-5348 -

R. R. Lucchese, Texas A&M

A. W. Jasper, Argonne
> tested against a variety of known species

= uncertainty < a factor of 2

» it calculates total cross sections
= fragmentation pattern needs to be known

> it doesn‘t calculate Franck-Condon overlaps
= scale to experimental photoionization efficieny curves
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N 2 o

' o
1 " L

(@) | « Total ion signal
o mM/Z=92.011u x 50
— Theory
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lib) . "HPMF/

L2
i

=
M

- « Experiment
ol — USTC mech.
«oee NUI mech.

- -.CNRS mech./5

500 600 TOO BOO 900 1000
Temperature (K)

@ @E,t K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374

= K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901



Low-Temperature Oxidation
neo-Pentane and Tetrahydrofuran as Logical Extension

High temperature chemistry

O apply the insights gained from the DME project
to study the low-temperature oxidation of a

GT" ) »/ ) more complex molecular system:
o CFEAAM) Y neo-pentane
<D v’ tetrahydrofuran (THF)

Yo P v’ ethylene ozonolysis
@ ST
&/
L/.\ .

\A@om T _ / \"‘

\ ( KHP | ::_a _2
Z. Wang, O. Herbinet, N. Hansen, F. Battin-Leclerc, & k
Progr. Energy Combust. Sci., 2019, 73, 132-181 ¢
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Low-Temperature Oxidation of neo-Pentane
Detection and Identification of the KHP

® 0, HOO

Signal / ion counts

HOO
CHa ® CH, CHy CH, . CH,
+0 + 0
H3C+CH3 == H,C I CH; 2 HaC ‘ CHs HG CHs i \E+CH3
CHs CHj CHs CHs CHy
T T T T T T T T T T '1“‘ -OH ‘L—OH
(a) neo-Pentane (L '
i ® o}
® o 0—CH, \
- .. Se | HOO o
H,C CH
B '. e ’ ’ \C —CH
o ® CH, He ’
I locally ol CHj3
- adiabatic |IEs OOH
L Fragmentation Channel Calculated  Experimentally
i I A AE,eVd  observed AE, eV
adiabatic IE O @ o} + +
- H s HOO-CH,-C(CH,),H* (C,H,,0,") + CO 9.41 9.40
- %:'. HOO-CH,-C(CH,),CO-* (CsH 05*) + H 10.18 10.1
......... aus HOO-CH,-C(CH;),-* (C,H,0,*) + -CHO 10.44 10.5
84 86 88 9.0 92 94 96 9.8 10.010.210.4 10.6 10.8
-C(CH,),CHO* (C,H,0*) + -CH,00H 10.70 10.65

Photon Energy / eV
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N. Hansen et al., Proc. Combust. Inst., 2019, to be submitted



Low-Temperature Oxidation of Tetrahydrofuran
Isomer-resolved Identification and Quantification of the KHP

PHYSICAL CHEMISTRY —

Pressure-Dependent Competition among Reaction Pathways from
First- and Second-O, Additions in the Low-Temperature Oxidation of
Tetrahydrofuran

Ivan O. Antonov, Judit Zidor, Brandon Rotavera, Ewa Papajak, David L. Osborn, Craig A. Taatjes,
and Leonid Sheps*

C.HO; 1

Combustion Research Facility, Sandia Mational Laboratories, Livermore, Califomia 94551, United States

E (kcal/mol) 18
0 b

-10r @,oo : i ]
2,3-DHF f ) - 7
20t % R A :
oo HOOPOOH ; POQH — || L. m.u |“L_JIL__HA.II iR
=31. F q

301
-30b ) T T —T T
! °°‘(b’°°" -00-\.(5, KHP 20 30 40 50 60 70 80 90 100 110 120 130
.701 cis-aa-00Q00H  frans-aa-00Q0O0H m/z

ke
+
= o
Signal / ion counts

GBL-O0OH

Antonov et al., J. Phys. Chem. A 2016, 120, 6582-6595

@ GRE/& N. Hansen et al., J. Phys. Chem. A, 2019, to be submitted
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8.5

@

Low-Temperature Oxidation of Tetrahydrofuran
Isomer-resolved Identification of the KHP

“...energies were calculated using M06-2X/cc-pVTZ geometries and frequencies and a high level energy correction that approximates the
CCSD(T)/CBS result, where ~CCSD(T)/CBS = CCSD(T)/cc-pVTZ + MP2/CBS — MP2/cc-pVTZ and the CBS limit was approximated using a two
point formula and the cc-pVTZ and cc-pVQZ basis sets.” — Ahren Jasper (Argonne)

Signal / ion counts

. . 1 . .
[JSR-sampled PIE curve m/z = 118.0266 (C,H,0,)|

100 10.5
Photon Energy / eV

9.0 9.5 95

Photon Energy / eV

Chir—%
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v successfully identified at least two different isomeric

forms of the KHP

N. Hansen et al., J. Phys. Chem. A, 2019, to be submitted



Ozonolysis of Ethylene
Ketohydroperoxide and Criegee Intermediate Reactions

s

(@)

Signal Intensity / a.u.

H.C— .
3
@
>
®
5
HO (@] o) -—
[e] 7 O/ 7 O/ 1 E
©
- c
\\—o _{ .(%’
S0z / PO.
CH,O + CH,00*  — 9l
CH,00 HCO+OH H0+CO
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range of calc. IEs of

e 1OOCHCHO cONformers

f JSR-sampled PIE m/z = 92.011 (C,H,0,

| ——this work

9.50

Moshammer ef al. (DME Oxidation)

calc. |E of DHMF
9.5eV

*
o 10
calc. |IE of HPMF
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. .1 CH,0,
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A. C. Rousso, A. W. Jasper, Y. Ju, N. Hansen, J. Phys. Chem. A, 2018, 122(43), 8674-8685
and Phys. Chem. Chem. Phys., 2019, 21, 7341-7357



Ozonolysis of Ethylene SN

H;C/Ov o)
Network of Criegee Intermediate Reactions *"ZZ:L,O\ \

Q. H

-

+CH,00
CeH1208 C3HqO; ’
CaHgO ; i e}t
4HgOg g
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C4H804 e C4HWOO7 a o iegatate:
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Hgggz' CH5CHO g o calc. |E of HEHP 1
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C4H1006 2riee
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@ C..IE,\ A. C. Rousso, A. W. Jasper, Y. Ju, N. Hansen, J. Phys. Chem. A, 2018, 122(43), 8674-8685 B
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Highly Oxygenated Molecules in Ignition Chemistry
3r4 0, Addition

Highly oxidized intermediates

5] q\“’»r e CH,.0,.+ O

High temperature chemistry

oo heo oo
54 LY CH,.0,,*HO, (o) "o
__ oH - y Hﬂn’..--__
53 g]\rfv‘\r’ M C H 9, +OH ﬂ‘ﬂbﬁw J :‘j‘*i ROOH
*_—E M C‘H, J'Dz +HO +Dz "o 'T{GDH] -QOOH o
_» “OOP(00H), ;L:NY N— p—
= c H D +UH 1! oxy progucts \ +o. I e
- a4 \ =g -P[GDH]+O alfwr " \ _ow
AAAI’/ CH,.0, +HD ".'UDQUGH Lo @;_;@ ;r'l'-oo Extensive
0 ","q;?\?\ﬂ;o l/i;,.d'\v"\-éﬂg o DG[@ \z’ auto-oxidation
= 3 = a : \ - £/
~ROO O c C7H140s (a) N (room 20y
R0, "L""V"r‘ " 1501C7H1402 QA ____ ‘__ - s,
RH ’J\N‘T' i 100 ] \ I/l.- KHP-\‘? P "
> 50 C7H1204  C7H140s \ ) radicat
@ | | | x5 |x10 .~
1o, P 1 |“ . Ml i | v ' Y
addition addition 130 140 150 160 1?0 180 diones i s batene
miz
Z. Wang et al., Combust. Flame, 2016, 280, 386-396, Proc. Combust. Inst., Z. Wang, O. Herbinet, N. Hansen, F. Battin-Leclerc,
2017, 36, 373—382, and Proc. Nat. Acad. Sci., 2017, 114(50), 13102-13107 Progr. Energy Combust. Sci., 2019, 73, 132-181
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Addressing the Complexity of Reaction Systemes:
Rotational Spectroscopy

» dissociative ionization might preclude a complete qualitative and quantitative interpretation of the
sampled mass spectra

» similar ionization energies and photoionization efficiency curves may prevent isomer-specific assignments

» small Franck-Condon overlaps might hamper an adequate formation and sensitive detection of the
corresponding ion

» access to synchrotron facilities for photoionization measurements might be very competitive and limited

G | ——m/z =92.011 (C,H,0,) -B-miz=5
GHO  GHO ——m/z =92.011 (C;H,04) 20 "'3.1"'5
CHO; CHO, 1 1 CHCCCH
i 5 Ch, .
> iates P A irren 3 CHOCoH,
" CHO, C,HO, 3 calc. AE = 10.60 6V - L
E G0, 2 | -col= —A—mz=64.016 (CH04)/ 10 J g Sumn
8 2 calc. AE = 10.07 eV 2
H £ | Hol~ —@—miz=50013(C;H,0,) o
= e L calc. AE = 10.92 eV _b
2 . CH,0, = =
o o
g r ve SPECt OSCop :
5
-
£
o
| |M\ Ll
20 3 40 50 60 70 80 90 100 110 120 130 96 98 100 102 104 106 108 110 112 6 18 TF A T8 &d A4 ez

Photon Energy / eV Phcton Energy [ eV
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Microwave Spectroscopy as a Diagnostic Tool

MW spectroscopy is the most accurate way to determine molecular -
structures \

v’ rotational transitions are uniquely dependent on the molecular \
structure ‘?/Ei?a alectronic
[lk. -iss.x::.au:n

v’ characteristic fingerprints due to fine and hyperfine structures, and
internal rotation effects
v superior resolution (E/AE ~ 10°)

Ground state

Energy

Rotational
ransition

Vibrational
ranSilsor

A Infrared r_l:?-" (i MICTowEva )
Challenges: imternuckear separation
the rotational temperature of the targeted species must be: s E=J(J+1)B
» sufficiently cooled after sampling from the hot (up to EJ_H
— 128

~2300 K) environment of the reactors
» independent of the varying temperatures at different
sampling positions

Energy Levels

g
3]
o
FE T

‘r_ L
] ||
n -
=
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Addressing the Complexity of Reaction Systemes:
Rotational Spectroscopy ;

P k';f_'_" -~ MW-Pulse X \\ x X ox
;1 <4 7% \t _— \\ \kk \R X
Pl VLN, JWMMW TR 2,,-2,,(14488.479 MHz)
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« laminar flame | Ar
¢ i ! Pulse molecular jet
{ expansion ¢

line
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\ 15,-0p o (20209.201 MHz)
McKenna- % ' , 3P
type burner | transfer
! (W

FID
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. ' v
Fourier- ‘ l Jiffusion pump W
Transformation
—

) 20,1, (9118.816 MHz)

_—
w frequency time 37
’t N. Hansen et al., RSC Advances, 2017, 7(60), 37867-37872
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Addressing the Complexity of Reaction Systemes:
Rotational Spectroscopy

- MB-FTHMW Ethylene Flame EI-MBMS
DME Flame 24 4 - 24, transition e
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k5ot
 { = e
= %
g kamae? £
A £ g
E b2 ot
-4
at 3.75 mm HAB e [
100 pulses 1085 K L
= :
@ oo
T ¥
E - T - 70w 10
2 ;
© at4.25 mm HAB I 6.ee 10
o 100 pulses 1393 K
o b 500
= L
L
at 4.75 mm HAB = f bR
100 pulses 1880 K 3 E
‘_3 [ Pt 2
= =
l% \ L 2 w1004
at 5.25 mm HAB I m T
400 pulses 2168 K ook 1 om0t
x 10 HHTHCY
T f T 7 T ] 0o
144880 144882 144884 144886 144888 144890 o 1 H 3 H T A
Frequency / MHz Height abave Burher | mm

GIIE’\ N. Hansen et al., RSC Advances, 2017, 7(60), 37867-37872

GAS PHASE CHEMICAL PHYSICS



Summary

» address the complexity of chemical reaction networks with a combination of
experiments, data analysis procedures, and model development

v’ identify reaction pathways, detect and quantify key intermediates

» molecular-weight growth reactions and formation of PAHs

v’ identification of the foundational PAHs
v detection of aliphatically bridged multi-core PAHs

» detection, identification, and quantification of elusive highly oxygenated
intermediates during the low-temperature oxidation of DME, neo-pentane,
and THF

v" conformer-dependent ionization and appearance energies,
photoionization cross sections

» identification of Criegee-Intermediate reaction network

rotational spectroscopy as analytical tool
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Addressing the Complexity of Reaction Systemes:
New Validation Targets

ACEHSO-C===>CHICHO+CIHS5-T 3.231E+22 -2.630 3.031E+04
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Measuring 2D Temperature Fields with Kr X-Ray
Fluorescence

Beamline 7BM at the Advanced Photon Source (APS) of the Argonne National Laboratory

X-ray fluorescence beamline
Synchrotron-generated 5.1-22 keV

High photon flux (2 x 10! photons/s)
Size of focal point: 5x 7 um

Kr excitation at 15 keV and fluorescence
detection at 12.6 keV (Kr Kat)

emitted electron

coooo

electron

electron
emitted X-ray

- _- *
fluorescence ' sy
K
incident . L h

X-ray photon

N. Hansen et al., Combust. Flame, 2017, 181, 214-224 m



Measuring 2D Temperature Fields with Kr X-Ray
Fluorescence

n
\ S(y)~ @ Xxgr(x,y) X
turbo pump V

Flame Chamber NYYWy p
p =30 Torr ~@ X Xgr(x,y) X T
\\'/ Quartz Nozzle (x,y)

\"/ Detector
Detector (incident beam) S(x,y): fluorescence signal

t itted be
(transmitted beam) X-Ray 15 keV @: photon flux incident X-ray beam

{from synchrotron)
Xgr(x,¥): Kr mole fraction

2 —:number density
pressure
McKenna Burner

T (x, y):local temperature
y
Flame conditions: 14.5% C,H,, 25.5% O,, 55% Ar, 5% Kr, ®=1.7, 30 Torr, 0.00404 g/cm?/sec

@ @E’t N. Hansen et al., Combust. Flame, 2017, 181, 214-224 m
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Measuring 2D Temperature Fields with Kr X-Ray

(2)

Fluorescence | s
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Measuring 2D Temperature Fields with Kr X- Ray

Fluorescence g [
fiiifﬁﬁ ﬁmf%
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Advanced Light Source

Synchrotron Radiation at the Lawrence Berkeley National Laboratory

v’ 3rd Generation light source for vacuum ultraviolet (VUV) and soft X-rays

v' Photons.are generated
B e A

fields
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v’ easy to tune in the range from 7.3 to 24 eV

the acceleration of ultarelativistic electrons.t
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v energy resolution of E/AE = 250-400 sufficient for the

identification of individual isomers of flame species
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