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Outline of Research Program

General focus on Predictive modeling with combustion chemistry

Quality of models, data, and computational predictions
Uncertainty quantification in computational combustion

Specific areas of work:

Inference of uncertain chemical rate constants given available
information/missing-data — H2-O2 mechanism
Global sensitivity analysis and forward UQ in ignition & flames
Bayesian estimation of model error in chemical systems
Intrusive forward UQ methods in chemical systems – stability
Reduction of stochastic chemical models
Chemical model reduction under uncertainty – CSP & UQ
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UQ has broad applicability in science

General Utility

Estimation of uncertainty in experimental measurements
and computational predictions
Model comparison, selection, and validation
Hypothesis testing
Design optimization under uncertainty
Decision support

SciDAC-Partnership Applications of UQ – examples

Multiscale atmospheric transport
Fusion: ITER reactor modeling; fusion plasma surface damage
Climate: Ice sheet dynamics
Chemistry: Quantum chemistry computations
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Partnerships with other BES projects

Efficient representation of potential energy surfaces & estimation
of high dimensional quantum chemistry integrals

with So Hirata, UIUC
with Ahren Jasper, SNL

UQ in Large Eddy Simulation of turbulent combustion

with Joe Oefelein, SNL

UQ in tomographic Particle Imaging Velocimetry measurements in
flames

with Jonathan Frank, SNL
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Chemical Model Reduction under Uncertainty
with Riccardo Malpica-Galassi & Mauro Valorani, Sapienza Univ. of Rome

Outline:

1 Introduction

2 Deterministic Chemical Mechanism Simplification with CSP

3 Uncertain Chemical Mechanism Simplification with CSP

4 Demonstration on an Uncertain n-butane Mechanism

5 Closure
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Uncertainty in Reacting Flow Modeling

Chemical models involve much empiricism

Model uncertainties: choice of species and reactions

Parametric uncertainties:
– Chemical rate constants
– Thermodynamic parameters
– turbulence/subgrid models
– mass/energy transport and fluid constitutive laws
– geometry and initial/boundary conditions

Present focus on parametric uncertainty
– kinetic rate coefficients

SNL Najm BES-PImtg-2016 6 / 29



Introduction Deterministic Uncertain Demo Closure

Uncertainty and Chemical Model Reduction

Typical ingredients in chemical model reduction
A detailed starting chemical kinetic mechanism M∗

Operating conditions of interest
Quantities of interest (QoIs) desired with specified accuracy

E ≡ ‖Φ− Φ∗‖ < α

Consequences of uncertainty in the detailed model?
Errors in QoIs: acceptable over range of uncertainty
QoIs are uncertain – Φ(ω) – error measure definition
Probabilistic measures of model fidelity

E(ω) ≡ ‖Φ− Φ∗‖ ⇒ Prob[E < α] < ε

E ≡ ‖S(Φ)− S(Φ∗)‖ ⇒ E < α

E ≡ DKL[p(Φ), p(Φ
∗)] ⇒ E < α
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Deterministic Chemical ODE System Analysis

Computational Singular Perturbation (CSP) analysis

Jacobian eigenvalues provide first-order estimates of the
time-scales of system dynamics: τi ∼ 1/λi

Jacobian eigenvectors provide first-order estimates of the
vectors that span the fast/slow tangent spaces

With chosen thresholds, have M “fast” modes
M algebraic constraints define a slow manifold
Fast processes constrain the system to the manifold
System evolves with slow processes along the manifold

CSP Importance indices provide estimates of “importance” of
a given reaction to a given species in each of the fast/slow
subspaces — Importance Index threshold : τ ∈ [0, 1]
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Determ. Kinetic Model Simplification with CSP: n-butane
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Relative a posteriori error in ignition time vs. simplified model sizes
Control using τ-threshold on CSP importance indices
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Determinisitic Reduction Challenged with Uncertainty
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Deterministic Reduction

Model chosen based on a 5% a posteriori error threshold
Employing it, allowing for uncertainty in its pre-exponentials,
results in 75% probability of exceeding the threshold
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Reduction Strategy under Uncertainty

Deterministic strategy:
Given

Detailed starting chemical model M∗, with parameters λ
Solution database D of state vectors generated with M∗(λ)
Quantities of interest Q – mole fractions of target species
Specified thresholds τ on CSP Importance Indices

Discover a simplified model M(M∗(λ), D,Q, τ) := M(λ)

Probabilistic strategy:

Given uncertainty in λ, we model this parameter vector as a
random vector with a given joint density p(λ).

As a result, the resulting model structure M(λ) is a random
object, with a probability for any given M , denoted by P (M).

Each M ∈ M is defined by a network of species/reactions

The set M is not easy to work with
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Convenient coordinates on model space

Given the starting detailed model M∗, any simplifed model M
is uniquely defined by the set of retained reactions

Retained species are those involved in retained reactions

Set of elementary reactions in M∗: RM∗ = {R1, · · · , RK}
Define the bit vector α = (α1, · · · , αK) ∈ {0, 1}K

A model M is specified by α(M) where, for r = 1, . . . ,K ,

αr(M) =

{
1 if Rr ∈ RM

0 otherwise

clearly: α(M∗) = (1, · · · , 1)

Thus, given M∗, we have the mapping: λ → α(λ)
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Uncertain Simplified Model Specification

For uncertain λ: p(λ) → P (α) ≡ Pα

Clearly, Pα ≥ 0, and
∑

α Pα = 1

Illustrative example: M∗: A
1

2
B

K = 2, such that α = (α1, α2)

Set of possible values of α: {(1, 1), (1, 0), (0, 1), (0, 0)}

Set of possible models M : {M(1,1),M(1,0),M(0,1),M(0,0)}

Uncertain simplified model specification:

{P(1,1), P(1,0), P(0,1), P(0,0)}

where P(i,j) ≡ P (α = (i, j))
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Uncertain Reduction Strategy – 1

Generate N random samples of λ from p(λ)
For each λi, i = 1, . . . , N

Analyze resulting M∗(λi) for ignition – range of (T, P,Φ) ICs
Get simplified model M i(Si,Ri)
Evaluate αi = α(M i):

αi
k =

{
1 for Rk ∈ RMi

0 otherwise
k = 1, . . . ,K

Estimate Model probabilities: Pα =
1

N

N∑
i=1

δα,αi

Marginal reaction probabilities:

Pαk
=

1

N

N∑
i=1

δαk,α
i
k
, k = 1, . . . ,K
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Uncertain Reduction Strategy – 2

Marginal reaction inclusion probability

Pk := P{αk=1} =
1

N

N∑
i=1

αi
k, k = 1, . . . ,K

Include reaction k if:
Pk > θ

Resulting model Mτ,θ(λ) is the CSP-simplified model given
the starting detailed model M∗(λ)
the database of solution state vectors
the CSP Importance Index tolerance τ
for λ ∼ p(λ)

with marginal reaction inclusion probability > θ
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Computational Considerations

Efficient Tchem based thermochemistry
In-memory manipulation of Arrhenius parameters
Fast evaluation of source term and analytical Jacobian
www.sandia.gov/tchem
Contact: C. Safta: csafta@sandia.gov

Fast CVODE based stiff time integration
computation.llnl.gov/casc/sundials

Versatile UQTk sampling and statistics capabilities
www.sandia.gov/uqtoolkit
Contact: B. Debusschere: bjdebus@sandia.gov

Efficient CSPTk analysis and reduction
Minimal I/O; efficient dynamical analysis
Contact: M. Valorani: mauro.valorani@uniroma1.it
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Demo on n-butane ignition

Detailed chemical mechanism for n-butane/air combustion,
with specified uncertainty factors in the pre-exponentials

E. Hebrard, A.S. Tomlin, R. Bounaceur, F. Battin-Leclerc,
Proc. Comb. Inst. 35(1):607-616, 2015.

N = 1111 reactions

Temperature-dependent uncertainty factors
Mechanism specificies (fr, gr) for each reaction r
Uncertainty factor: lnA = lnAnom ± lnF

Fr(T ) = fr exp
(∣∣∣∣ gr ( 1

T
− 1

300

)∣∣∣∣)
For now, we employ a temperature-independent Fr :

Fr := Fr(T )|T=1500 K
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Sampled ignition trajectories – detailed mechanism

Significant uncertainty in
ignition time

Large range of state-variable
uncertainty vs time

– fast ignition transient

Examine trajectory errors and
uncertainty in an alternate
progress-variable phase space

Entropic phase space
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Uncertain trajectories in the entropy phase space
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Uncertain trajectories in the entropy phase space
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Uncertain trajectories in the entropy phase space
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Distribution of Marginal Reaction Probabilities
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for different values of the CSP Importance Index threshold τ

Choice of reaction probability threshold θ selects for reactions
with Pk > θ
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Distribution of Marginal Reaction Probabilities
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Distribution of Marginal Reaction Probabilities
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# of active reactions/species varies inversely with (τ, θ)
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Number of active reactions/species goes down monotonically
with:

– increasing threshold θ on Pk

– increasing Importance Index threshold τ
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A posteriori error estimation

For any quantity of interest φ(s, ·), define the trajectory error norm
over time steps tk : k = 1, . . . ,K , with sk = s̃(tk),

Ep,w
φ =

‖φ− φd‖p,w
‖φd‖p,w

=

(
1

K

K∑
k=1

wk|φ(sk, ·)− φd(sk, ·)|p
)1/p

(
1

K

K∑
k=1

wk|φd(sk, ·)|p
)1/p

where
φd refers to the detailed model
wk = w(sk) is a weight function e.g. wk = 1 or wk = 1/σd(sk)
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A posteriori error estimation

Example quantities of interest for trajectory error estimation

A per-trajectory error that is random

φ(s, λ) := Xi(s, λ) ⇒ Ep,w
Xi

(λ; τ, θ)

An error in the mean of uncertain trajectories

φ(s) := µi(s) = Eλ[Xi(s, λ)] ⇒ Ep,w
µi

(τ, θ)

An error in the standard deviation of uncertain trajectories

φ(s) := σi(s) = (Vλ[Xi(s, λ)])
1/2 ⇒ Ep,w

σi
(τ, θ)
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Trajectory error statistics

PDF of trajectory error, averaged over target species, θ = 0.30
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PDF generally shifts towards larger errors with increasing τ

Localized non-monotonic behavior with variation in τ
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Distribution of a posteriori Error – dependence on θ
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Trajectory error statistics exhibit occasional non-monotonic
local dependence on θ

Global trend towards higher error with larger (τ, θ)
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Distribution of a posteriori Error – dependence on θ
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Error in mean & stdv, avg on target species
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Standard Deviation

Non-monotonic trend towards higher error with increasing τ , θ
Trend is more evident at low τ
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Error vs. N
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Probabilistic Reduction Advantage

0 0.02 0.04 0.06 0.08 0.1
Error

0

10

20

30

40

50

60

70

Pr
ob

ab
ili

ty
 D

en
sit

y

Probabilistic Reduction

Probabilistic-reduction with a 5% a posteriori error threshold
Allowing for uncertainty in its pre-exponentials, results in 88%
probability of being below threshold
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Probabilistic Reduction Advantage
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Accounting for uncertainty in the reduction strategy reduces
the probability of exceeding stated threshold from 75% to 12%
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Closure

Predictive modeling of combustion with detailed kinetics

Highlighted chemical model reduction under uncertainty

A probabilistic framework for analysis and reduction of
chemical models under uncertainty

Employs the deterministic analysis/reduction strategy as a
black box
CSP analysis ensures models with consistent dynamical fidelity
Use both dynamical and probabilistic thresholds

Demo with an uncertain n-butane mechanism

Resulting mech satisfies, with high probability, requested error
tolerance
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