

*R*eacting Flow Modeling with Detailed Chemical Kinetics

Habib N. Najm

Sandia National Laboratories
Livermore, CA

BES Contractors Meeting
Leesburg, VA
May 31 – June 3, 2016

Outline of Research Program

General focus on Predictive modeling with combustion chemistry

- Quality of models, data, and computational predictions
- Uncertainty quantification in computational combustion

Specific areas of work:

- Inference of uncertain chemical rate constants given available information/missing-data – $\text{H}_2\text{-O}_2$ mechanism
- Global sensitivity analysis and forward UQ in ignition & flames
- Bayesian estimation of model error in chemical systems
- Intrusive forward UQ methods in chemical systems – stability
- Reduction of stochastic chemical models
- **Chemical model reduction under uncertainty – CSP & UQ**

UQ has broad applicability in science

General Utility

- Estimation of uncertainty in experimental measurements and computational predictions
- Model comparison, selection, and validation
- Hypothesis testing
- Design optimization under uncertainty
- Decision support

SciDAC-Partnership Applications of UQ – examples

- Multiscale atmospheric transport
- Fusion: ITER reactor modeling; fusion plasma surface damage
- Climate: Ice sheet dynamics
- Chemistry: Quantum chemistry computations

Partnerships with other BES projects

Efficient representation of potential energy surfaces & estimation of high dimensional quantum chemistry integrals

- with So Hirata, UIUC
- with Ahren Jasper, SNL

UQ in Large Eddy Simulation of turbulent combustion

- with Joe Oefelein, SNL

UQ in tomographic Particle Imaging Velocimetry measurements in flames

- with Jonathan Frank, SNL

Chemical Model Reduction under Uncertainty

with Riccardo Malpica-Galassi & Mauro Valorani, Sapienza Univ. of Rome

Outline:

- 1 Introduction
- 2 Deterministic Chemical Mechanism Simplification with CSP
- 3 Uncertain Chemical Mechanism Simplification with CSP
- 4 Demonstration on an Uncertain n-butane Mechanism
- 5 Closure

Uncertainty in Reacting Flow Modeling

- Chemical models involve much empiricism
- Model uncertainties: choice of species and reactions
- Parametric uncertainties:
 - Chemical rate constants
 - Thermodynamic parameters
 - turbulence/subgrid models
 - mass/energy transport and fluid constitutive laws
 - geometry and initial/boundary conditions
- Present focus on parametric uncertainty
 - kinetic rate coefficients

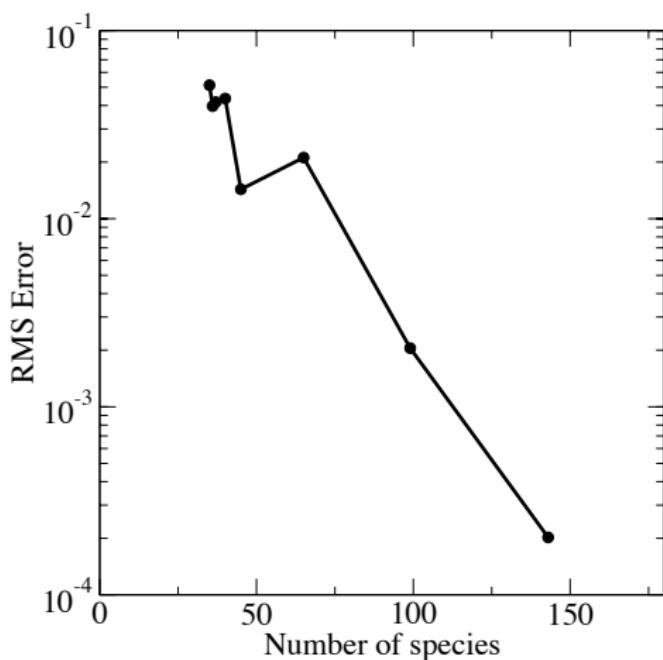
Uncertainty and Chemical Model Reduction

- Typical ingredients in chemical model reduction
 - A detailed starting chemical kinetic mechanism M^*
 - Operating conditions of interest
 - Quantities of interest (Qols) desired with specified accuracy

$$\mathcal{E} \equiv \|\Phi - \Phi^*\| < \alpha$$

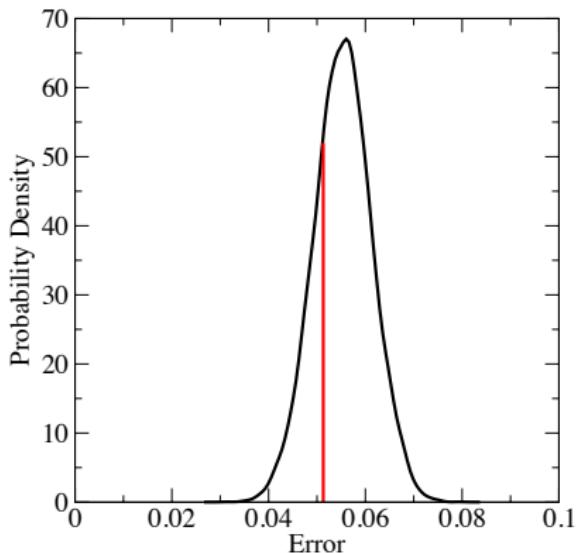
- Consequences of uncertainty in the detailed model?
 - Errors in Qols: acceptable over range of uncertainty
 - Qols are uncertain – $\Phi(\omega)$ – error measure definition
 - Probabilistic measures of model fidelity

$$\mathcal{E}(\omega) \equiv \|\Phi - \Phi^*\| \quad \Rightarrow \quad \text{Prob}[\mathcal{E} < \alpha] < \epsilon$$


$$\mathcal{E} \equiv \|\mathcal{S}(\Phi) - \mathcal{S}(\Phi^*)\| \quad \Rightarrow \quad \mathcal{E} < \alpha$$

$$\mathcal{E} \equiv \mathcal{D}_{\text{KL}}[p(\Phi), p(\Phi^*)] \quad \Rightarrow \quad \mathcal{E} < \alpha$$

Deterministic Chemical ODE System Analysis


- Computational Singular Perturbation (CSP) analysis
- Jacobian eigenvalues provide first-order estimates of the time-scales of system dynamics: $\tau_i \sim 1/\lambda_i$
- Jacobian eigenvectors provide first-order estimates of the vectors that span the fast/slow tangent spaces
- With chosen thresholds, have M “fast” modes
 - M algebraic constraints define a slow manifold
 - Fast processes constrain the system to the manifold
 - System evolves with slow processes along the manifold
- CSP Importance indices provide estimates of “importance” of a given reaction to a given species in each of the fast/slow subspaces – Importance Index threshold : $\tau \in [0, 1]$

Deterministic Kinetic Model Simplification with CSP: n-butane

Relative *a posteriori* error in ignition time vs. simplified model sizes
Control using τ -threshold on CSP importance indices

Deterministic Reduction Challenged with Uncertainty

- Model chosen based on a 5% *a posteriori* error threshold
- Employing it, allowing for uncertainty in its pre-exponentials, results in 75% probability of exceeding the threshold

Reduction Strategy under Uncertainty

- Deterministic strategy:

- Given
 - Detailed starting chemical model M^* , with parameters λ
 - Solution database D of state vectors generated with $M^*(\lambda)$
 - Quantities of interest Q – mole fractions of target species
 - Specified thresholds τ on CSP Importance Indices
 - Discover a simplified model $M(M^*(\lambda), D, Q, \tau) := M(\lambda)$

- Probabilistic strategy:

- Given uncertainty in λ , we model this parameter vector as a random vector with a given joint density $p(\lambda)$.
 - As a result, the resulting model structure $M(\lambda)$ is a random object, with a probability for any given M , denoted by $P(M)$.
 - Each $M \in \mathcal{M}$ is defined by a network of species/reactions
 - The set \mathcal{M} is not easy to work with

Convenient coordinates on model space

- Given the starting detailed model M^* , any simplified model M is uniquely defined by the set of retained reactions
 - Retained species are those involved in retained reactions
- Set of elementary reactions in M^* : $\mathcal{R}_{M^*} = \{R_1, \dots, R_K\}$
- Define the bit vector $\alpha = (\alpha_1, \dots, \alpha_K) \in \{0, 1\}^K$
- A model M is specified by $\alpha(M)$ where, for $r = 1, \dots, K$,

$$\alpha_r(M) = \begin{cases} 1 & \text{if } R_r \in \mathcal{R}_M \\ 0 & \text{otherwise} \end{cases}$$

clearly: $\alpha(M^*) = (1, \dots, 1)$

- Thus, given M^* , we have the mapping: $\lambda \rightarrow \alpha(\lambda)$

Uncertain Simplified Model Specification

- For uncertain λ : $p(\lambda) \rightarrow P(\alpha) \equiv P_\alpha$
- Clearly, $P_\alpha \geq 0$, and $\sum_\alpha P_\alpha = 1$
- Illustrative example: $M^*: A \xrightleftharpoons[2]{1} B$
 - $K = 2$, such that $\alpha = (\alpha_1, \alpha_2)$
 - Set of possible values of α : $\{(1, 1), (1, 0), (0, 1), (0, 0)\}$
 - Set of possible models M : $\{M_{(1,1)}, M_{(1,0)}, M_{(0,1)}, M_{(0,0)}\}$
 - Uncertain simplified model specification:

$$\{P_{(1,1)}, P_{(1,0)}, P_{(0,1)}, P_{(0,0)}\}$$

where $P_{(i,j)} \equiv P(\alpha = (i, j))$

Uncertain Reduction Strategy - 1

- Generate N random samples of λ from $p(\lambda)$
- For each $\lambda^i, i = 1, \dots, N$
 - Analyze resulting $M^*(\lambda^i)$ for ignition - range of (T, P, Φ) ICs
 - Get simplified model $M^i(\mathcal{S}^i, \mathcal{R}^i)$
 - Evaluate $\alpha^i = \alpha(M^i)$:

$$\alpha_k^i = \begin{cases} 1 & \text{for } R_k \in \mathcal{R}_{M^i} \\ 0 & \text{otherwise} \end{cases} \quad k = 1, \dots, K$$

- Estimate Model probabilities: $P_{\alpha} = \frac{1}{N} \sum_{i=1}^N \delta_{\alpha, \alpha^i}$
- Marginal reaction probabilities:

$$P_{\alpha_k} = \frac{1}{N} \sum_{i=1}^N \delta_{\alpha_k, \alpha_k^i}, \quad k = 1, \dots, K$$

Uncertain Reduction Strategy - 2

- Marginal reaction inclusion probability

$$P_k := P_{\{\alpha_k=1\}} = \frac{1}{N} \sum_{i=1}^N \alpha_k^i, \quad k = 1, \dots, K$$

- Include reaction k if:

$$P_k > \theta$$

- Resulting model $M_{\tau, \theta}(\lambda)$ is the CSP-simplified model given
 - the starting detailed model $M^*(\lambda)$
 - the database of solution state vectors
 - the CSP Importance Index tolerance τ
 - for $\lambda \sim p(\lambda)$

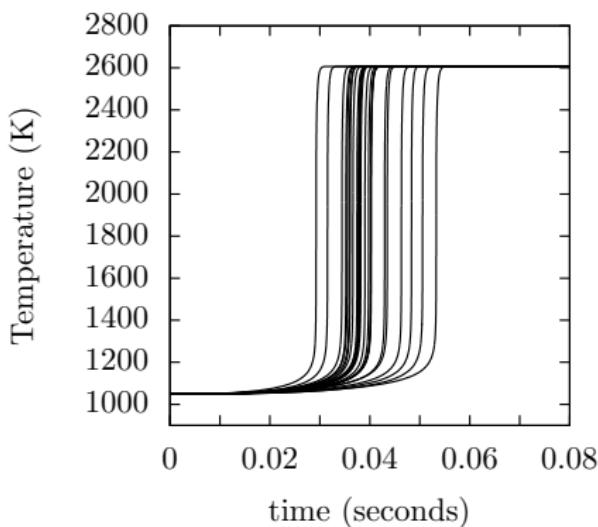
with marginal reaction inclusion probability $> \theta$

Computational Considerations

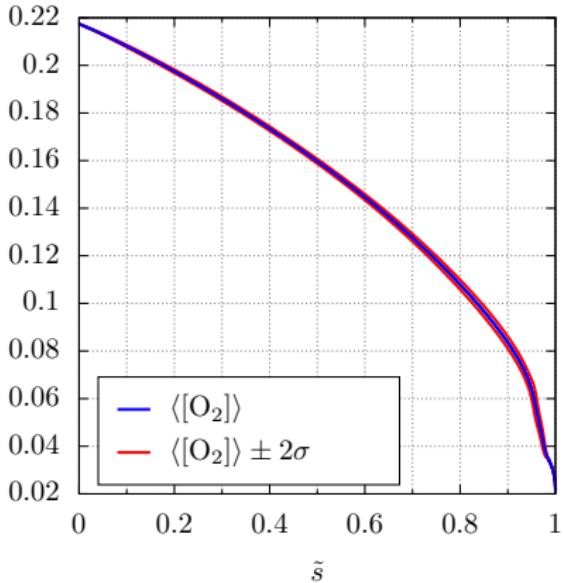
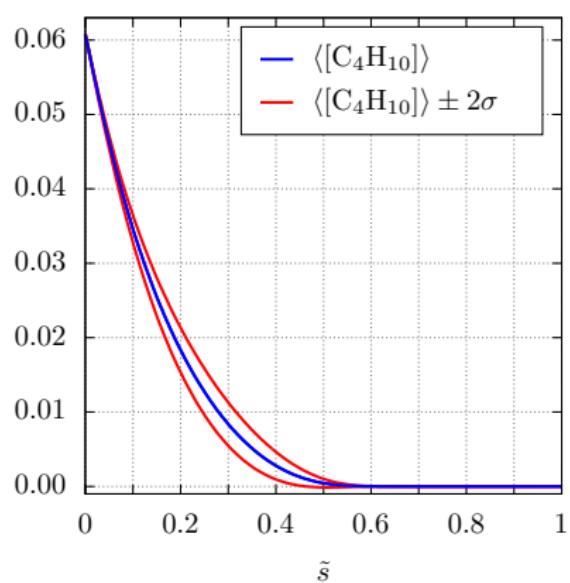
- Efficient **Tchem** based thermochemistry
 - In-memory manipulation of Arrhenius parameters
 - Fast evaluation of source term and analytical Jacobian
 - www.sandia.gov/tchem
 - Contact: C. Safta: csafta@sandia.gov
- Fast **CVODE** based stiff time integration
 - computation.llnl.gov/casc/sundials
- Versatile **UQTk** sampling and statistics capabilities
 - www.sandia.gov/uqtoolkit
 - Contact: B. Debusschere: bjdebus@sandia.gov
- Efficient **CSPTk** analysis and reduction
 - Minimal I/O; efficient dynamical analysis
 - Contact: M. Valorani: mauro.valorani@uniroma1.it

Demo on n-butane ignition

- Detailed chemical mechanism for n-butane/air combustion, with specified uncertainty factors in the pre-exponentials
E. Hebrard, A.S. Tomlin, R. Bounaceur, F. Battin-Leclerc, Proc. Comb. Inst. 35(1):607-616, 2015.
- $N = 1111$ reactions
- Temperature-dependent uncertainty factors
 - Mechanism specifies (f_r, g_r) for each reaction r
 - Uncertainty factor: $\ln A = \ln A_{\text{nom}} \pm \ln F$

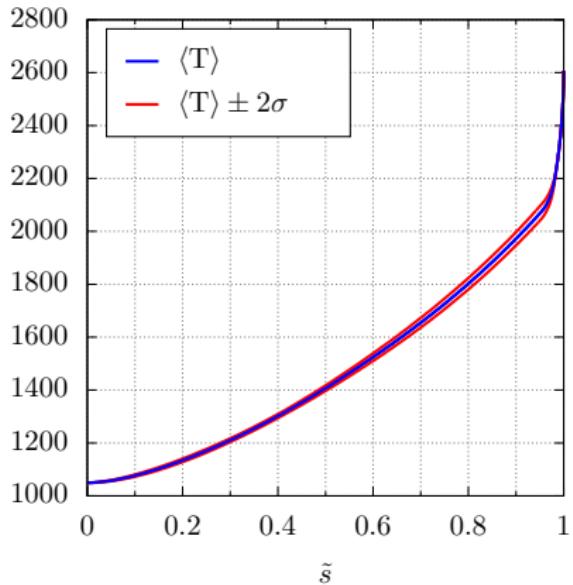
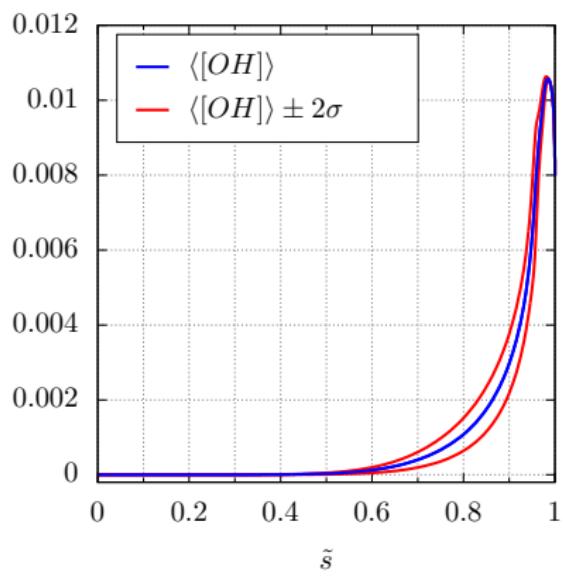

$$F_r(T) = f_r \exp \left(\left| g_r \left(\frac{1}{T} - \frac{1}{300} \right) \right| \right)$$

- For now, we employ a temperature-independent F_r :



$$F_r := F_r(T)|_{T=1500 \text{ K}}$$

Sampled ignition trajectories - detailed mechanism

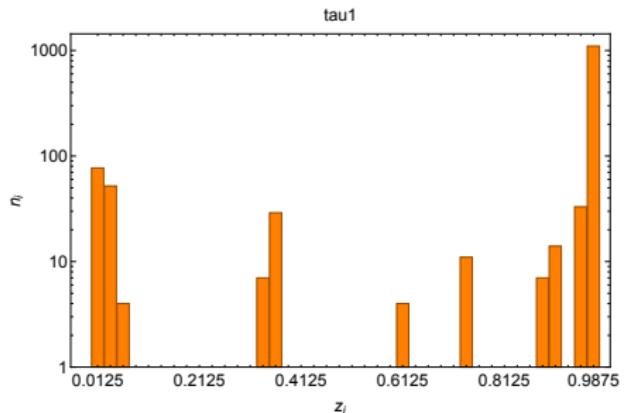
- Significant uncertainty in ignition time
- Large range of state-variable uncertainty vs time
 - fast ignition transient
- Examine trajectory errors and uncertainty in an alternate progress-variable phase space
 - Entropic phase space

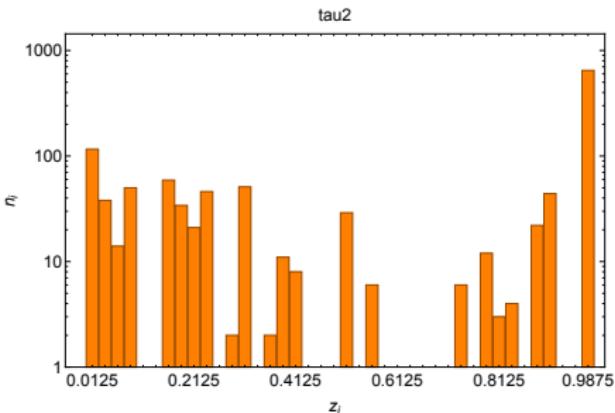
Uncertain trajectories in the entropy phase space

- Mean and $\text{Mean} \pm 2\sigma$ trajectories for select state variables
- No uncertainty at equilibrium
 - Rate parameters, not thermodynamic properties, are uncertain
- Coefficient of variation can be large when the mean is low

Uncertain trajectories in the entropy phase space

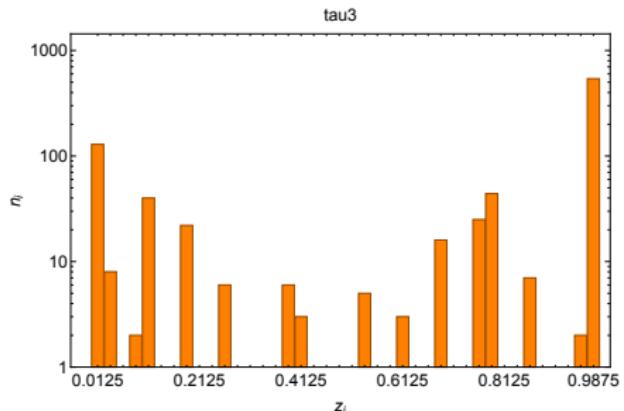

- Mean and $\text{Mean} \pm 2\sigma$ trajectories for select state variables
- No uncertainty at equilibrium
 - Rate parameters, not thermodynamic properties, are uncertain
- Coefficient of variation can be large when the mean is low

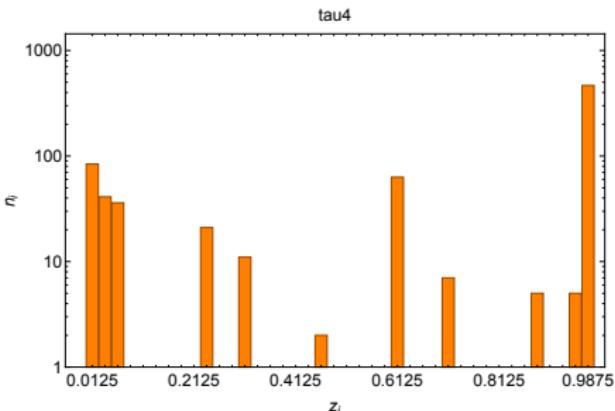
Uncertain trajectories in the entropy phase space



- Mean and $\text{Mean} \pm 2\sigma$ trajectories for select state variables
- No uncertainty at equilibrium
 - Rate parameters, not thermodynamic properties, are uncertain
- Coefficient of variation can be large when the mean is low

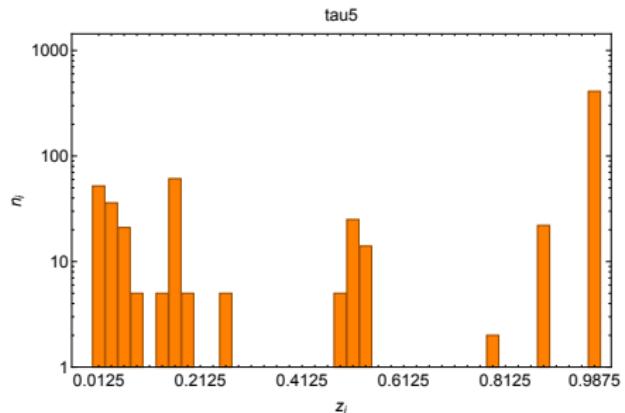
Distribution of Marginal Reaction Probabilities

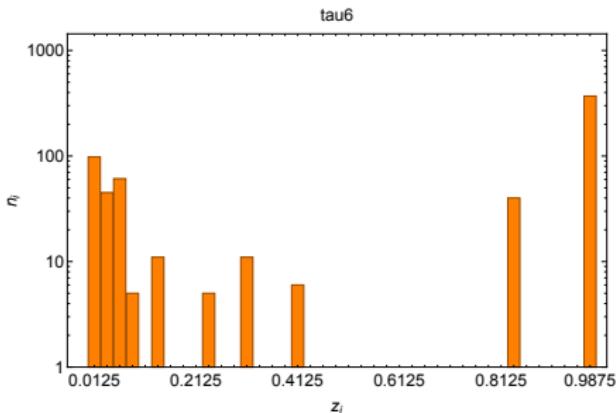

$$\tau = 0.020$$


$$\tau = 0.047$$

- # reactions versus Marginal Reaction Probability
 - $p(P_k)$... modulo normalization
 - for different values of the CSP Importance Index threshold τ
- Choice of reaction probability threshold θ selects for reactions with $P_k > \theta$

Distribution of Marginal Reaction Probabilities

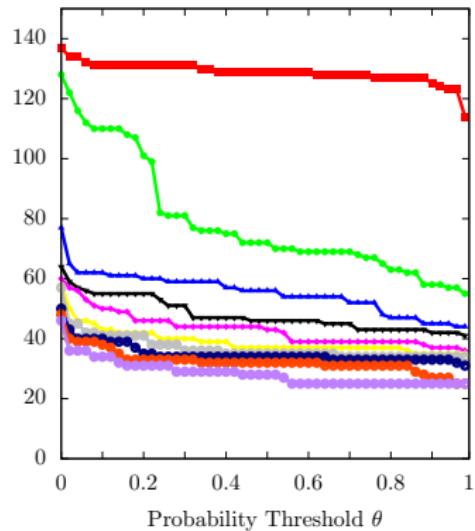

$$\tau = 0.075$$


$$\tau = 0.103$$

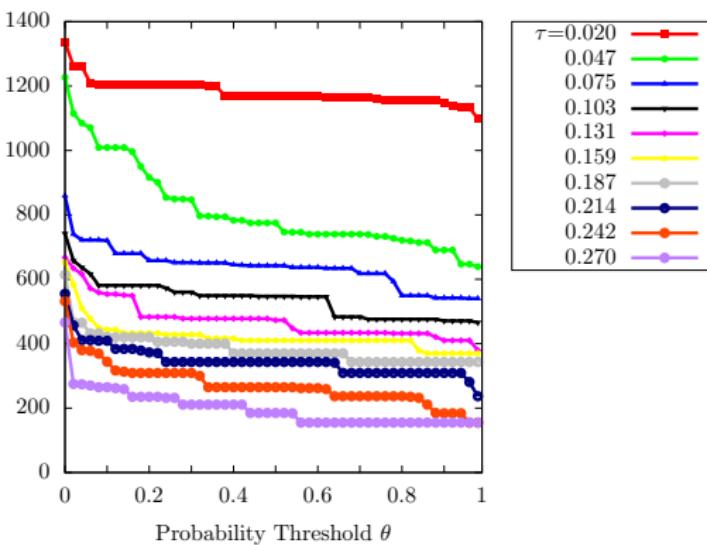
- # reactions versus Marginal Reaction Probability
 - $p(P_k)$... modulo normalization
 - for different values of the CSP Importance Index threshold τ
- Choice of reaction probability threshold θ selects for reactions with $P_k > \theta$

Distribution of Marginal Reaction Probabilities

$$\tau = 0.131$$



$$\tau = 0.159$$


- # reactions versus Marginal Reaction Probability
 - $p(P_k)$... modulo normalization
 - for different values of the CSP Importance Index threshold τ
- Choice of reaction probability threshold θ selects for reactions with $P_k > \theta$

of active reactions/species varies inversely with (τ, θ)

Number of active species

Number of active reactions

- Number of active reactions/species goes down monotonically with:
 - increasing threshold θ on P_k
 - increasing Importance Index threshold τ

A posteriori error estimation

For any quantity of interest $\phi(\mathfrak{s}, \cdot)$, define the trajectory error norm over time steps $t_k : k = 1, \dots, K$, with $\mathfrak{s}_k = \tilde{s}(t_k)$,

$$\mathcal{E}_\phi^{p,w} = \frac{\|\phi - \phi_d\|_{p,w}}{\|\phi_d\|_{p,w}} = \frac{\left(\frac{1}{K} \sum_{k=1}^K w_k |\phi(\mathfrak{s}_k, \cdot) - \phi_d(\mathfrak{s}_k, \cdot)|^p \right)^{1/p}}{\left(\frac{1}{K} \sum_{k=1}^K w_k |\phi_d(\mathfrak{s}_k, \cdot)|^p \right)^{1/p}}$$

where

ϕ_d refers to the detailed model

$w_k = w(\mathfrak{s}_k)$ is a weight function e.g. $w_k = 1$ or $w_k = 1/\sigma_d(\mathfrak{s}_k)$

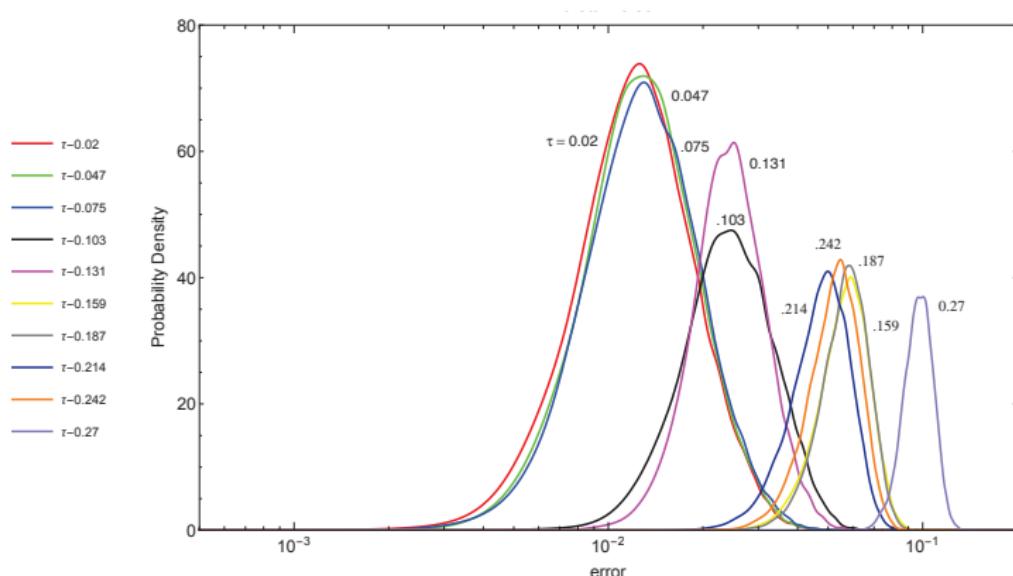
A posteriori error estimation

Example quantities of interest for trajectory error estimation

- A per-trajectory error that is random

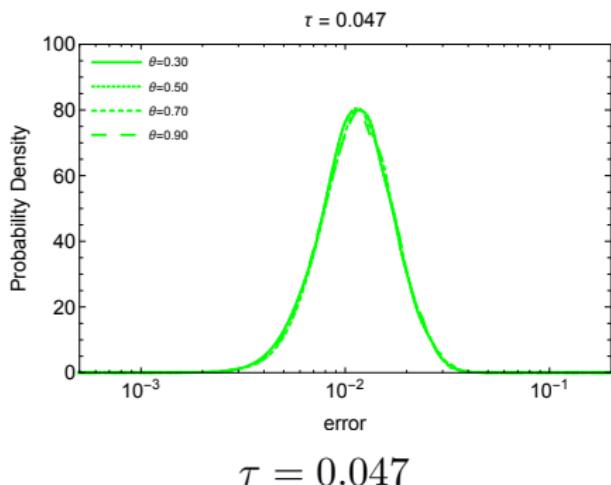
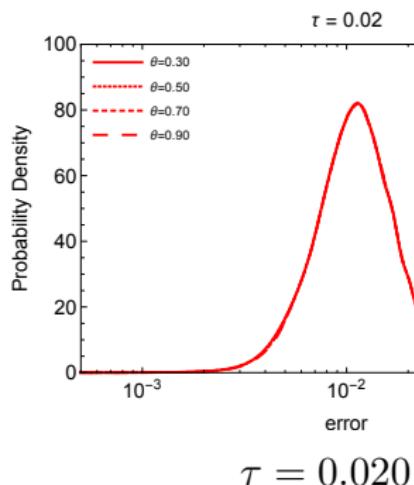
$$\phi(\mathfrak{s}, \lambda) := X_i(\mathfrak{s}, \lambda) \quad \Rightarrow \quad \mathcal{E}_{X_i}^{p,w}(\lambda; \tau, \theta)$$

- An error in the mean of uncertain trajectories


$$\phi(\mathfrak{s}) := \mu_i(\mathfrak{s}) = \mathbf{E}_\lambda[X_i(\mathfrak{s}, \lambda)] \quad \Rightarrow \quad \mathcal{E}_{\mu_i}^{p,w}(\tau, \theta)$$

- An error in the standard deviation of uncertain trajectories

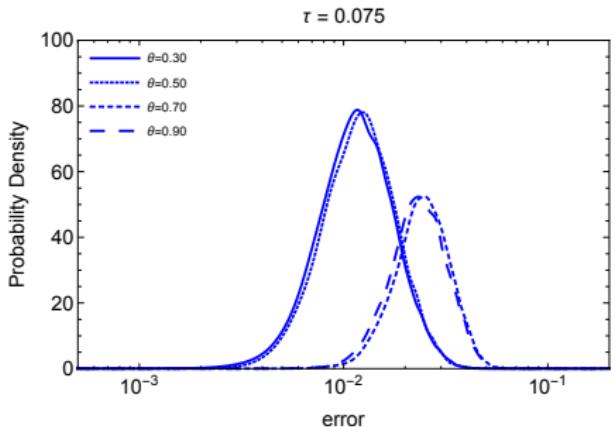
$$\phi(\mathfrak{s}) := \sigma_i(\mathfrak{s}) = (\mathbf{V}_\lambda[X_i(\mathfrak{s}, \lambda)])^{1/2} \quad \Rightarrow \quad \mathcal{E}_{\sigma_i}^{p,w}(\tau, \theta)$$



Trajectory error statistics

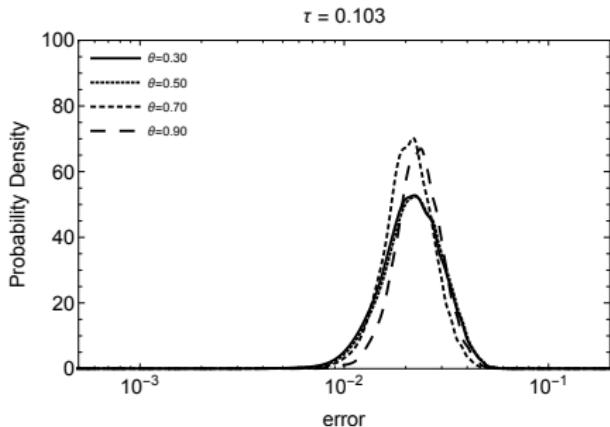
- PDF of trajectory error, averaged over target species, $\theta = 0.30$

- PDF generally shifts towards larger errors with increasing τ
- Localized non-monotonic behavior with variation in τ

Distribution of a posteriori Error – dependence on θ

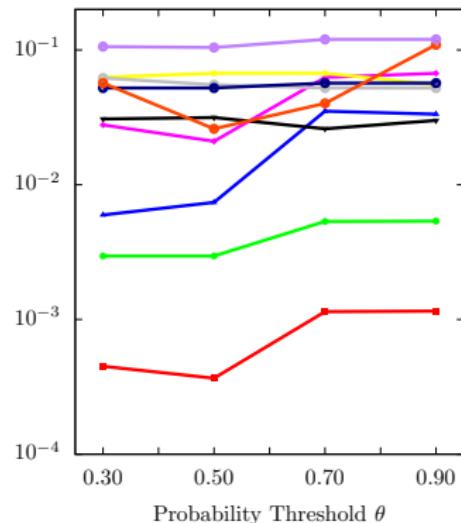


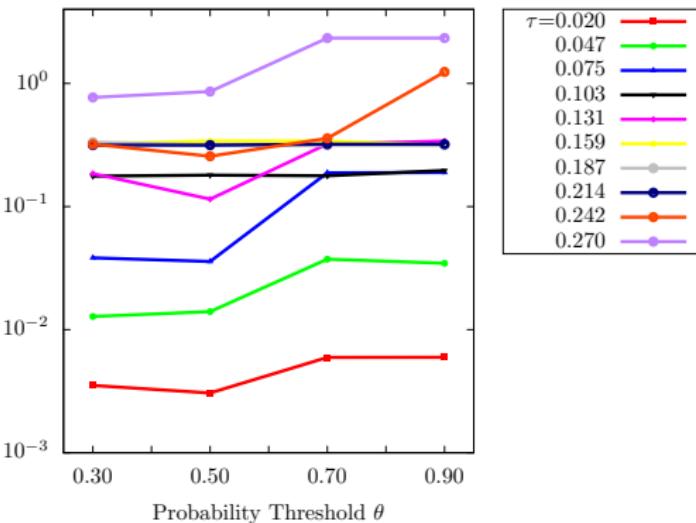
$\tau = 0.020$


$\tau = 0.047$

- Trajectory error statistics exhibit occasional non-monotonic local dependence on θ
- Global trend towards higher error with larger (τ, θ)

Distribution of a posteriori Error – dependence on θ

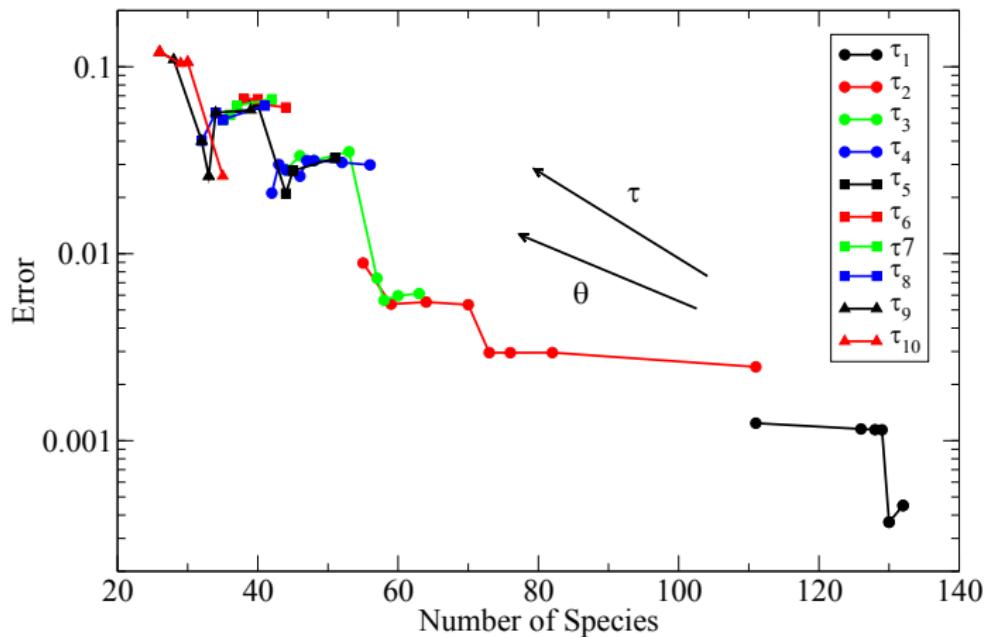

$\tau = 0.075$


$\tau = 0.103$

- Trajectory error statistics exhibit occasional non-monotonic local dependence on θ
- Global trend towards higher error with larger (τ, θ)

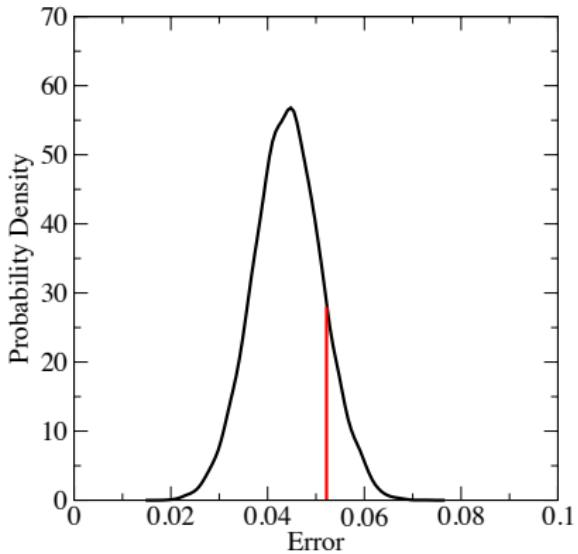
Error in mean & stdv, avg on target species

L₂ Unweighted Error on Target Species Averages

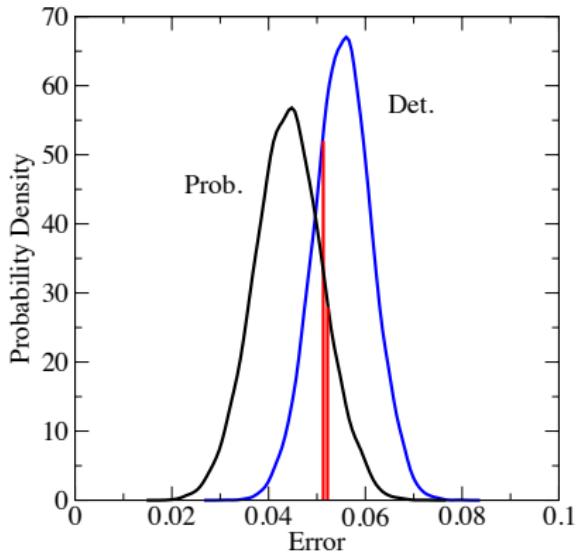

Mean

L₂ Unweighted Error on Target Species Std Devs

Standard Deviation


- Non-monotonic trend towards higher error with increasing τ, θ
- Trend is more evident at low τ

Error vs. N


- Globally monotonic trend with increasing (τ, θ)
- Local non-monotonic trends towards higher error, τ, θ

Probabilistic Reduction Advantage

- Probabilistic-reduction with a 5% *a posteriori* error threshold
- Allowing for uncertainty in its pre-exponentials, results in 88% probability of being below threshold

Probabilistic Reduction Advantage

- Accounting for uncertainty in the reduction strategy reduces the probability of exceeding stated threshold from 75% to 12%

Closure

- Predictive modeling of combustion with detailed kinetics
- Highlighted chemical model reduction under uncertainty
- A probabilistic framework for analysis and reduction of chemical models under uncertainty
 - Employs the deterministic analysis/reduction strategy as a black box
 - CSP analysis ensures models with consistent dynamical fidelity
 - Use both dynamical and probabilistic thresholds
- Demo with an uncertain n-butane mechanism
- Resulting mech satisfies, with high probability, requested error tolerance