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Outline of Research Program

General focus on Predictive modeling with combustion chemistry

@ Quality of models, data, and computational predictions
@ Uncertainty quantification in computational combustion

Specific areas of work:

@ Inference of uncertain chemical rate constants given available
information/missing-data — Hy-O5 mechanism

Global sensitivity analysis and forward UQ in ignition & flames
Bayesian estimation of model error in chemical systems

Reduction of stochastic chemical models

°
°
@ Intrusive forward UQ methods in chemical systems - stability
°
°

Chemical model reduction under uncertainty - CSP & UQ
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UQ has broad applicability in science

General Utility

@ Estimation of uncertainty in experimental measurements
and computational predictions

@ Model comparison, selection, and validation
@ Hypothesis testing

@ Design optimization under uncertainty

@ Decision support

SciDAC-Partnership Applications of UQ - examples

@ Multiscale atmospheric transport
@ Fusion: ITER reactor modeling; fusion plasma surface damage
@ Climate: Ice sheet dynamics

@ Chemistry: Quantum chemistry computations
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Partnerships with other BES projects

Efficient representation of potential energy surfaces & estimation
of high dimensional quantum chemistry integrals

@ with So Hirata, UIUC
@ with Ahren Jasper, SNL

UQ in Large Eddy Simulation of turbulent combustion
@ with Joe Oefelein, SNL

UQ in tomographic Particle Imaging Velocimetry measurements in

HERES

@ with Jonathan Frank, SNL
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Chemical Model Reduction under Uncertainty

with Riccardo Malpica-Galassi & Mauro Valorani, Sapienza Univ. of Rome

Outline:

@ Introduction

e Deterministic Chemical Mechanism Simplification with CSP
© Uncertain Chemical Mechanism Simplification with CSP
@ Demonstration on an Uncertain n-butane Mechanism

© Closure
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Introduction

Uncertainty in Reacting Flow Modeling

@ Chemical models involve much empiricism
@ Model uncertainties: choice of species and reactions

@ Parametric uncertainties:

- Chemical rate constants

Thermodynamic parameters

turbulence/subgrid models

mass/energy transport and fluid constitutive laws
- geometry and initial/boundary conditions

@ Present focus on parametric uncertainty
- kinetic rate coefficients
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Introduction

Uncertainty and Chemical Model Reduction

@ Typical ingredients in chemical model reduction

o A detailed starting chemical kinetic mechanism A/*
e Operating conditions of interest
e Quantities of interest (Qols) desired with specified accuracy

E=|®— 0" <a

@ Consequences of uncertainty in the detailed model?
e Errors in Qols: acceptable over range of uncertainty
e Qols are uncertain - ®(w) - error measure definition
o Probabilistic measures of model fidelity

Ew) = || — & = Prob[€ < a] < ¢
= [[5(®) — S(@)]l = £<a
EED|(L[( ) ( )] = E<
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Deterministic

Deterministic Chemical ODE System Analysis

@ Computational Singular Perturbation (CSP) analysis

@ Jacobian eigenvalues provide first-order estimates of the
time-scales of system dynamics: 7; ~ 1/);

@ Jacobian eigenvectors provide first-order estimates of the
vectors that span the fast/slow tangent spaces

@ With chosen thresholds, have M “fast” modes

o M algebraic constraints define a slow manifold
o Fast processes constrain the system to the manifold
e System evolves with slow processes along the manifold

@ CSP Importance indices provide estimates of “importance” of
a given reaction to a given species in each of the fast/slow
subspaces — Importance Index threshold : 7 € [0, 1]
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Deterministic

Determ. Kinetic Model Simplification with CSP: n-butane

RMS Error

- I | I | I |
1079 50 100 150
Number of species
Relative a posteriori error in ignition time vs. simplified model sizes
Control using 7-threshold on CSP importance indices
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Deterministic

Determinisitic Reduction Challenged with Uncertainty
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@ Model chosen based on a 5% a posteriori error threshold

@ Employing it, allowing for uncertainty in its pre-exponentials,
results in 75% probability of exceeding the threshold
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Uncertain

Reduction Strategy under Uncertainty

@ Deterministic strategy:
e Given
@ Detailed starting chemical model M *, with parameters A
@ Solution database D of state vectors generated with M *(\)
@ Quantities of interest @ - mole fractions of target species
@ Specified thresholds 7 on CSP Importance Indices

o Discover a simplified model M (M*(\), D, Q,7) := M(\)
@ Probabilistic strategy:

e Given uncertainty in A\, we model this parameter vector as a
random vector with a given joint density p()).

o Asaresult, the resulting model structure M () is a random
object, with a probability for any given M, denoted by P(M).

e Each M € M is defined by a network of species/reactions

e The set M is not easy to work with
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Uncertain
Convenient coordinates on model space

@ Given the starting detailed model M *, any simplifed model M
is uniquely defined by the set of retained reactions

o Retained species are those involved in retained reactions
@ Set of elementary reactionsin M*: Ry~ = {R1, -, Rk}
@ Define the bit vector a = (o, - - ,ar) € {0,1}%
@ Amodel M is specified by a(M) where, forr = 1,... K,

ar(M) =

1 ifR, € Ry
0 otherwise

clearly: a(M*) = (1,---,1)

@ Thus, given M*, we have the mapping: A — ()
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Uncertain

Uncertain Simplified Model Specification

@ Foruncertain \:  p(\) —» P(a) = Py,
@ Clearly, P, > 0,and ) Po =1

1
@ lllustrative example: M*: A —B
2

o K =2, suchthata = (a1, a2)

Set of possible values of a: {(1,1), (1,0), (0,1),(0,0)}

o Set of possible models M: { My 1y, M(1,0y, M(0,1), M (0,0}

Uncertain simplified model specification:

{P(l,l)a P(l,O)a P(0,1)7 P(O,O)}

where P; ;) = P(a = (i,]))
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Uncertain Reduction Strategy - 1

@ Generate N random samples of A from p())

@ Foreach\},i=1,...,N
e Analyze resulting M*(\?) for ignition - range of (T, P, ®) ICs
o Get simplified model M*(S*, R?)
o Evaluate o' = a(M?):

Qg =

1 for Ry € Ry
{ b M k=1,... K

0 otherwise

N
: . 1
@ Estimate Model probabilities: P, = N Z Sov.cxi

@ Marginal reaction probabilities:

N
1
P., :NZ%]M, k=1,....,K
=1
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Uncertain Reduction Strategy - 2

@ Marginal reaction inclusion probability

N
Pk::P{akzl}:N O[k., k:].,,K
i=1

@ Include reaction & if:
P.>0

@ Resulting model M 4(\) is the CSP-simplified model given
o the starting detailed model M*(\)
o the database of solution state vectors
o the CSP Importance Index tolerance 7
e for\ ~ p(})

with marginal reaction inclusion probability > 6
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Uncertain
Computational Considerations

o Efficient Tchem based thermochemistry

In-memory manipulation of Arrhenius parameters

o Fast evaluation of source term and analytical Jacobian
e www.sandia.gov/tchem

e Contact: C. Safta: csafta@sandia.gov

@ Fast CVODE based stiff time integration
e computation.linl.gov/casc/sundials

@ Versatile UQTk sampling and statistics capabilities
e www.sandia.gov/uqtoolkit
e Contact: B. Debusschere: bjdebus@sandia.gov

o Efficient CSPTk analysis and reduction

e Minimal I/0O; efficient dynamical analysis
e Contact: M. Valorani: mauro.valorani@uniromal.it
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Demo
Demo on n-butane ignition

@ Detailed chemical mechanism for n-butane/air combustion,
with specified uncertainty factors in the pre-exponentials
E. Hebrard, A.S. Tomlin, R. Bounaceur, F. Battin-Leclerc,
Proc. Comb. Inst. 35(1):607-616, 2015.

@ N = 1111 reactions

@ Temperature-dependent uncertainty factors

@ Mechanism specificies ( f;., g-) for each reaction r
e Uncertainty factor: In A = ln Apom £ In F

o (7-mm))

@ For now, we employ a temperature-independent F:

F.(T) = freXP<

F, .= F.(T)|r=1500 k
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Demo

Sampled ignition trajectories - detailed mechanism

@ Significant uncertainty in

ignition time 2800
2600
@ Large range of state-variable & 2400 I
. . = 2200 1
uncertaln.ty vs time . £ 2000 i
- fastignition transient E 1800 i
. . 2 1600 1
@ Examine trajectory errors and § 1400 g
. . B
uncertainty in an alternate 1200 i
progress-variable phase space 1000 F 1
e Entropic phase space 0 0.02 004 006 008

time (seconds)
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Demo

Uncertain trajectories in the entropy phase space

0.22

0.06 — ([C4Hyo]) i 0.2 f\\\ i
0.05 — ([C4Hpo)£20 || gig L . i
0.16 + \ i

0.04

0.14 i
1l o012t \\ i
\

0.1
1 0.08 \

0.03

0.02

0.01 | \ 1 006 F — (0y))
N 0.04 1| — ([0z]) £ 20 \
0.00 b 0.02 T T L
0 02 04 06 08 1 0 02 04 06 08 1

w

5

@ Mean and Mean=+20 trajectories for select state variables
@ No uncertainty at equilibrium
o Rate parameters, not thermodynamic properties, are uncertain

@ Coefficient of variation can be large when the mean is low
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Demo

Uncertain trajectories in the entropy phase space
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@ Mean and Mean=+20 trajectories for select state variables
@ No uncertainty at equilibrium
o Rate parameters, not thermodynamic properties, are uncertain

@ Coefficient of variation can be large when the mean is low
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Demo

Uncertain trajectories in the entropy phase space
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@ Mean and Mean=+20 trajectories for select state variables
@ No uncertainty at equilibrium
o Rate parameters, not thermodynamic properties, are uncertain

@ Coefficient of variation can be large when the mean is low
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Demo

Distribution of Marginal Reaction Probabilities

taut tau2
1000} B 1000}
100+ 100+
< <
| H m | [m Hﬂ
1 H 1 H H
0.0125 0.2125 0.4125 0.6125 0.8125 0.9875 0.0125 0.2125 0.4125 0.6125 0.8125 0.9875
z; Z;
7 =0.020 T =0.047

@ # reactions versus Marginal Reaction Probability
@ p(Py) ... modulo normalization
o for different values of the CSP Importance Index threshold 7
@ Choice of reaction probability threshold 6 selects for reactions
with P, > 6
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Demo

Distribution of Marginal Reaction Probabilities

tau3 taud
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z; Z;
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@ # reactions versus Marginal Reaction Probability
@ p(Py) ... modulo normalization
o for different values of the CSP Importance Index threshold 7
@ Choice of reaction probability threshold 6 selects for reactions
with P, > 6
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Demo

Distribution of Marginal Reaction Probabilities

taus taué
1000} 1000}
100+ 100+
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z; Z;
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@ # reactions versus Marginal Reaction Probability
@ p(Py) ... modulo normalization
o for different values of the CSP Importance Index threshold 7
@ Choice of reaction probability threshold 6 selects for reactions
with P, > 6
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Demo

# of active reactions/species varies inversely with (7, ¢)
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@ Number of active reactions/species goes down monotonically
with:
- increasing threshold 6 on P
- increasing Importance Index threshold 7
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Demo
A posteriori error estimation

For any quantity of interest ¢(s, -), define the trajectory error norm
over timestepsty : k = 1,..., K, with s, = 5(tx),

1 K 1/p
<K > wilé(sk, ) — dalsk, ')’p>
k=1

1 K 1/p
<szk|¢d(gka')|p>
k=1

gp,w _ ||¢ - d)de,w _
¢ | @allp,w

where
¢4 refers to the detailed model
wy, = w(sy) is a weight function e.g. wy, = 1 orwy, = 1/04(s%)
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Demo
A posteriori error estimation

Example quantities of interest for trajectory error estimation

@ A per-trajectory error that is random
(s, A) := X;(s,\) = 8§(’:”(A; 7,0)
@ An error in the mean of uncertain trajectories
¢(s) := pi(s) = Ex[Xi(s, )] = E5(,0)
@ An error in the standard deviation of uncertain trajectories

$(s) == 0i(s) = alXi(s, N2 = ER(n0)
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Demo

Trajectory error statistics

@ PDF of trajectory error, averaged over target species, § = 0.30

80
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@ PDF generally shifts towards larger errors with increasing ~
@ Localized non-monotonic behavior with variation in 7
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Demo

Distribution of a posteriori Error - dependence on 6

Probability Density
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@ Trajectory error statistics exhibit occasional non-monotonic

local dependence on ¢

@ Global trend towards higher error with larger (7, )
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Demo

Distribution of a posteriori Error - dependence on 6
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@ Trajectory error statistics exhibit occasional non-monotonic
local dependence on ¢

@ Global trend towards higher error with larger (7, )
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Demo

Error in mean & stdv, avg on target species
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@ Non-monotonic trend towards higher error with increasing 7, ¢
@ Trend is more evident at low 7
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Error vs. N
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@ Globally monotonic trend with increasing (7, 6)
@ Local non-monotonic trends towards higher error, 7, 6
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Demo

Probabilistic Reduction Advantage
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@ Probabilistic-reduction with a 5% a posteriori error threshold

@ Allowing for uncertainty in its pre-exponentials, results in 88%
probability of being below threshold
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Demo

Probabilistic Reduction Advantage
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@ Accounting for uncertainty in the reduction strategy reduces
the probability of exceeding stated threshold from 75% to 12%
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Closure
Closure

@ Predictive modeling of combustion with detailed kinetics

@ Highlighted chemical model reduction under uncertainty
@ A probabilistic framework for analysis and reduction of
chemical models under uncertainty

e Employs the deterministic analysis/reduction strategy as a
black box

o CSP analysis ensures models with consistent dynamical fidelity

@ Use both dynamical and probabilistic thresholds

@ Demo with an uncertain n-butane mechanism

@ Resulting mech satisfies, with high probability, requested error
tolerance
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