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Gibbsite nanoparticle construction
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Exploit the hexagonal symmetry of bulk gibbsite

Molecular dynamics
* LAMMPS code with ClayFF parameters.

* New Al-O-H angle bending term for stability of edge sites.
* Extra Al-O-Al term added for nanoparticle stability.
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Lateral dimension 2.1 — 3.5 nm

Particle thickness 3 layers (1.3 nm)

Ho, T.A. et al. (2017) Scientific Reports 7:15286
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;1 Gibbsite aggregation Hydrated aggregate G
15 x 15 x 15 nm?

NPT ‘Virtual’ pump removes
.| 0.3ns 0.3 ns waters from a pre-defined
300 K 3'00 K region.
100 MPa

54 NPs, 55k H,0
30 x 30 x30 nm3

Dewatering Rate
“Fast” 8 “Slow”

Why do gibbsite

particles prefer to ]
stack basal-surface to

basal-surface?

Ho, T.A. et al. (2017) Scientific Reports 7:15286



s+ I Objectives and Computational Methods

Objective: Evaluate the differences in energy associated with different particle-
particle attachment orientations.

Methods:

For the PMF calculations, the umbrella sampling method is applied with a separation
between windows of 0.025A (3.0 ns per window, NPT) and a force constant of
5000Kcal/mol.Az.

o Large force constant is needed to keep the two particles fluctuating around a specific
reaction coordinate.

- Small window separation is required to obtain sufficient overlap among windows for the
convergence of the PMF calculation.

- The COM of one particle is kept fixed by excluding 8 atoms from the integration of the
equation of motion.

> The second particle is translated away from the first particle with a constant velocity 5 A/ns.

- The Weighted Histogram Analysis Method (WHAM) is applied to extract the PMF profile from
the simulation trajectory.



Free Energy Profiles for Particle-Particle Attachment in Different
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Free Energy Profiles for Imperfect Attachment
Between Basal Surfaces
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-S(r) = G(r, T+AT) - G(r, T)/AT
H(r) = G(r) + TS(r)

r = interparticle separation
T = 300K, AT = 20K
Hw(r) = solvent contribution to enthalpy

U(r) = direct potential between particles

Enthalpic and Entropic Contributions to Particle Aggregation
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Conceptual Model Used to Explain Entropic Changes with
Attachment

Water molecules in
these regions will
== __~_move to the bulk upon
contact of two
particles. Entropy of

Entropy of particle water increases
decreases e

basal-basal contact

Entropy of particle
decreases
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basal-edge
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o I Summary and Next Steps

« MD Simulations show that the most stable attachments between gibbsite nanoparticles are those with no
Interlayers of water.

« For the same contact surface area (SA), edge-edge attachment is the most favorable. However, the high
(basal SA)/(edge SA) typical of gibbsite particles leads to a lower free energy for basal-basal attachment.

« Enthalpy is the driving force for gibbsite coalescence and is dominated by short-range electrostatic
interactions including H-bonds.

« The enthalpy of the basal-edge attachment is offset by entropy leading to a higher free energy
than for the basal-basal attachment.

» Future research includes
(1) energetics of imperfect attachment and

(2) effects of solution composition on gibbsite aggregation.
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