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2 I Motivation

Expensive computational models with moderate-to-high dimensionality
Limited sampling budget

Unknown a priori convergence criteria make it difficult to budget model
evaluations

Iterated LHS doubling provides a means to determine convergence with
lower up-front investment

> Doubling sample size may be prohibitively expensive

Samples will be used for surrogate modeling. Best assessment of
surrogate quality of via cross-validation

Goal: Develop a sampling scheme to provide for sample enrichment and
more robust cross-validation estimates

Approach: Group-Based LHS with enrichment



s | Latin Hypercube Samples (LHS)

N 10 LHS Example
T r & 1t 1

Latin Hypercube Samples provide robust, Monte-Carlo sample for
design-of-experiments.

> No (asymptotic) dimensional dependence

° Moderate-to-good space-filling properties

> Non-collapsing marginal samples

Key idea: Divide space into N-hypercubes. Randomly place one

sample per row/column/... Iy
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Building Latin Hypercube Samples

At its core, LHS designs are built on a per-dimension basis. Build from “ranks” of
1D permutations of {1,...,N}

for d in {1,...,n d}
Let R be a random permutation of {0,...,N-1}
Xy = {(R + u~U[O0,1])/N for i = {O,...,N-1} }

Commonly, LHS is optimized by taking a large number of realizations of X and
choosing the one that minimizes a metric. Alternative Methods:
o Simulated Annealing — Stochastic discrete optimization

> “Improve Distributed” — Choose new samples that are the average separation distance away with a
reduced set of candidates

° Translational propagation — Tile a smaller LHS with shifted bins

o “Latinized” Centroidal Voronoi Tessellation — Use CVT to jointly determine ranks then Latinize

LHS Metrics: (non-exhaustive)

p 1/p ng 1/q
q
(22 o) ) - = (e
=1 j=i+1 k=1

= Larger p values increase the importance on the closest samples.

o Maximin (Maximize the minimum distance) is ;!i“olu ¢4 (When minimized)




Enriched and Group-Enriched Samples

Traditional LHS samples cannot be decomposed into smaller groups while still

maintaining the LHS property

Default LHS samples cannot be decomposed

1x80

Starting at the smallest size, enriched samples can be
decomposed only by half.

2x10, 2x20, 2x40, 1x80

Group enriched samples maintain the LHS property
for all groupings starting at the initial size

8x10, 4x20, 2x40, 1x80
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Grouped-Enriched LHS Construction: 1D

(> © N
O O &
Construction of enriched LHS is performed independently in ,\o\*Q ,\&Q ,\&Q
each dimension with an enrichment by a factor of two. (&’% ,\&’% 3%’%
Example: Consider two N=3 1D sample shuffled ranks: " W N
0 1A 2A 5A
1 0A 1A 2A
RY” ={1,02} R ={021} o 2a 5A 10A
3 0B 0B 1B
4 28 4B 9B
Generate offset vector i, = {0,1,1}, a vector that is —= =L ob
randomlyOor 1. Let i, = 1 — i, = {1,0,0} of oc 1C 3C
7 2C 4cC 8C
8 1C 3C 7C
09) _ 5p0) , . _ 9 2D 5D 11D
Raw*)— 2Ra(0)+ iqe = 1{2,1,5} o o oD o0
R, " =2R," +ip,=1{043} 11 1D 2D 4D

= {2,1,5,0,4,3}

Repeat the process again with N=3 to generate another N=6
grouped array and combine for N=12. Repeat again for

N=24,...

Always begin with N=3 (smallest group) Randomness comes from original ordering at

the smallest group and the offset vectors



Grouped-Enriched LHS Construction: D = 2

Independently follow the the same process as 1D for each dimensions with
new, randomly chosen offset vectors

=
O 00 N O U1 B W N RO = O W 00 N O Ul & W N B O

el
= O

1A 2A 5A
0A 1A 2A
2A 5A 10A
0B (0] 1B
2B 4B 9B
1B 3B 6B
oC 1C 3C
2C 4C 8C
1C 3C 7C
2D 5D 11D
0D 0D 0D
1D 2D 4D
1A 3A 6A
2A 4A 8A
0A 1 2A
1B 2B 4B
2B 5B 11B
0B 0B 1B
0C 1C 3C
1C 2C 5C
2C 4C 9C
1D 3D 7D
0D 0D 0D
2D 5D 10D

X1 X2 1.0
0 5A 6A o
1 2A 8A .
2 10A 2A 0.81 .
3 1B 4B .
4 9B 11B :
5 6B 1B 0.61
6 3C 3C *
7 8C 5C .
gl 7c a9C 0.41 .
9| 11D 7D "
10 oD oD _— i
11 4D 10D :
[ ]
| ]
0.01

00 02 04 06 08
The is the same for any number of dimensions

The final sample can again be doubled with another
enriched-doubled sample

Random optimization on the final and/or subsamples
can still be performed

Correlations should be added at the smallest group
size

1.0



s I K-Fold Cross Validation

Robust, black-box method to assess surrogate performance

Many surrogates are exact interpolants so you can’t assess error based on the build points.
Alternative: Cross-Validation

k=1 k=2 k=3 k=4 k=5
. . if 1} 1f 1| 1 Training

K-Fold Cross Validation: S Validation
> Make K-partitions of the data. Build a new P Y e
ini (k) 5[ 5] 5[ 5| 5
surrogate (S) on training data (xtmin ) and N
evaluate on validation data (xml ]

8| 8 8 8 8 )
2 ol 9| a| 9 o9 Design should be
=_Zk =1 Z Ex(k) f} { (k) }(x})) 10| 10| 10| 10| 10 shuffled in the general
J&€Xya1 *train 1] 1| 1] 1] 11]  case. Not shuffled for
2 12] 12| 12| 13] 13} group-based LHS

o i . — cv 13| 13| 13| 13| 13
Relative CV: €cp rer ’Ef": 72 R R ETIET
) ) ) 2 15| 15[ 15| 15[ 15
> Be careful with notation. Some articles refer to €, as 16| 16| 16| 16| 16
the error and not the squared error. T ] T
18| 18| 18| 18| 18
> Common K Values 19| 19| 18] 19| 19
20| 20| 20| 20| 20

> 5-10 (Reasonable cost)
> K= N, Leave-One-Out Cross Validation [LOO] ( Very Expensive)

o Can use tricks to speed up general K-fold or approximate LOO. Or use brute-force on end-to-
end construction for most robust estimate



o | Surrogate Form: Radial Thin-Plate Splines

Ideally, would use Kriging surrogate but they are require O(n;) dimensional non-convex
optimization

Ifl N N(u({) K(x,x) +ofly  K(x,x") )

f px)' Ll K(x*,x) K(x", x7)

Alternative surrogate is to use Polyharmonic Radial Thin-Plate Splines
N

Fe) =) G0(n) + ) aipi(®)

j=1 keP
Where ®(r) = r?log(r) and rj = ||x; — x||2. P is a polynomial index (usually linear terms)

and pg(x) = l'[};l xyg (a multi-dimensional). Solve by enforcing f(x;) = f; and
Z?=1 ijk(xj) =0VkeP

2D Radial Thin-Plate

®(r3;) +o3 I Pe(x) (| c f

Pr (%))’ 0 JlLgl Lo




10 I Surrogate Form: Radial Thin-Plate Splines

Radial splines:

> completely non-parametric unlike Kriging (correlation lengths) and polynomials
(polynomial basis and coefficients).

o dimensionally independent complexity
= Require only a single matrix N2 matrix inversion is needed for each experimental design

= Can include data noise (smoothing) but do not provide a statistical basis to determine
the appropriate value (unlike Kriging)

o Generally less accurate than Kriging -=- True Function
> Especially for extrapolation 0.2  Thinpiate Iterpolant

0.0r

In practice we would use Kriging
ia & . =0.2

but it is too expensive for the

repeated runs used in this study —oal
-0.6
=0.8

0.0 0.2 0.4 0.6 0.8 1.0






12 I Study Outline

These are preliminary results

Goals:

o Better sampling on the divisions as compared to a non-grouped LHS
o More accurate cross-validation estimates

Tests

° 3 enrichments for k=8 fold with grouped LHS
o 2D, 8D, varied dimensions
> Non-LHS enrichment from LHS groups (LHS metrics only)



13 1 2D Varying Size

Test Problem

cos(rr(Zy — 1)) +5
e—40x+10 4 1

f(x,y) = tanh(2x(2y — 1)) +
x,y € [0,1]
Build,
NO = N1=2*NO -
N2 =2*N1=4*NO =
N3 =2*N2=4*N1=8*NO
LHS ensemble
> NO from 4 to 128

° Build to with random optimization over 50 iterations with ¢

° For each NO and trial compute CV error with Grouped LHS and i
Regular LHS with 8*NO

* Random shuffle of regular LHS
o Repeat for 150 trials
o Estimate “True” Error with 250,000 LHS (simple) sample




14 1 2D Varying Size: LHS Metrics of Divisions
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15 1 2D Varying Size: CV Error Estimate

Use 8-Fold Cross-Validation. Compare to “True” error

5 1071 N
S S ONN
5 BOAN
: - == True Error Xjss grouped —
~
- === True Error Xjus ~
N
- ——  8-Fold Error X!hsgrouped ﬁ\
N
——  8-Fold Error Xus T
1072+ N S S — - 1
102 103
N

Grouped LHS error is consistently less than random LHS error and closer to
"True” error



6 1 8D Varying Size

8D: Borehole Function
2nT,(Hy — H;)
2LT, Tu)

log(r/7) (1 togtr/r) 2k, T T,

f(rWJ r! Tu: Hu; TI, Hl’ L, KW) =

Build,

Name Distribution

NO 9 Nl - 2* NO 9 N(u=0.10, 0=0.0161812)

Lognormal(p=7.71, 0=1.0056)

N2 =2*N1=4*NO0 > Uniform[63070, 115600
N3 =2*N2 =4*N1 = 8*NO Uniform[990, 1110]

Uniform[63.1, 116]
LHS ensemble Uniform[700, 820]

o NO from 4to 128 Uniform[1120, 1680]
> Build to with random optimization over 50 iterations with ¢ , Uniform{o853, 12045}

> For each NO and trial compute CV error with Grouped LHS and Regular LHS with
8*NO
* Random shuffle of regular LHS

o Repeat for 150 trials

o Estimate “True” Error with 250,000 LHS (simple) sample



7 | 8D Varying Size: LHS Metrics

—}— Grouped
—f—= Random
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18 | 8D Varying Size: Errors

error

6 x 100}

4x 100}

3x10°%;

2 x10°%;

=== True Error Xins grouped

- == True Error Xjs
—— 8'F0|d Error X”']s grouped

- 8-Fold Error X

102

Less profound improvement in the error but grouped LHS was still more

accurate than random LHS
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Fixed Sample Size, Varying Dimension

Any Dimension

1
f(x) L+ an (x _1)2 ’ xq € [0,1]
10 d=1\"d 2
Build
> Same 8-Fold construction with NO = 50 and N3 =400
° Build with random optimization over 50 iterations with ¢, ,
> For each NO and trial compute CV error with Grouped LHS and Regular LHS with 8*NO "
> Random shuffle of regular LHS

> Repeat for 150 trials
> Estimate “True” Error with 250,000 LHS (simple) sample

o 2to 10 dimensions Any Grouping of # dimensions
1 2 3 4 5 6 7 8 9 10
1 |1
2 |04 02
3 |01 0.1 0.2 r
Variance Based £ 4 (008 005 0.08 007
Decomposition (Sobol 2 5 [005 002 004 003 003 [
:g’;ifs:)o;’f‘j'l:f::;;ns S 6 (003 001 002 001 001 001
problem is isotropic 5 7 |0.03 0.006 0.008 0.007 0.006 0.005 0.005 ‘
8 [0.02 0.003 0.004 0003 0003 0003 0.002 0.002
9 [0.02 0.003 0.002 0002 0001 0.001 0001 0.001 0.0009
10 |0.02 0.002 0.001 0.0008 0.0006 0.0005 0.0005 0.0004 0.0004 0.0004 L



20 | Fixed Sample Size, Varying Dimension

10)

L Metric (P

10! .

10° -

~4— Grouped

—f— Random

Grouped LHS maintains a
lower LHS metric value as
dimensions scale

CV Errors are similar for low
dimensions (likely due to having
400 samples) but as they decay,
the Grouped LHS CV Error
reduces and is more
representative of the True error

0.04

0.02f

0.00¢t

= True Error Xis grouped
— ==+ True Error X
—— 8-Fold Error Xns grouped -

—— 8-Fold Error Xus

2 3 4 5 6 7 8 9 10
Nq



Non-LHS Enrichment

21

In practice, LHS doubling is prohibitive; grouped or traditional.

Grouped LHS enrichment can be used to enrich the sample even if the final result is
not a true LHS. If all groups are added, final sample retains LHS properties

Goal: Better sampling; not necessarily LHS sampling

Consider a grouped-4 enriched LHS

Performed grouped enrichment

[

O oo
CO o

Successively add the next groups (N,
samples)

These enrichments will not be an LHS but
will maintain good sampling properties

Final enrichment is fully LHS

Only tested on LHS metrics; not
CV performance
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Single Enrichment,Vary N, ng4

Examine how LHS metrics change as a single
additional group is added.

o 150 Trials
° 9 total groups

ﬂd=2
103 T P
™~ I”_.,,.,..--""':.---"'““.'.
2‘ 101_ ,-;#__,::_..-—."". | 1 L ]
S z=r"
ng==6 ng=28
103-!!!'!'1 L L  ——— i — ———— - I  —— ———— —
- Grouped Full
< = = Grouped Groups
™ - Random Full
s 10 I - 1+ . ﬁ
€ ’/—_:,: —— RandomGruups |
Zemmm=—TT ;';'::-:::-'_'——-—"'"”




23 I Adding Groups: Metrics

Again consider adding groups from a larger enrichment compared to adding LHS
samples:

o Grouped: Generate 8-group LHS sample. Enrich to 16 groups but add one group at a
time

o Regular: Generate 1 large LHS sample. Add smaller samples one at a time

Compare metrics on full sample and each group with 150 trials

BB EE@EB A -
HBIHE B E -

BIE B -
EEI
N




2+ I Adding Groups: Metrics

- No =64, ny =2 Enriching a sample with future groups
X - r - . .
ool ' ' —75 dramatically improves LHS sample
14T _<random 703 quality while providing a linear-sized,
5 12| AN less N, enrichment
= 1o 1% Full Sample:
= 155 5 , ,
< O — g > Random LHS and enrichment continues to
506 BRI R be a poor sample since more LHSs are
0.4 145 % being concatenated
I 140~ o Despite not maintaining the LHS property,
0.5 0.6 0.7 038 0.9 1o group enrichment’s metric grows only
o om s x10 due to increased N
0= Mg =
16[ 5 grouped > Note, ¢ will naturally grow for the full
15} — random >°3 sample as N increases
— . 149 G
s les i; Subgroups:
2 472 o Random improves since only smaller LHSs
% las2 are added to the full sample and those
2 loss smaller LHSs are made without regard to
T3 the overall LHS design
14.4 &
o Grouped LHS suffers since it must

maintain full LHS property

o Trivial in comparison to full-sample
improvement
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Conclusions

Grouped Enriched LHS provides a framework to iteratively construct LHS that
provide for better subdivided samples

Clear improvement over random LHS for sample quality metrics

Cross-Validation provided a more accurate result, especially for small sample
sizes

For these tests, a better sample did not result in a significantly higher quality
surrogate

o Make be surrogate dependent (Full Kriging surrogates may perform better)

° Less-smooth test problems may be more susceptible to better

Alternatively, results suggest that improving sample quality may have
diminishing returns

Future Work:
o Examine CV performance with enriched samples

> Test with less-smooth test functions more sensitive to sample quality
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Saltelli Method for Global Sensitivity Analysis

Sobol Global Sensitivity Analysis requires
solving V (IE(flx{d})) which would directly

require a nested loop (conditional expectation
and variance). The Saltelli algorithm simplifies
this:

> Evenly divide an LHS into two samples (or take two

samples), ,

> Let X1% Be built from
(columns) {d} be from

c E(f) = 2T, F(1 )

oV (B(flxw)) = 75 20 (£ (1) -
E(H) (£ (*) - )

with dimensions

When , are from splitting an
enriched LHS sample, all X9} are still LHS
samples even with the swapped columns

x

x 2}

x3}

0.02 | 0.34 | 0.22 0.03 | 0.65 | 0.74
0.95 | 0.51 | 0.49 0.45 | 0.86 | 0.85
0.52 | 0.48 | 0.87 0.10 | 0.05 | 0.09
0.02 | 0.65 | 0.74 0.03 | 034 | 0.22
0.95 | 0.86 | 0.85 0.45 | 0.51 | 0.49
0.52 | 0.05 | 0.09 0.10 | 0.48 | 0.87
0.03 | 0.34 | 0.74 0.02 | 0.65 | 0.22
045 | 0.51 | 0.85 0.95 | 0.86 | 0.49
0.10 | 0.48 | 0.09 0.52 | 0.05 | 0.87
0.03 | 0.65 | 0.22 0.02 | 034 | 0.74
0.45 | 0.86 | 0.49 0.95 | 0.51 | 0.85
0.10 | 0.05 | 0.87 0.52 | 0.48 | 0.09

x (2,3}

x 1.3}

x 1.2}



