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 Probe plasma excitation state and track dynamics by measuring Ar 1s5 

metastable concentration. 

• Diode laser absorption: probe 811.5-nm Ar 1s52p9 transition. 

• Planar LIF: excite Ar from 1s5 to 3p2 state, monitor 418.2-nm 3p21s3 

transition. 

 Laser absorption (top figure) shows evolution of Ar metastable during pulse 

as function of height in electrode gap. 

• Strong pressure dependence in the dynamics. 

• Cathode-to-anode transition displays drastically different dynamics at the 

two pressures. 

• Electrode area ratio scaling study might prove beneficial – at lower 

pressure, plasma is more diffused, more of the chamber wall acts as 

“grounded” electrode.  How does this affect dynamics? 

 LIF measures Ar metastable at discrete time-points of square wave pulse. 

• Transition of main plasma region from biased to grounded electrode as 

pulse moves from cathode to anode phase. 

• Drastically reduced metastable concentration at the end of anode phase, 

consistent with PIE observation. 

• Onset of metastable generation in anode-to-cathode transition. 

 

 

 

 ICCD camera to capture plasma formation during 

pulses. 

 Streak-like images revealed pressure-dependent 

dynamics. 

• Collisionality dependence? 

 PIE showed that “active” plasma occurs largely during 

the cathode phase. 

• Localized vs. diffused at high vs. low pressures. 

 During the anode phase, plasma persists for short 

duration. 

• More energetic at higher pressure. 
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 Scoping study to address questions raised by experimental 

observations. 

• PIC for coupled particle-field plasma simulation. 

• DSMC for particle kinetics/chemistry. 

 Modeling expedients taken:  

• gas was neon (existing set of neon chemistry; vetted cross section). 

• 1D3V: 1-cm domain. 

• 500 kHz (reduced computational time) – quasi-steady state in <1 µs. 

 Polarity switch in low-frequency square wave causes much more abrupt 

potential variation than sinusoidals to support interesting transport 

phenomena; ions will not see electric field at high frequency. 

 

 

 

 

 

 

 

 

 

Polarity Reversal 

 Electron pulsing: generation of a “wave” of higher temperature electrons 

leading to more ionization. 

 “Sheath capture” of low energy ions: a  higher density bolus of ions that 

are accelerated to the wall when the polarity switches. 

 Plasma state at beginning of polarity switch.  

• Deep vs. shallow (at 110 ns vs. 0 ns) sheath structure at left 

boundary. 

• A population of ions “captured” and will be accelerated into the wall. 

• Increased electron temperature at 228 ns. 

 

3. Modeling and Simulation 

 

 

 Plasma techniques are ubiquitous in many 

surface processing applications, e.g. material 

etching, surface cleaning, film deposition. 

 Both rf and pulsed dc plasmas are commonly 

employed. 

• Particularly, rf capacitively-coupled plasma 

for plasma etching and cleaning. 

• Pulsed-dc plasma for depositing thin films. 

 Pulsed plasma is of particular interest: 

• Enhancement of ion energy through an 

intense peak voltage. 

• Eliminate target poisoning using an 

asymmetric bipolar pulse by preferential 

sputtering. 

• Control of electron energy distributions and 

plasma properties uniformity for 

microelectronic fabrication via pulse 

frequency and duty cycle. 

• Flexibility in controlling critical plasma 

parameters, e.g. ion/radical densities and 

fluxes, ion energies, electron temperature. 

 Previously demonstrated the ability to manipulate 

the plasma parameters (density, E/N) of a small-

scaled pulsed plasma. 

 Scaled up to larger system of interest to plasma 

processing community. 

• Comparison between rf and pulsed plasmas 

revealed interesting differences that could 

benefit certain applications. 

 Objective is to probe the dynamics of a pulsed 

plasma to better understand its mechanism. 

 

1. Background  

 

Optical Emission Spectroscopy 

 Asymmetric parallel-plate assembly in a 

700-liter cylindrical vacuum chamber. 

 OES signals analyzed for plasmas 

generated by 10 kHz bipolar square wave 

vs. 13.56 MHz rf using 80/20% Ar/O2. 

 Plasma generated by square wave at 

similar powers looks visibly “bluer”.  

• Confirmed by OES signals showing 

stronger lines in ‘blue’ region.  Most 

of the peaks identified as ion lines. 

• Bluer lines  higher-energy 

transitions  higher electron energy 

 higher ionization? 

• Higher ion density/flux to electrode 

surface? 
 

Langmuir Probe 

 Cylindrical probe inserted ~mid-height in 

AK gap. 

 Planar probes affixed to grounded plate. 

 Probes biased at -45 V to collect ion 

saturation current. 

 Ion density estimate: 1015-1016 m-3. 

• Correlates well with simulation. 

 Comparison with dc discharges suggests 

field reversal plays a major role. 

• What happens at field reversal? 

• How does it impact ionization?  OES 

signals suggest increased ionization 

for square waves. 

 

 
2. Observation with Large-Surface Plasma 
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 Experimental observation in the large system and simulation suggested interesting plasma dynamics during pulses 

and especially during polarity switch. 

 Brief investigation in the large system revealed pressure dependence of the dynamics. 

 Set up an asymmetric parallel-plate test bed to investigate argon dynamics with optical diagnostics. 

 

4b. Plasma Induced Emission 
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4a. Dynamics of Square-Wave Plasma 

Polarity Reversal 

 PIE revealed fine structure near polarity 

switch. 

 Transition occurs rapidly, ~hundreds of 

ns to µs time scale. 

 During cathode-to-anode transition, 

plasma rapidly transitions from biased 

to grounded electrode to establish 

anode-phase plasma. 

 During anode-to-cathode transition, a 

transient plasma forms as polarity 

switches before the main cathode-

phase plasma forms. 
 

4c. Evolution of Argon Metastable 
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