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Water confined in mesoporous silica

Confined water - soil and sedimentary rocks
Difficult to prepare nano pores from real rocks/minerals
Mesoporous silica - synthetic analogs to look at mineral-fluid interactions
To predict or control how water and agqueous species move
- contaminant transport

- remove or store material
(CO,,nuclear waste)

Chen et al.,Chem. Commun., 42, 5343-5345 (2005)
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Theoretical spectra for confined water

How does the pore width affect the dynamics of the confined
iquid?

How do the spectroscopic properties relate to the molecular
details?

We will be looking at :

Effect of pore width on confinement
H-bonding between water molecules and pore surface atoms
Effect of surface hydroxyl density on confinement
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Amorphous silica slit pore generatlon
) .5 9

-('1 J"-l'l" "’

MD simulations - LAMMPS
Rectangular periodic box with x and y = 21.055 A
Gulmen-Thompson force field — Silanol and Geminal
interactions

Dr. Pubudu Wimalasiri SPC/E model - water interactions
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Calculation of vibrational frequenmes

HOD in D,O — For simplified spectra :

3800 - )
Empirical (or Electrostatic) mapping 0 %
3600

win(t) = co+ c1Ei(t) + caBi(t) ED 40

1 I <)
3200
Fundamental vibrational Total electric field

frequency for stretching evaluated for the it OH at
evaluated for the it" OH at time t 3000
time t i ‘ ]

| | | I | | o |
28000 0.02 0.04 0.06 0.08

E /au

Calculated OH stretch frequencies versus electric field E.
Solid line is the best quadratic fit

Auer et al.,Proc. Natl. Acad. Sci 104, 14215 (2007)
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Effect of pore width

Averaged over 10 slit pores for each width to obtain an
average distribution
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Effect of pore width on frequency distribution
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The frequency distributions for
confined water is prominently
blue shifted




Effect of pore W|dth on frequency distribution

1k ' ' ' T The distribution shifts towards
bulk water when increasing
the pore width
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Effect of pore W|dth on frequency distribution

1k ' ' ] o The distribution shifts towards
bulk water when increasing
the pore width
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Effect of pore width on frequency distribution
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Effect of pore width on frequency distribution
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Effect of pore W|dth on frequency distribution

1 The distribution shift towards bulk water when
Increasing the pore width.
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Senanayake et al., J. Chem. Phys. 154, 104503 (2021)
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Calculation of IR lineshapes

I(w) = — / T ety dt

2T | _ o

IIR(W) . (;5/.!4 (t) Dipole-dipole response

function

Oult) = €_|t|/21{1 <L701(0)-/f701(t)€i fgw‘mdv

Vibrational lifetime Transition dipole Transition
(700 fs) vector frequency

Skinner et al., J. Chem. Phys. 120, 8107 (2004)
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Calculation of Raman lineshapes

I(w) = — / T ety dt

2T | _ o

. Polarizability response
I Raman(w) dalt) function

Dalt) = €_|t|/27{1 <5501(0)-(If01(t)€i féw‘mdw

Vibrational lifetime Transition Transition
(700 fs) polarizability frequency

Skinner et al.,J. Chem. Phys. 120, 8107 (2004)
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Effect of pore width on IR spectra

i ,1101 T —nhon-Condon effect
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Senanayake et al., J. Chem. Phys. 154, 104503 (2021)

ACS SPRING 2021 BEcoND o 9




Effect of pore width on IR and Raman spectra
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Senanayake et al., J. Chem. Phys. 154, 104503 (2021)
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Comparison with cylindrical pores
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Simulated linear IR spectrum of the OH

fundamental for bulk water (black) and
water confined in a ~2.4 nm hydrophilic
silica pore (red)

Burris et al., J. Chem. Phys. 144, 194709 (2016)
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Simulated Raman spectrum of the OH

fundamental for bulk water (black) and

water confined in a ~2.4 nm hydrophilic

silica pore (red)
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Comparison with experimental spectra

ATR-FTIR s Raman

CA) Bulk Water

|Bulk Water
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AV lem! —=

IR spectra of H20 in bulk water (red), partially
hydrated 1 nm diameter (blue) and fully hydrated

Wavenumber (cnr?)

ATR-FTIR and Raman spectra showing the O-H stretching hydrophilic 50 nm (green), 13 nm (brown), and 1
band of free bulk water, ms-silica-4, and ms-silica-2 nm (black) diameter silica pores.
Knight et al., Sci Rep 9, 8246 (2019) Musat et al., Angew. Chem., Int. Ed. 47, 8033—-8035 (2008)
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Effect of distance from the silica surface

The distributions can be decomposed depending on the distance from the
OH to the nearest pore oxygen atom
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Distance dependent frequency distribution

A prominent blue
Bulk water - 1 shift relative to
bulk water.
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Distance dependent frequency distribution

P(o)
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Bulk water
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A slight blue

1 shift relative to

bulk water.

This is due to

| weaker H-
| bonds formed

with the surface

| oxygen atoms
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Distance dependent frequency distribution

Bulk water
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T _
0s I Blue-shifted relative to bulk water
Los! ! due to surface effects
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3000 3200 3i08:m-'1) 00 3800 ~ Senanayake et al, J. Chem. Phys. 154, 104503 (2021)
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H-bond acceptor based lineshapes

Silanol Oxygen Slab Oxygen Water Oxygen
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H-bond acceptor based lineshapes

IR Raman
1 i | | ! | ! | ] 1 B T [ T | ! | ! I ]
Transiently A Transiently -
08+ broken 08k broken
2
2 2
K7} B _ | Wat _
20.6 Water ox % 0.6 aeror
2 = Silanol ox
£ Silanol ox =
x04 4 EO04F =
©
o
0.2 - 0.2 =
Slab ox
Slab ox
0 | N ] N | 0 ! L | L
3000 3200 3400 1 3600 3800 3000 3200 3400 p 3600 3800
o (cm ) w (cm )

Senanayake et al., J. Chem. Phys. 154, 104503 (2021)
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Effect of hydroxyl density

Slabs were generated by functionalizing the most strained Si-O bonds on the
surface.

No hydroxyls 2 hydroxyls /nm? 4 hydroxyls /nm?
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Effect of hydroxyl density

IR Raman
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No visible effect of hydroxyl density. Because maijority is bulk water

Senanayake et al., J. Chem. Phys. 154, 104503 (2021)
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Conclusions

The primary effect of confinement - blueshift in the frequency due to
weak H-bonding with the silica surface

Raman spectroscopy is more sensitive to the confinement effects
compared to IR

No visible effect of OH density in IR or Raman spectra

Future work

Explore the effects of :

- Salt solutions -Temperature

- Charged surfaces - Curvature of the pore
on the IR and Raman spectra
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Effect of hydroxyl density on surface water

IR Raman
1F 1+
L 2 5 2 |
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Effect of hydroxyl density on the 2 A lineshape is investigated.

With the increase in hydroxyl density the lineshape shifts towards bulk water
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Generation of Amorphous Silica Slit Pores

~N U NN

_ETE

Functionalization

Cool to 298 K

Heat to 8000 K Equilibrate at

8000 K

MD simulations - LAMMPS

Rectangular periodic box with x and y = 21.055 A and z varying
with the slit pore width

Gulmen-Thompson force field — Silanol and Geminal
interactions

Wt

Dr. Jacob Harvey  Dr. Pubudu Wimalasiri
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Calculation of vibrational frequencies

HOD in D,O — For simplified spectra

Empirical (or Electrostatic) mapping
B. Auer, R. Kumar, J. R. Schmidt, and J. L. Skinner, Proc. Natl. Acad. Sci 104, 14215 (2007).

W) (t) = 3761.6 — 5060.4¢;(t) — 86225€2(t)
ei(t) is given by ;
Ei(t) — €OH,i(t)-€tot(rH,ia t)

€rot(rH i, t) - total electric field

€oH.i(t) - unit vector pointing towards H
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