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SMART | egs g Science-informed Machine Learning to Accelerate Real §
nltlatlve Time (SMART) Decisions in Subsurface Applications ®

@ Real-Time Visualization
“CT” for the Subsurface

Transforming decisions

Rapid Prediction through clear vision of the
Virtual Learning present and future

subsurface.

Real-Time Forecasting
“Advanced Control Room”

* DOE Office of Fossil Energy & Carbon Management Project

* Specific goal: Machine learning-driven CO, modeling by combining fast
ML-based forward modeling with ensemble-based (multiple) data
assimilation (EnDA), resulting in real-time history matching of CO,
operations and forecasting CO, and pressure plume development



Background: Building a Reservoir Model

Task 4 and Task 5

Task 3

Task 6
Reservoir model:
* Permeability/porosity/(fracture)

* Injection, production data
* Fluid property, water saturation

Geomechanical model:

* Stress
* Pore pressure

* Rock properties

Geological fracture
model & properties

e Saturation/Pressure/Produ
ction/Displacement

forecasting
* Update Reservoir model

* Development/monitoring
decisions

vvvvvvvv

Rock Property models
Geophysical survey




Examples of Previous Work

History matching/Data Assimilation (CO, Injection at Cranfield, MS)

- Data: bottom hole pressure (BHP) at injection well and gas saturation at two obs. wells.
- Data integrated till 3000 days with prediction phase time of 5200 days.

Synthetic Calibration-cons- Ensemble-based

o Tracer transport in 3D sandbox with
Truth trained NSMC filtering method

MRI-based spatio-temporal data

_ : F 4 Principal Component Geostatistical Approach
(Jacobian-free Stochastic Inversion)

Algorithm 0] fohae * True x = 2000 (cmfmm)
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Lee and Yoon et al. (WRR2016)

Ensemble Kalman filter
Ensemble smoother
Ensemble smoother with
multiple data assimilation
Ensemble Kalman filter
with pilot point 10|
ES4 with pilot point S T e 1
Null-space Monte Carlo®
Multiple calibration-constrained
NSMC

Normalized Objective Function
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Tavakoli and Yoon et al. (WRR2013)
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Motivation for Deep Learning Based Approach

@0\

Physics-based Model h

< Inverse modeling |

y= h(s), v~ N(0,Tpise)

where

y := observations (n.,.); e.g., pressure, concentration
s := model parameters (N,,owns) (€-8., permeability, porosity)

h := forward operators

Two major challenges for high fidelity forward and inverse problems for real-
time forecasting

1. Computational burdens with matrix calculations
=> ML-driven fast predictive reduced-order modeling
2. # of forward model simulations

=> Effective dimension reduction for data assimilation



Part 1: Forward ML Modeling



ML Methods for Model Training & Test Case

> CNN & variants
S Autoencoder
LSTM & variants

Physics informed

T

Graph NN

Decision trees

- CMG is a physics-based simulator
- Spatio-temporal data

3D Toy problem — Heterogeneous permeability
[3 permeability fields x and 9 injection rates]

Case k1r3-h: K, ¢, p, S¢o, at 2,070 days (left to right)
Permeability Porosity Pressure Saturation

Layer1

Layer2

Layer 3 -

Extraction well

Injection well

25x25x3 layers



DL for Forward Model Prediction

Stacked LSTMs (units=varying
« Stacked DL architecture:

- CNN-LSTM-DNN

~CTO O —

CNN: TimeDistributed

|ﬂpU1’. k/ ¢/ Q,‘nj/ a

Training W, b p -
k, ¢, Q,.., a (active zone ﬂ
OUTDL?T e ( ) :> ML model <:I
Pressure, Saturation, =
Well production [to, ty, s £

-

Pressure
Saturation
Production

[ty ty, '"'8t”]



Physics-Based Loss Functions

* Loss functions can be consiructed through governing

equations

« Physical constraints, theoretical equations, and relations can be
incorporated for data-driven model (e.g., frained model)

« We incorporated different terms from governing equations into the
loss functions

* Flux, mass conservation, known quantities are used

Governing equations for two phase flow Loss= MSE(IS, P) + MSE(an,SnW) + MSE(?]W, qpr)

+ 4MSE Flux, F
L = V<pw {ku “ (YR, —png))+ G e (Pl Flux)

a(an) a(an)
at ’ ot

+Amass * MSE(

9(@pnrwSnw) |_ krnwk _ ~
at B V(pnw Hnw (VP angZ)> ‘q""" +MApinary * Binary Crossentropy (Spy, Snw)

+7\‘bhp 3 MSE(pbhp, thp)




Model Input

Pressure & Production Rate model

Small model domain

* Horizontal 29 x 24 cells (subsampling: every 10 cells in
each x & y) from 290 x 240 original domain

* 15 depth layers (whole layers)
* Yearly data (up to 99 yrs) from monthly data
Two injection wells and one (passive) production well
* Cumulative injection amount over time
* Radial Basis function to distribute injection amount
32 training/validation sets & 4 testing sets
Binary active zone (also for saturation & production rate)
» Zeros for inactive zones used in loss function

CO, Saturation model

Small model domain

Two horizontal 21 x 21 cells around two injection wells
where CO, plumes spread (subsampling: every 4 cells)

15 depth layers (whole layers)

Yearly time interval (a total of 100 =
monthly data

Injection rate

Cumulative injection amount over time at well locations

initial + 99 yrs) from

Distribution of radial basis function
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Results — Pressure & Production Rate

End of Injection (30yrs) End of Simulation (99yrs) Moderate injection rate Test case 1
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* wells 0 | prediction
Top of :
Injection production £ o
reservoir well 2
Top of 100
secondary
reservoir 04 ‘
0 20 40 60 80 100
Years
End of Iniection (30vrs) End of Simulation (99yrs) S e
Truth |, P( Truth " Error . High injection rate Test case 3
Bottom of Y = i Production Rate Series - T3
Injection layer g 8 800 { \/
I 12
Top of -I'B > . ol
Injection = _ | P
reservoir «F » E
g 400
Top of B ; g
secondary =L o 200
reservoir = .
° x 1] ] o EJ o]
n on 40 Gb 80 100
. Production_Rate_all_datasets Years
%01 Top of primary
240 4 . . 800
reservoir layer Parity plot
220
B (All 40
% 200 4 <
. datasets) S
160 4
140 4 200
120
]

120 140 160 180 200 220 240 360 280
TMG-Data




Results — CO, Gas Saturation

Below
Injection layer

Top of
Injection
reservoir

Top of
secondary
reservoir

Below
Injection layer

Top of
Injection
reservoir

Top of
secondary
reservoir

End of Injection (30yrs)
Truth Error
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ML Predicted

Machine Learning Model Performance

Pressure 0.609
Saturation 0.0089
Production 1.687

Pressure_All_Results

300 4
250 1
200 4
150 4
100 4
T T T T T
100 150 200 250 300
CMG-Data

STB

ML Predicted
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Parity plot (All 40 datasets)

Saturation_aAll_Results

0.0 02 04 0.6 08 10
CMG-Data

ML Predicted

* 1 NVIDIA GPU
dro 5000
1.77 hrs (Quadro )
All trained models
2.28 hrs executed within 1
1.48 hrs second
STB: Stack Tank Barrel
Brine Production_All_Results
800 -
00 A
400

200 400 £00 800
CMG-Data
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Part 2:
Variational Autoencoder for
Data Assimilation



Variational AutoEncoder(VAE) &
Ensemble-based data assimilation (EnDA)

Objective: real-time history matching of CO, operations and
forecasting CO, and pressure plume development

* Deep Learning-based nonlinear projection approach to
accelerate the stochastic inversion.

* VAE and its decoder to map the permeability k to the latent
vector z whose dimension is much smaller than the original
dimension of k while ensuring a good approximation accuracy.

15



Variational AutoEncoder(VAE)-based Inversion ¥
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 VAE to construct data-driven nonlinear dimension reduction model:

e Data assimilation in small nonlinear latent space of unknown parameters with dim(z)
¢ Only require “dim(z)” forward model executions at each iterations instead of dim(m) or

dim(obs)
e Can encode prior beyond Gaussian

Unknowns:

Ensemble realization
Unknowns k¢ |
k ¢ = G(2)

S: CMG Output S: Model Output  S: Absolute Difference
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Variational AutoEncoder(VAE)-based Inversion ¥
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Formulation for (optimization-based) Data Assimilation with VAE-based prior

Forward problem: y = G(m)

. . . 0 _
with [ Gauss Newton iterations from m” = my,,;,,

ml+1 = mO + Cprior](lcprior]T + Cobs)_1 (y - G(ml) + ](ml - mo))

With any (nonlinear) dimension reduction G of m
y = G(D(z)), dim(z) « dim(m)

2 = 2+ a(ICatdy + Coor,) " (v = 6 (D(2) = Gk, 2!)

with step length (learning rate a). And the posterior covariance is given as

Cposterwrz - (]g‘cobslz + Cprllor )

VAE is our choice since it constructs the prior z ~ N(0,1)!

(b) VAE-EnDA Joint Inversion . Latent space “z” obtained by VAE, i.e., deep
| learning-based encoder will be updated in

multiple realizations
Measured
mitial [, | Decoder Forward | Simulaed | P67 | Seon P EnDA-based methods for data assimilation
~ - — wi —— geophysical
sl Modeling | Seoso, |\ EaDA /| dun, e with various measured data.
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Description of the data used
MDL

* High fidelity numerical simulator to generate multiphase CO,

flow in 3D heterogeneous field
» Heterogeneous material properties (permeability & porosity)
* Injection & extraction well operations
« CO, saturation, pressure, and production in space and time

* Field scale-based permeability distribution

- 3D Toy problem (25x25x3) * 100 realizations based on probability
[ a total of 27 cases with 3 permeability (P05/10/25/50/75/90/95)
fields x 9 injection rates] P e
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Permeab|l|ty Porosity Pressure Saturation b
K m at layer er P.p er ] ""’ . .
o Injection Rate per Well
Four CO, injection wells per Realization

€02 Injection Rate, Mscfd

A

* Visualizations provided by LLNL. Data generated |,
CO, injection well  \Water extraction well by EERC (Courtesy: Nick Azzolina)




Results I: Single phase flow

* Inversion example using a single-phase flow model:
« Here we used a “full” physics single phase flow model

10,000 (100x100) unknown permeability (k)

=> |atent space (z) with 32 latent dimension

16 observation wells with head data

33 forward model runs/iteration to construct Jacobian

Initial guess: any guesses converged

« Only 3-4 iterations required due to accurate gradient information in
latent space

True logl0k Estimated log10k Observation Fitting
P L 3

o‘o o ’

0 0 © =

® o o ] 5

' AEINS ¥5

obs
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Results II: Multiphase Flow

e Use asimple 3D problem to demonstrate VAE-based inversion

* the latent space is constructed based on both (k,$) and (P, S)

e the cost of the trained reduced order model ~O(1 sec)

e can run optimization-based inversion or stochastic Newton
MCMC for full posterior pdf characterization of the latent space

* Inversion example using DL-based
reduced order model for multi-phase flow

with nonlinear dimension reduction: T foe 108

* ML trained reduced order model with 3D toy _.._!"'l_J:
problem Ty

« 25x25x3 unknown k => z with 32 latent dimension .:'. e

Estimate logl0K

« 720,000 noisy transient pressure observations

« 33 forward model runs/iteration to constfruct
Jacobian

* |Initial guess: Perturbed field with ~10% error
* Only ~3 min inversion time on a single core laptop

« Convergence with any (reasonable) initial guesses
due to data-driven prior!

20
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Multiphase Flow at Realistic Reservoir

e Use arealistic 2D problem to demonstrate VAE-based inversion

True logk Estimate logk
- [ e i

e the latent space is constructed based on k and Pressure
e the cost of the trained reduced order model ~O(1 sec)

* [Inversion example :
« 71x71 unknown k => z with 32 latent dimension

9 observation wells for time series pressure data &
permeability (hard dataq)

Latent space was constructed from training data
Initial guess: Zero mean & STD

Only ~3 min inversion time on a single core laptop

Inversion in the latent space identifies the k
structures welll

Eigenspectrum of Qpeet -

RMSE: 0.003164 102
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. 04
-
020 K
/ 1073
0.15 &

L)

simulated obs.
eigwv

..ll
0wy .4 e
LY

107
0.05

107

0.00

D.(I]D D.E]S D.iD D.IIS D.éD D.I25 T T T T T T
pressure obs. ] 5 10 15 20 25
index




Conclusions

Variational autoencoder for real-time history matching of CO,
operations and forecasting CO, and pressure plume
development with fast deep learning-based forward modeling.

Latent space optimization with interpretability including optimal
choice of the nonlinear dimension reduction requires further
study.

ML/DL with domain knowledge can lead to dramatic
improvement in challenging spatio-temporal data analytics and
decision making for optimal operations.
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