

MLDL

Machine Learning and Deep Learning Conference 2021

Physics-based Deep Learning Driven CO₂ Flow
Modeling and Data Assimilation for Real Time
Forecasting

- Hongkyu Yoon (8914, Goemechanics)
- Joe Hogge (8912), Harry J. Lee (Univ. of Hawaii at Manoa)
- Funding Source (LDRD, DOE FE SMART Initiative)

Real-Time Visualization
"CT" for the Subsurface

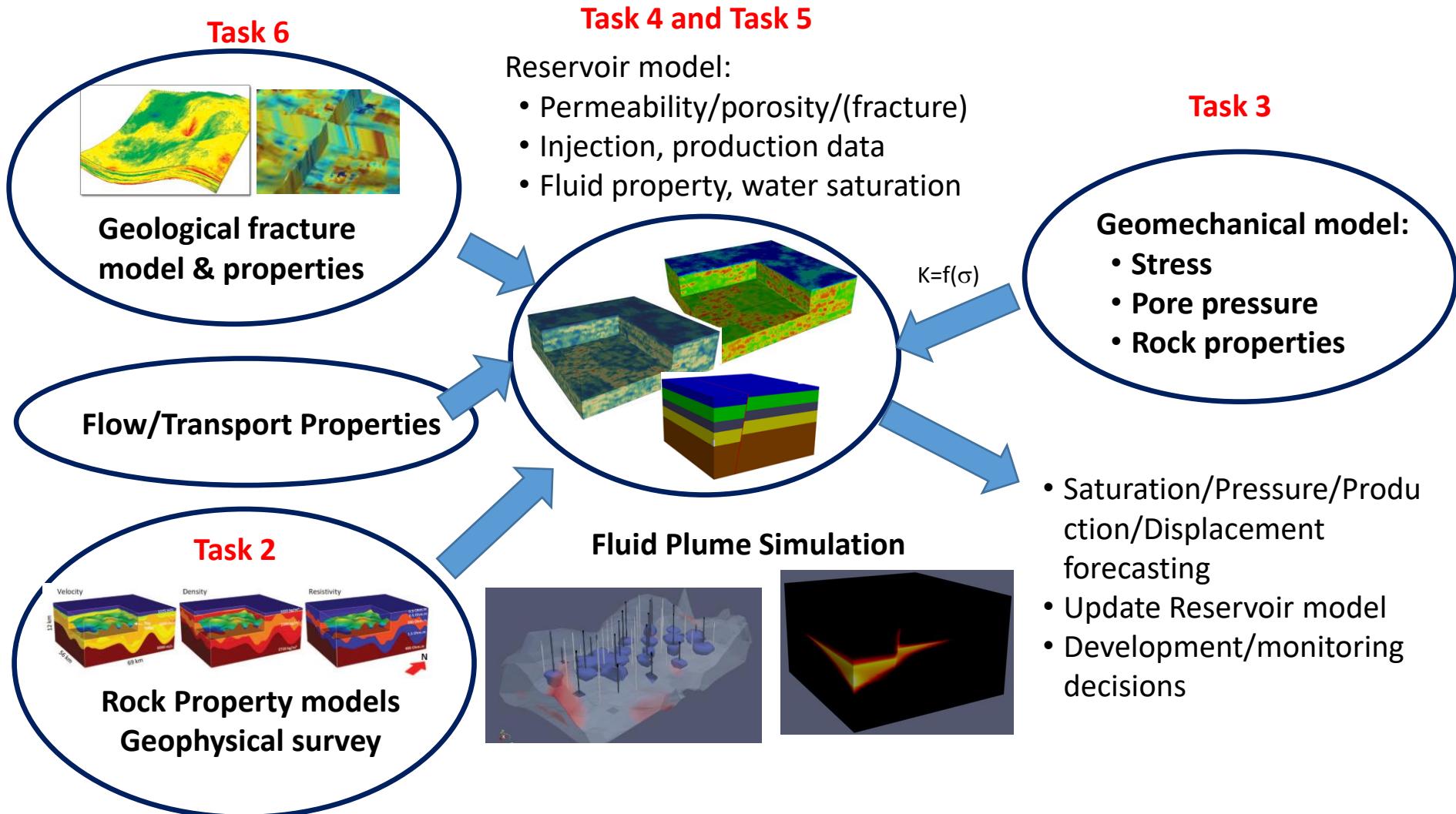
Rapid Prediction
Virtual Learning

Real-Time Forecasting
"Advanced Control Room"

Transforming decisions
through **clear vision** of the
present and future
subsurface.

- DOE Office of Fossil Energy & Carbon Management Project
- Specific goal: Machine learning-driven CO₂ modeling by combining **fast ML-based forward modeling** with ensemble-based (multiple) data **assimilation** (EnDA), resulting in real-time history matching of CO₂ operations and **forecasting CO₂ and pressure plume development**

Background: Building a Reservoir Model

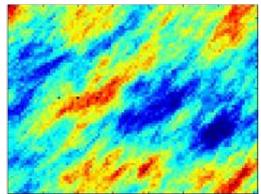


Examples of Previous Work

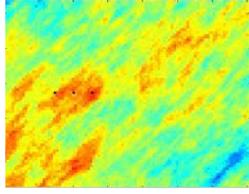
History matching/Data Assimilation (CO₂ Injection at Cranfield, MS)

- Data: bottom hole pressure (BHP) at injection well and gas saturation at two obs. wells.
- Data integrated till 3000 days with prediction phase time of 5200 days.

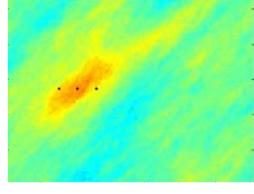
Synthetic
Truth



Calibration-con-
strained NSMC

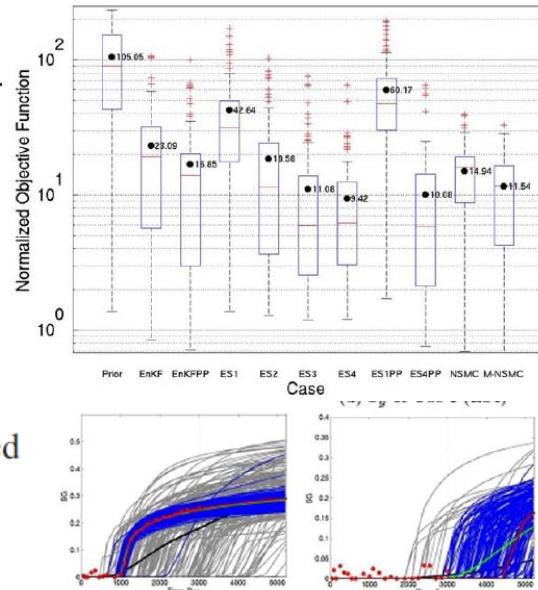


Ensemble-based
filtering method



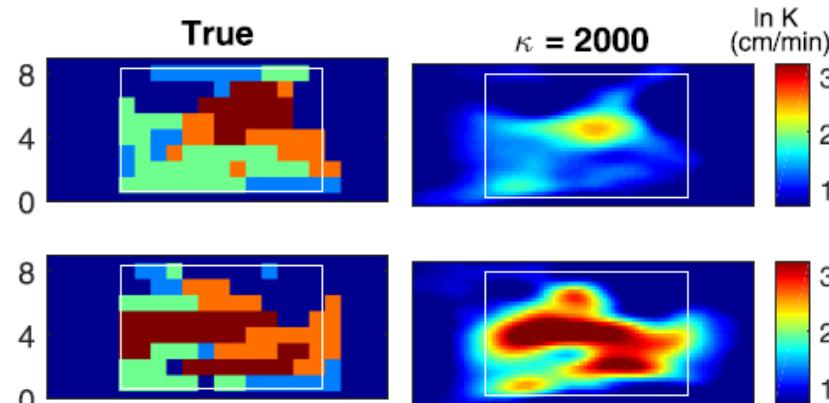
Algorithm

Ensemble Kalman filter
Ensemble smoother
Ensemble smoother with
multiple data assimilation
Ensemble Kalman filter
with pilot point
ES4 with pilot point
Null-space Monte Carlo^b
Multiple calibration-constrained
NSMC

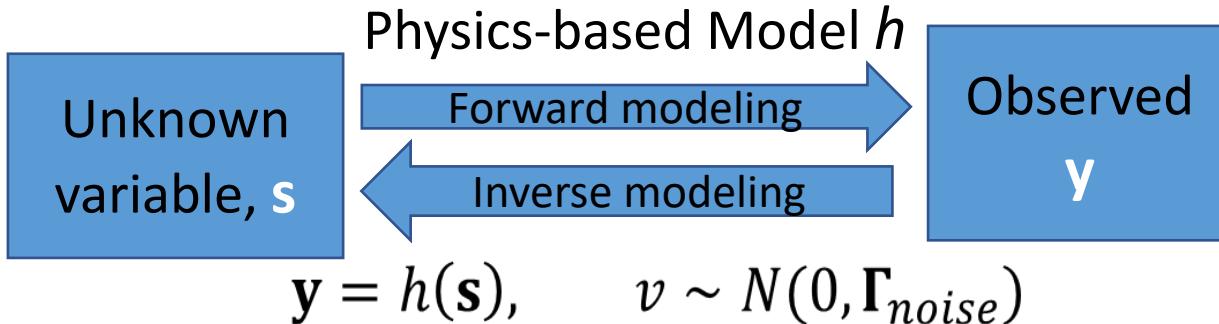


Tracer transport in 3D sandbox with MRI-based spatio-temporal data

Principal Component Geostatistical Approach
(Jacobian-free Stochastic Inversion)



Motivation for Deep Learning Based Approach



where

y := observations (n_{obs}); e.g., pressure, concentration

s := model parameters ($n_{unknowns}$) (e.g., permeability, porosity)

h := forward operators

Two major challenges for high fidelity forward and inverse problems for real-time forecasting

1. Computational burdens with matrix calculations

=> ML-driven fast predictive reduced-order modeling

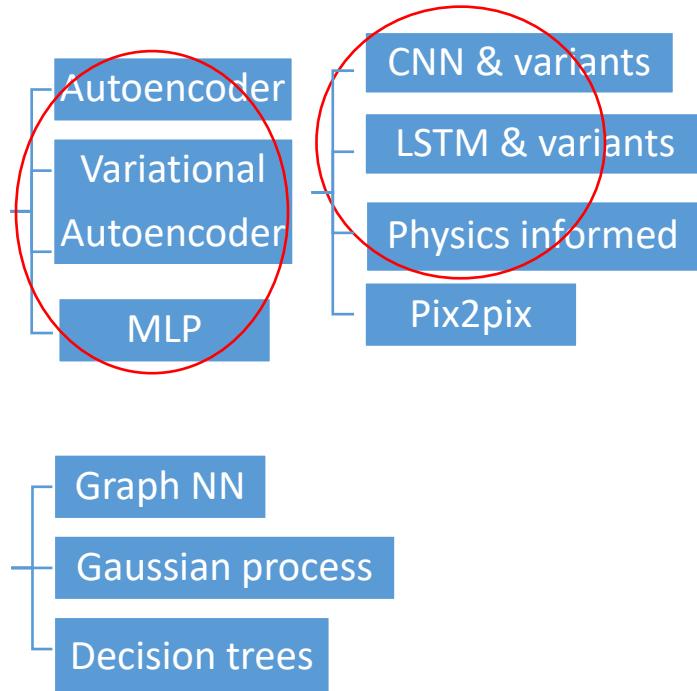
2. # of forward model simulations

=> Effective dimension reduction for data assimilation

Part 1: Forward ML Modeling

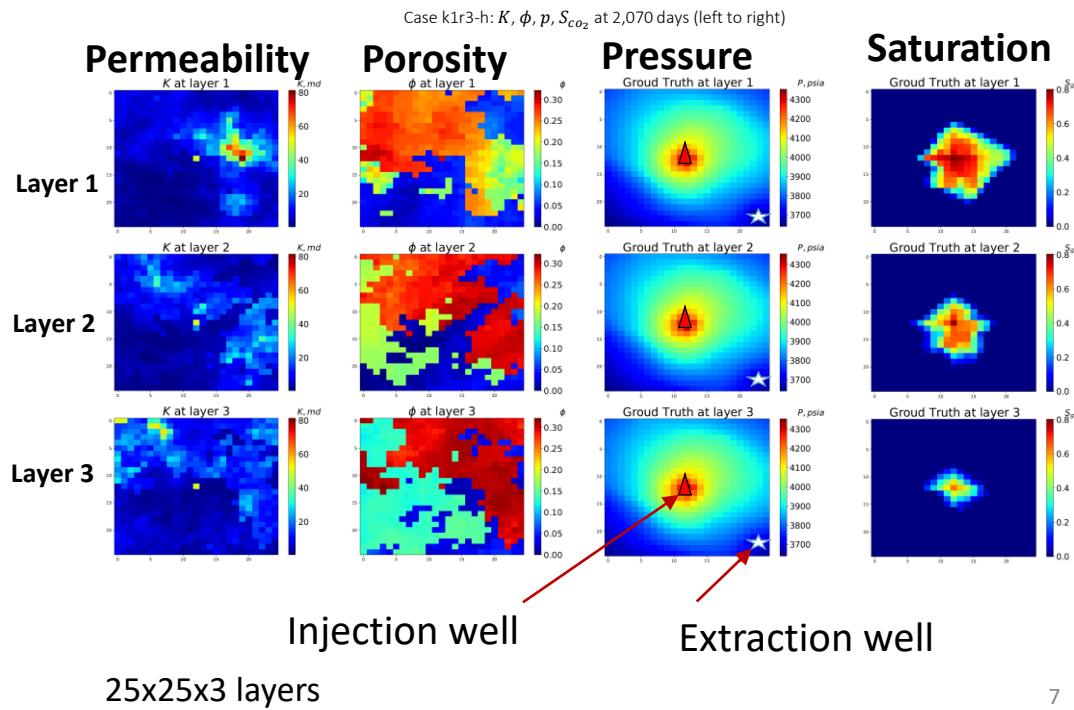
ML Methods for Model Training & Test Case

Toy Model Algorithms



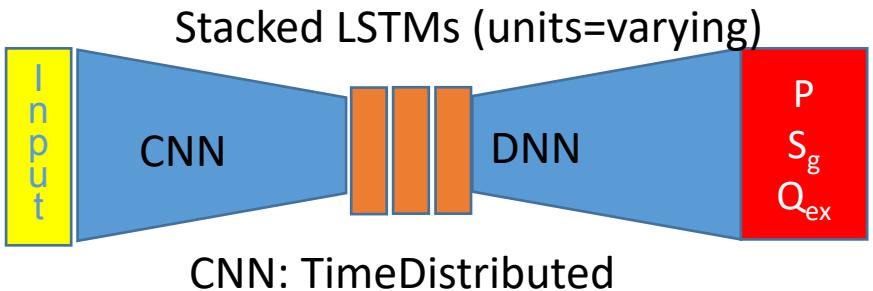
- CMG is a physics-based simulator
- Spatio-temporal data

3D Toy problem – Heterogeneous permeability
[3 permeability fields x 9 injection rates]

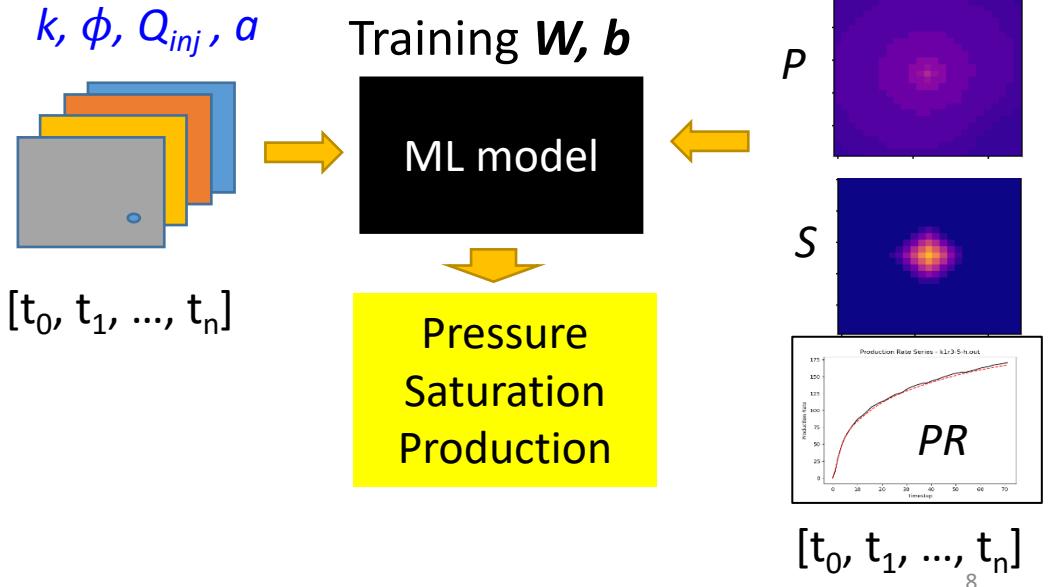


DL for Forward Model Prediction

- **Stacked DL architecture:**
 - **CNN-LSTM-DNN**



Input:
 k, ϕ, Q_{inj}, a (active zone)
Output:
Pressure, Saturation,
Well production



Physics-Based Loss Functions

- Loss functions can be constructed through governing equations**

- Physical constraints, theoretical equations, and relations can be incorporated for data-driven model (e.g., trained model)
- We incorporated different terms from governing equations into the loss functions
- Flux, mass conservation, known quantities are used

Governing equations for two phase flow

$$\frac{\partial(\emptyset\rho_w S_w)}{\partial t} = \nabla \left(\rho_w \frac{k_{rw} k}{\mu_w} (\nabla P_w - \rho_w g z) \right) + \mathbf{q}_w$$

$$\frac{\partial(\emptyset\rho_{nw} S_{nw})}{\partial t} = \nabla \left(\rho_{nw} \frac{k_{rnw} k}{\mu_{nw}} (\nabla P_{nw} - \rho_{nw} g z) \right) + \mathbf{q}_{nw}$$

$$\text{Loss} = MSE(\hat{P}, P) + MSE(\hat{S}_{nw}, S_{nw}) + MSE(\hat{q}_{pr}, q_{pr})$$

$$+ \lambda_{flux} * MSE(\widehat{Flux}, Flux)$$

$$+ \lambda_{mass} * MSE\left(\widehat{\frac{\partial(M_{nw})}{\partial t}}, \frac{\partial(M_{nw})}{\partial t}\right)$$

$$+ \lambda_{binary} * \text{Binary Crossentropy}(\hat{S}_{nw}, S_{nw})$$

$$+ \lambda_{bhp} * MSE(\hat{P}_{bhp}, P_{bhp}) + \lambda_{pr} * MSE(\hat{P}_{bhp}, P_{bhp})$$

Model Input

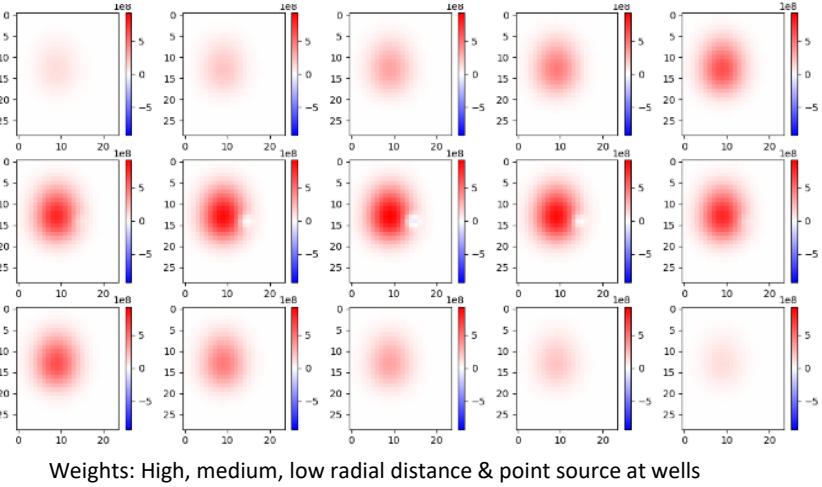
• Pressure & Production Rate model

- Small model domain
 - Horizontal 29 x 24 cells (subsampling: every 10 cells in each x & y) from 290 x 240 original domain
 - 15 depth layers (whole layers)
 - Yearly data (up to 99 yrs) from monthly data
- Two injection wells and one (passive) production well
 - Cumulative injection amount over time
 - Radial Basis function to distribute injection amount
- 32 training/validation sets & 4 testing sets
- Binary active zone (also for saturation & production rate)
 - Zeros for inactive zones used in loss function

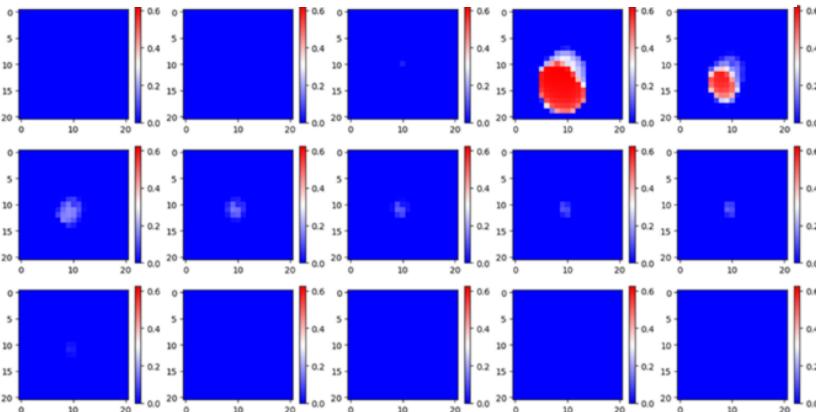
• CO₂ Saturation model

- Small model domain
 - Two horizontal 21 x 21 cells around two injection wells where CO₂ plumes spread (subsampling: every 4 cells)
 - 15 depth layers (whole layers)
 - Yearly time interval (a total of 100 = initial + 99 yrs) from monthly data
- Injection rate
 - Cumulative injection amount over time at well locations

Distribution of radial basis function

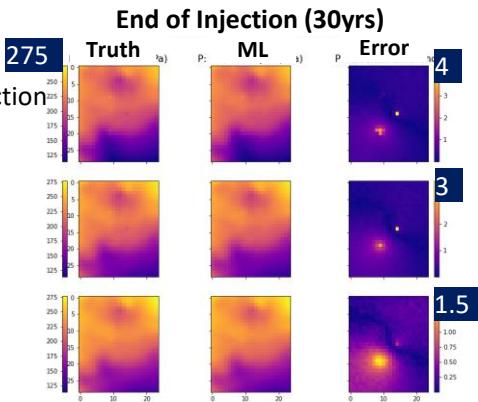
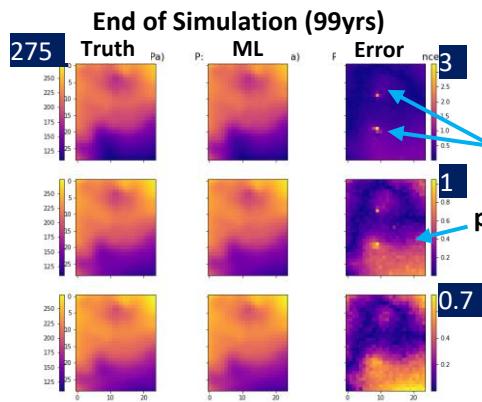


Distribution of CO₂ plume at t = 99 yrs

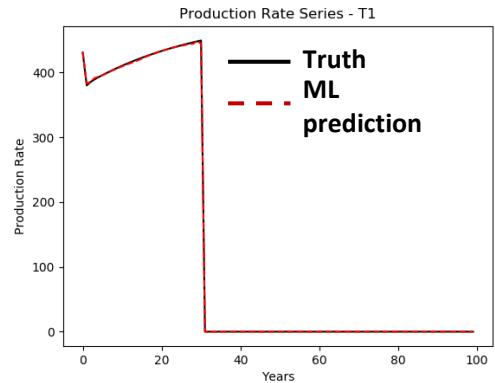


Results – Pressure & Production Rate

Bottom of Injection layer

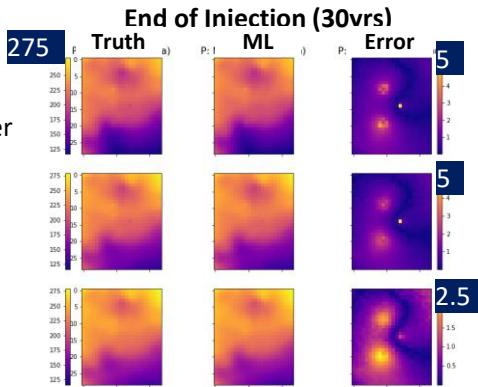
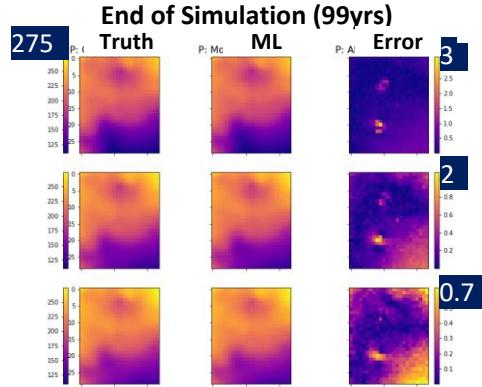


Moderate injection rate Test case 1

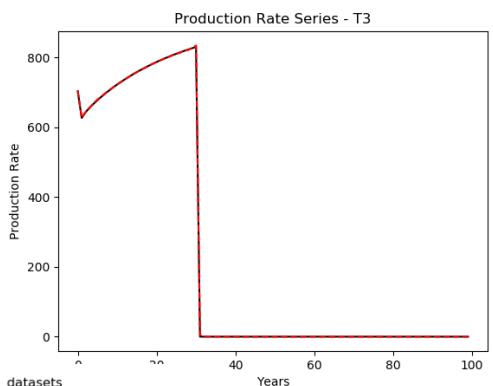
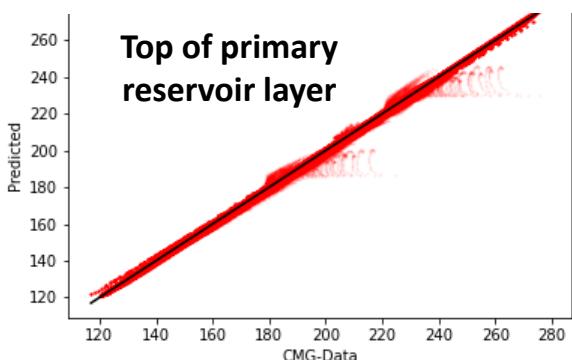


Top of Injection reservoir

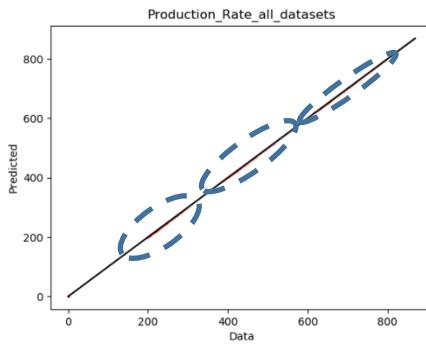
Top of secondary reservoir



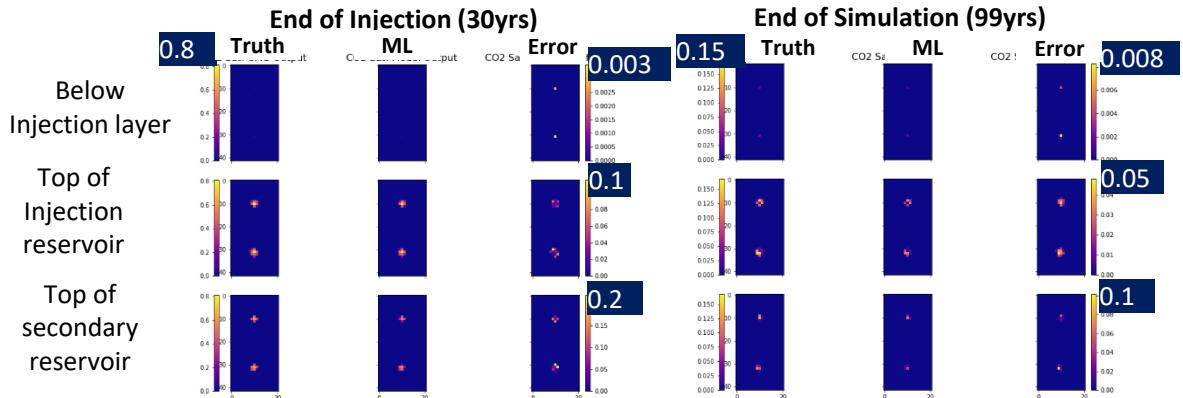
High injection rate Test case 3



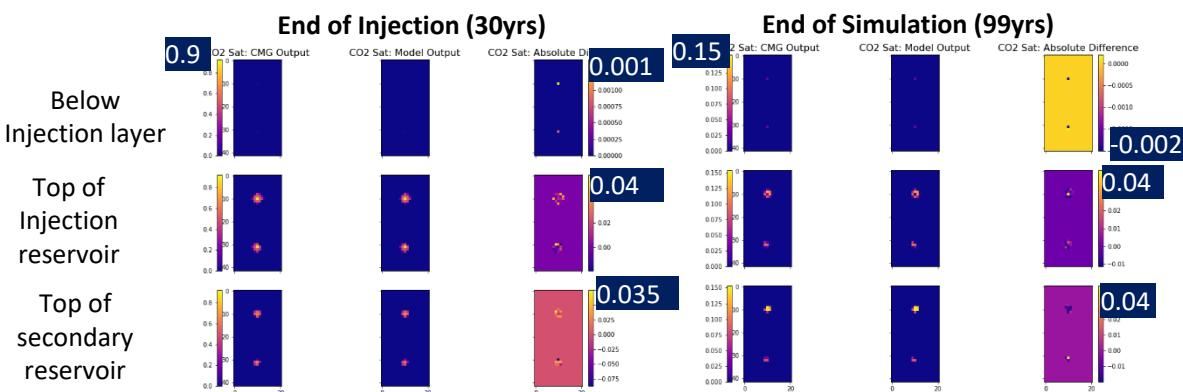
Parity plot (All 40 datasets)



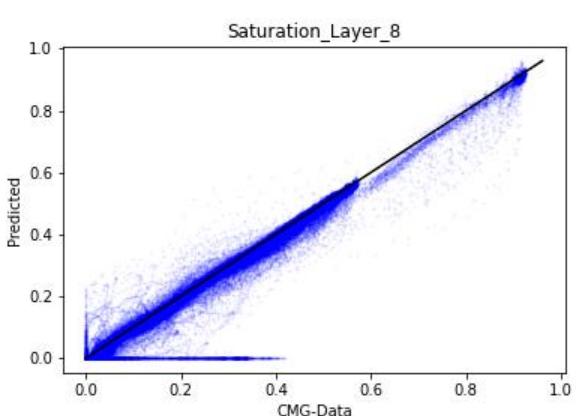
Results – CO₂ Gas Saturation



Moderate injection rate Test
case 1



High injection rate Test
case 3



Machine Learning Model Performance

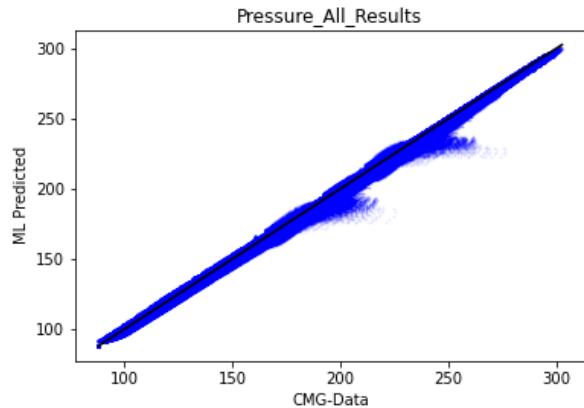
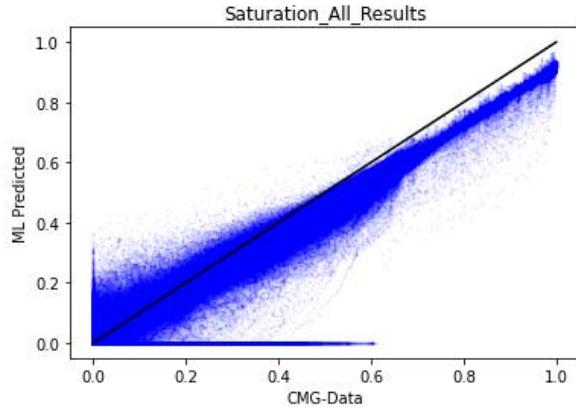
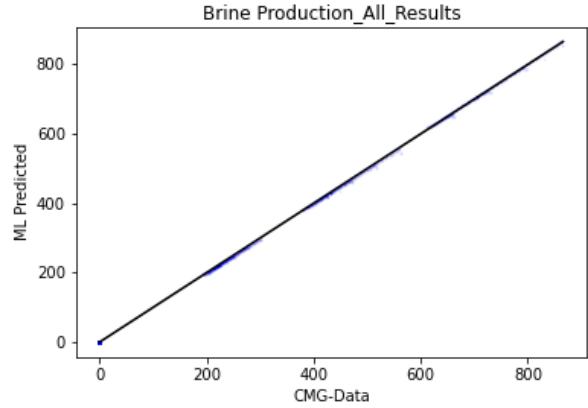
Output	RMSE	Unit	Min	Max	Training time*
Pressure	0.609	bar	87.966	302.795	1.77 hrs
Saturation	0.0089	--	0	0.92624	2.28 hrs
Production	1.687	STB	0	864.489	1.48 hrs

* 1 NVIDIA GPU
(Quadro 5000)

**All trained models
executed within 1
second**

STB: Stack Tank Barrel

Parity plot (All 40 datasets)



Part 2: Variational Autoencoder for Data Assimilation

Variational AutoEncoder(VAE) & Ensemble-based data assimilation (EnDA)

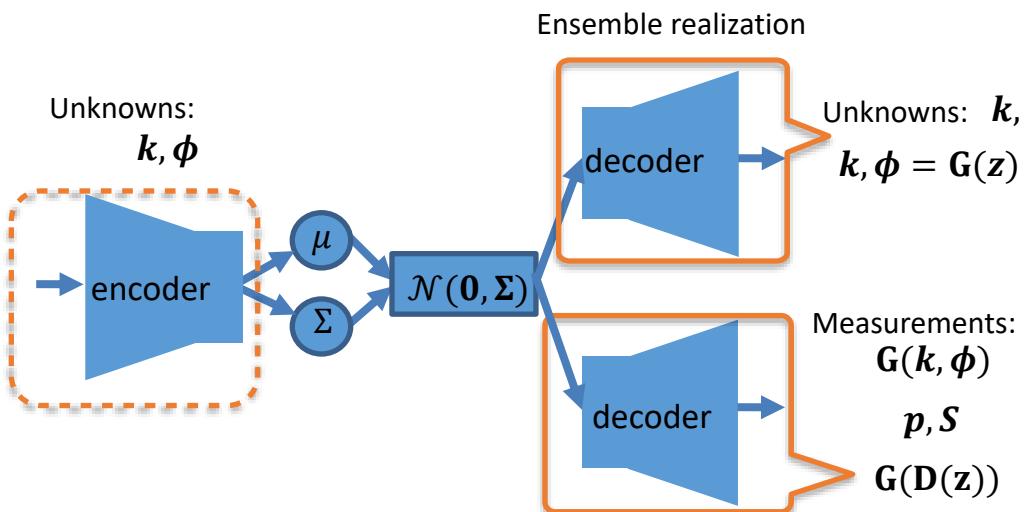
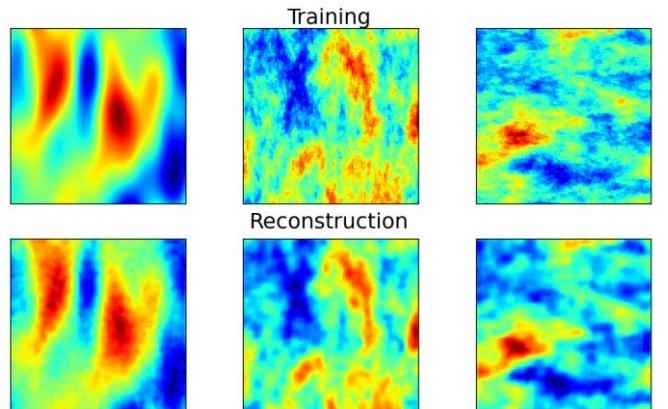
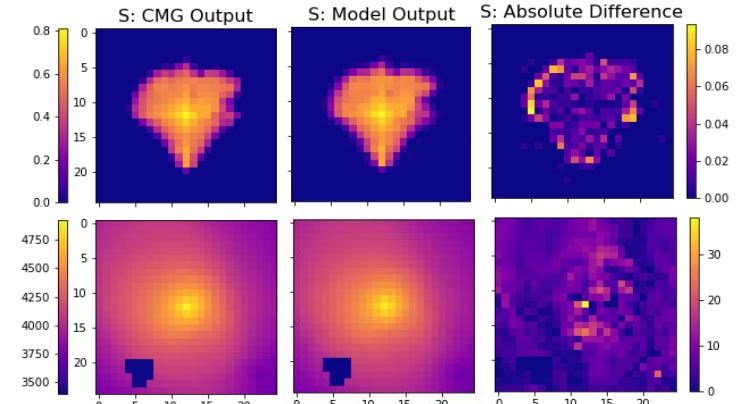
Objective: real-time history matching of CO₂ operations and forecasting CO₂ and pressure plume development

- Deep Learning-based nonlinear projection approach to accelerate the stochastic inversion.
- VAE and its decoder to map the permeability k to the latent vector z ***whose dimension is much smaller than the original dimension of k*** while ensuring a good approximation accuracy.

Variational AutoEncoder(VAE)-based Inversion

- **VAE to construct data-driven nonlinear dimension reduction model:**

- Data assimilation in **small nonlinear latent space of unknown parameters with $\text{dim}(z)$**
- Only require “ **$\text{dim}(z)$** ” forward model executions at each iterations instead of $\text{dim}(m)$ or $\text{dim}(\text{obs})$
- Can encode **prior beyond Gaussian**



Variational AutoEncoder(VAE)-based Inversion

Formulation for (optimization-based) Data Assimilation with VAE-based prior

Forward problem: $\mathbf{y} = \mathbf{G}(\mathbf{m})$

with l Gauss Newton iterations from $\mathbf{m}^0 = \mathbf{m}_{prior}$

$$\mathbf{m}^{l+1} = \mathbf{m}^0 + \mathbf{C}_{prior} \mathbf{J} (\mathbf{J} \mathbf{C}_{prior} \mathbf{J}^T + \mathbf{C}_{obs})^{-1} (\mathbf{y} - \mathbf{G}(\mathbf{m}^l) + \mathbf{J}(\mathbf{m}^l - \mathbf{m}^0))$$

With any (nonlinear) dimension reduction \mathbf{G} of \mathbf{m}

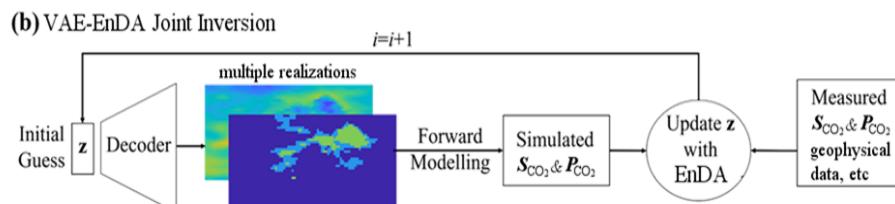
$$\mathbf{y} = \mathbf{G}(\mathbf{D}(\mathbf{z})), \dim(\mathbf{z}) \ll \dim(\mathbf{m})$$

$$\mathbf{z}^{l+1} = \mathbf{z}^l + \alpha (\mathbf{J}_z^T \mathbf{C}_{obs}^{-1} \mathbf{J}_z + \mathbf{C}_{prior_z}^{-1})^{-1} (\mathbf{y} - \mathbf{G}(\mathbf{D}(\mathbf{z}^l)) - \mathbf{C}_{prior_z}^{-1} \mathbf{z}^l)$$

with step length (learning rate α). And the posterior covariance is given as

$$\mathbf{C}_{posterior_z} = (\mathbf{J}_z^T \mathbf{C}_{obs}^{-1} \mathbf{J}_z + \mathbf{C}_{prior_z}^{-1})^{-1}$$

VAE is our choice since it constructs the prior $\mathbf{z} \sim N(\mathbf{0}, \mathbf{I})$!



Latent space “ \mathbf{z} ” obtained by VAE, i.e., deep learning-based encoder will be updated in EnDA-based methods for data assimilation with various measured data.

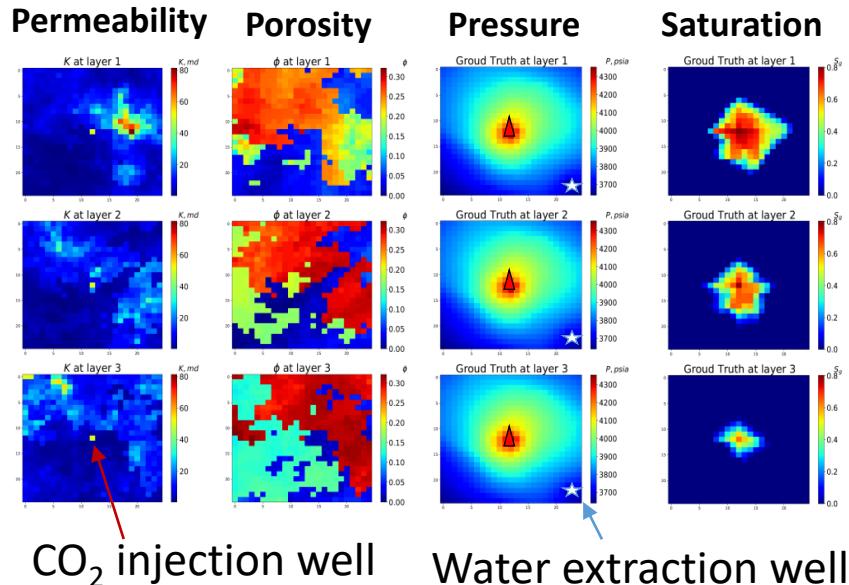
Description of the data used

- **High fidelity numerical simulator to generate multiphase CO_2 flow in 3D heterogeneous field**

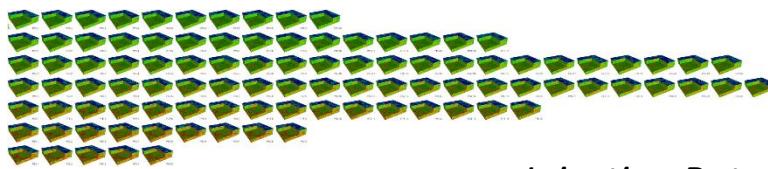
- Heterogeneous material properties (permeability & porosity)
- Injection & extraction well operations
- CO_2 saturation, pressure, and production in space and time

- 3D Toy problem (25x25x3)

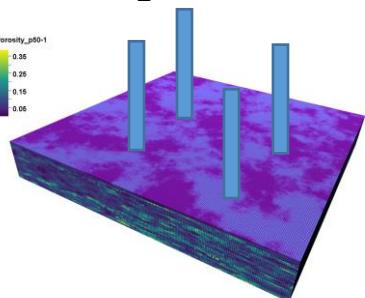
[a total of 27 cases with 3 permeability fields x 9 injection rates]



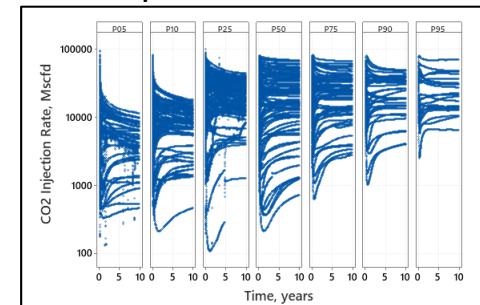
- Field scale-based permeability distribution
- 100 realizations based on probability (P05/10/25/50/75/90/95)



Four CO_2 injection wells



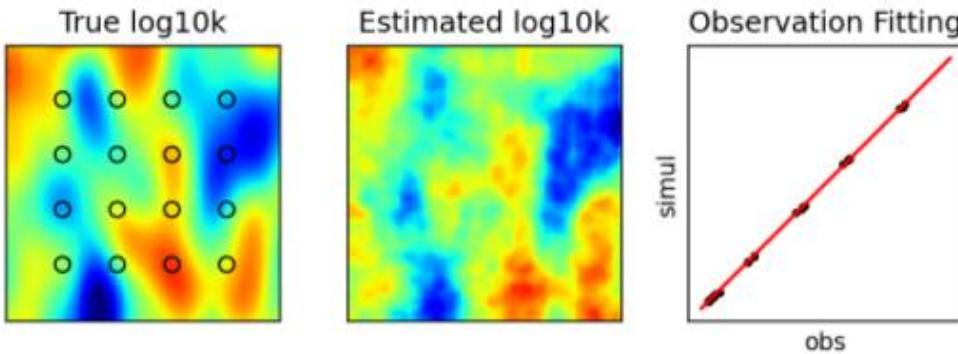
Injection Rate per Well per Realization



* Visualizations provided by LLNL. Data generated by EERC (Courtesy: Nick Azzolina) 18

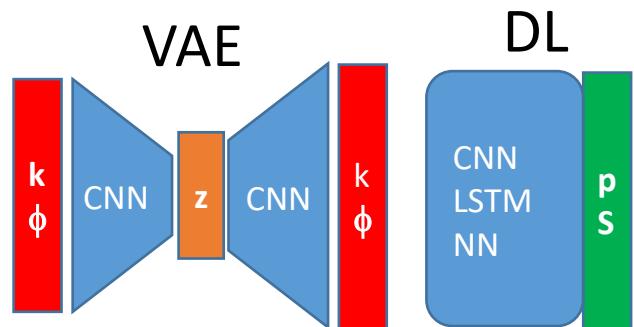
Results I: Single phase flow

- Inversion example using a single-phase flow model:
 - Here we used a “full” physics single phase flow model
 - 10,000 (100x100) unknown permeability (\mathbf{k})
=> latent space (\mathbf{z}) with **32 latent dimension**
 - 16 observation wells with head data
 - **33** forward model runs/iteration to construct Jacobian
 - Initial guess: any guesses converged
 - Only 3-4 iterations required due to accurate gradient information in latent space



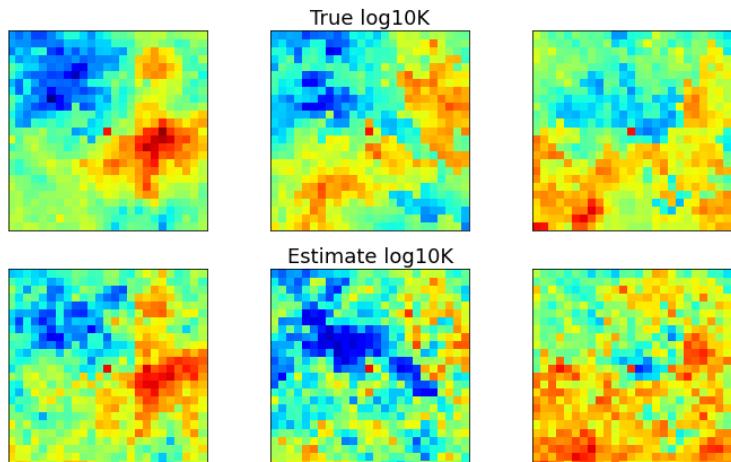
Results II: Multiphase Flow

- Use a simple 3D problem to demonstrate VAE-based inversion
- the latent space is constructed based on both (k, ϕ) and (P, S)
- the cost of the trained reduced order model $\sim O(1 \text{ sec})$
- can run optimization-based inversion or stochastic Newton MCMC for full posterior pdf characterization of the latent space



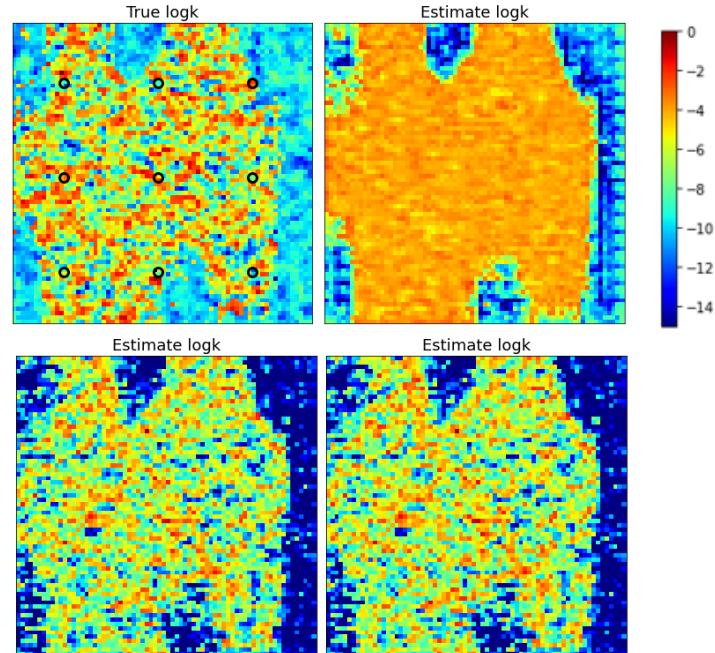
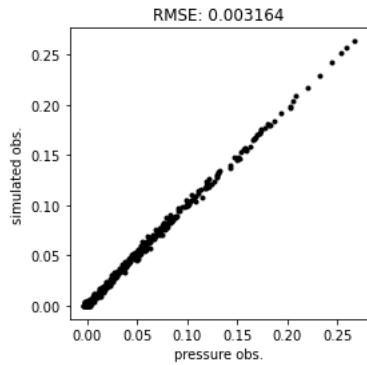
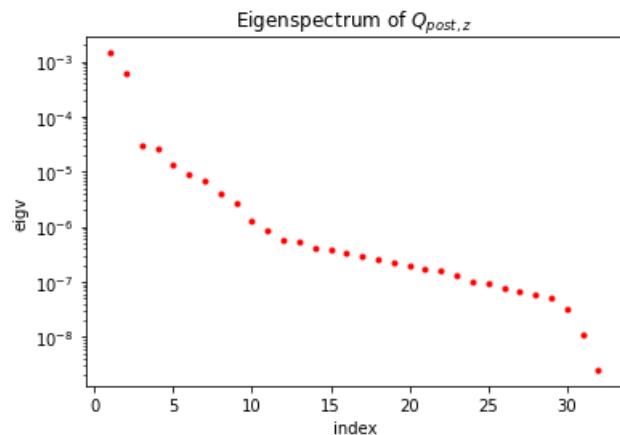
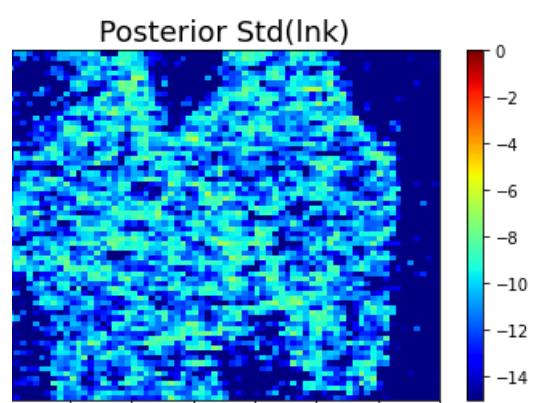
- Inversion example using DL-based reduced order model for multi-phase flow with nonlinear dimension reduction:

- ML trained reduced order model with 3D toy problem
- $25 \times 25 \times 3$ unknown $\mathbf{k} \Rightarrow \mathbf{z}$ with 32 latent dimension
- 720,000 noisy transient pressure observations
- **33** forward model runs/iteration to construct Jacobian
- Initial guess: Perturbed field with $\sim 10\%$ error
- Only **~ 3 min inversion time** on a single core laptop
- Convergence with any (reasonable) initial guesses due to data-driven prior!



Multiphase Flow at Realistic Reservoir

- Use a realistic 2D problem to demonstrate VAE-based inversion
 - the latent space is constructed based on k and Pressure
 - the cost of the trained reduced order model $\sim O(1 \text{ sec})$
- Inversion example :
 - 71x71 unknown $\mathbf{k} \Rightarrow \mathbf{z}$ with 32 latent dimension
 - 9 observation wells for time series pressure data & permeability (hard data)
 - Latent space was constructed from training data
 - Initial guess: Zero mean & STD
 - Only $\sim 3 \text{ min inversion time}$ on a single core laptop
 - Inversion in the latent space identifies the \mathbf{k} structures well!



Conclusions

Variational autoencoder for real-time history matching of CO₂ operations and forecasting CO₂ and pressure plume development with fast deep learning-based forward modeling.

Latent space optimization with interpretability including optimal choice of the nonlinear dimension reduction requires further study.

ML/DL with domain knowledge can lead to dramatic improvement in challenging spatio-temporal data analytics and decision making for optimal operations.