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• DOE Office of Fossil Energy & Carbon Management Project

• Specific goal: Machine learning-driven CO2 modeling by combining fast 

ML-based forward modeling with ensemble-based (multiple) data 

assimilation (EnDA), resulting in real-time history matching of CO2

operations and forecasting CO2 and pressure plume development

SMART Initiative

Real-Time Forecasting
“Advanced Control Room”

Real-Time Visualization
“CT” for the Subsurface

Rapid Prediction
Virtual Learning

Science-informed Machine Learning to Accelerate Real
Time (SMART) Decisions in Subsurface Applications

Transforming decisions 
through clear vision of the 

present and future 
subsurface.



Background: Building a Reservoir Model

Reservoir model:
• Permeability/porosity/(fracture)
• Injection, production data
• Fluid property, water saturation

Fluid Plume Simulation

Task 4 and Task 5

Rock Property models
Geophysical survey

Geological fracture 
model & properties

Task 3

Task 6

Flow/Transport Properties

• Saturation/Pressure/Produ
ction/Displacement 
forecasting

• Update Reservoir model
• Development/monitoring 

decisions

Task 2

Geomechanical model:
• Stress
• Pore pressure
• Rock properties

K=f()



Examples of Previous Work

History matching/Data Assimilation (CO2 Injection at Cranfield, MS)

Synthetic 
Truth

Calibration-cons-
trained NSMC

Ensemble-based 
filtering method

Principal Component Geostatistical Approach 
(Jacobian-free Stochastic Inversion)

Lee and Yoon et al. (WRR2016)
Tavakoli and Yoon et al. (WRR2013)

- Data: bottom hole pressure (BHP) at injection well and gas saturation at two obs. wells.
- Data integrated till 3000 days with prediction phase time of 5200 days.

Tracer transport in 3D sandbox with 
MRI-based spatio-temporal data



Motivation for Deep Learning Based Approach
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Two major challenges for high fidelity forward and inverse problems for real-

time forecasting

1. Computational burdens with matrix calculations

=> ML-driven fast predictive reduced-order modeling

2. # of forward model simulations

=> Effective dimension reduction for data assimilation

where

y := observations (nobs); e.g., pressure, concentration

s := model parameters (nunknowns) (e.g., permeability, porosity)

h := forward operators

Unknown 

variable, s

Observed

y

Physics-based Model h
Forward modeling

Inverse modeling



Part 1: Forward ML Modeling



ML Methods for Model Training & Test Case
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Toy Model 
Algorithms

Autoencoder

Variational

Autoencoder

MLP Pix2pix

CNN & variants

LSTM & variants

Physics informed

Graph NN

Gaussian process

Decision trees

Case k1r3-h: 𝐾, 𝜙, 𝑝, 𝑆𝑐𝑜2 at 2,070 days (left to right)

- CMG is a physics-based simulator
- Spatio-temporal data

Layer 1

Layer 2

Layer 3

Pressure SaturationPermeability Porosity

25x25x3 layers

Injection well Extraction well

3D Toy problem – Heterogeneous permeability
[3 permeability fields x  and 9 injection rates]



DL for Forward Model Prediction
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Input: 

k, 𝝓, Qinj, a (active zone)

Output: 

Pressure, Saturation, 

Well production

• Stacked DL architecture: 

- CNN-LSTM-DNN

I
n
p
u
t

P
Sg

Qex

CNN DNN

Stacked LSTMs (units=varying)

CNN: TimeDistributed

P
ML modelx3x3x3

k, 𝜙, Qinj , a

[t0, t1, …, tn]

[t0, t1, …, tn]

P

S

PR

Training W, b

Pressure
Saturation
Production



Physics-Based Loss Functions
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𝜕 ∅𝜌𝑤𝑆𝑤

𝜕𝑡
= ∇ 𝜌𝑤

𝑘𝑟𝑤𝒌

𝜇𝑤
∇𝑃𝑤 − 𝜌𝑤𝑔𝑧 + 𝒒𝑤

𝜕 ∅𝜌𝑛𝑤𝑆𝑛𝑤

𝜕𝑡
= ∇ 𝜌𝑛𝑤

𝑘𝑟𝑛𝑤𝒌

𝜇𝑛𝑤
∇𝑃𝑛𝑤 − 𝜌𝑛𝑤𝑔𝑧 + 𝒒𝑛𝑤

Governing equations for two phase flow Loss= 𝑀𝑆𝐸 ෠𝑃, 𝑃 + 𝑀𝑆𝐸 መ𝑆𝑛𝑤 , 𝑆𝑛𝑤 +𝑀𝑆𝐸 ො𝑞𝑝𝑟 , 𝑞𝑝𝑟

+ 𝑓𝑙𝑢𝑥 ∗ 𝑀𝑆𝐸 ෣𝐹𝑙𝑢𝑥, 𝐹𝑙𝑢𝑥

+𝑚𝑎𝑠𝑠 ∗ 𝑀𝑆𝐸
෣𝜕 𝑀𝑛𝑤

𝜕𝑡
,
𝜕 𝑀𝑛𝑤

𝜕𝑡

+𝑏𝑖𝑛𝑎𝑟𝑦 ∗ Binary Crossentropy ( መ𝑆𝑛𝑤, 𝑆𝑛𝑤)

+𝑏ℎ𝑝 ∗ 𝑀𝑆𝐸 ෠𝑃𝑏ℎ𝑝, 𝑃𝑏ℎ𝑝 + 𝑝𝑟 ∗ 𝑀𝑆𝐸 ෠𝑃𝑏ℎ𝑝, 𝑃𝑏ℎ𝑝

• Loss functions can be constructed through governing 

equations
• Physical constraints, theoretical equations, and relations can be 

incorporated for data-driven model (e.g., trained model)

• We incorporated different terms from governing equations into the 

loss functions

• Flux, mass conservation, known quantities are used



Model Input
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• Small model domain

• Horizontal 29 x 24 cells (subsampling: every 10 cells in 
each x & y) from 290 x 240 original domain

• 15 depth layers (whole layers)

• Yearly data (up to 99 yrs) from monthly data

• Two injection wells and one (passive) production well

• Cumulative injection amount over time

• Radial Basis function to distribute injection amount

• 32 training/validation sets & 4 testing sets

• Binary active zone (also for saturation & production rate)

• Zeros for inactive zones used in loss function

• Pressure & Production Rate model

• Small model domain

• Two horizontal 21 x 21 cells around two injection wells 
where CO2 plumes spread (subsampling: every 4 cells) 

• 15 depth layers (whole layers)

• Yearly time interval (a total of 100 = initial + 99 yrs) from 
monthly data

• Injection rate

• Cumulative injection amount over time at well locations

Distribution of radial basis function

Weights: High, medium, low radial distance & point source at wells

Distribution of CO2 plume at t = 99 yrs
• CO2 Saturation model

Yoon et al. (in prep)



Truth
ML 
prediction

Results – Pressure & Production Rate
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4

3

1.5

275

Bottom of Injection 
layer

Top of 
Injection 
reservoir

Error
End of Simulation (99yrs)

3

1

0.7

275

Top of 
secondary 
reservoir

Bottom of
Injection layer

Top of 
Injection 
reservoir

Top of 
secondary 
reservoir

End of Injection (30yrs) End of Simulation (99yrs)

5

5

2.5

275 3

2

0.7

275

Top of primary 
reservoir layer

Moderate injection rate Test case 1

High injection rate Test case 3

Two 
injection 

wells

production 
well

Parity plot 
(All 40 
datasets)

Truth ML

ErrorTruth ML ErrorTruth ML

ErrorTruth ML



Results – CO2 Gas Saturation

End of Injection (30yrs)
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Machine Learning Model Performance
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STB: Stack Tank Barrel

Output RMSE Unit Min Max Training time*

Pressure 0.609 bar 87.966 302.795 1.77 hrs

Saturation 0.0089 -- 0 0.92624 2.28 hrs

Production 1.687 STB 0 864.489 1.48 hrs

Parity plot (All 40 datasets)

* 1 NVIDIA GPU 
(Quadro 5000)

All trained models 
executed within 1 
second



Part 2: 
Variational Autoencoder for 

Data Assimilation 



Variational AutoEncoder(VAE) &

Ensemble-based data assimilation (EnDA)
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Objective: real-time history matching of CO2 operations and 
forecasting CO2 and pressure plume development 

• Deep Learning-based nonlinear projection approach to 
accelerate the stochastic inversion. 

• VAE and its decoder to map the permeability k to the latent 
vector z whose dimension is much smaller than the original 
dimension of k while ensuring a good approximation accuracy.



Variational AutoEncoder(VAE)-based Inversion
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• VAE to construct data-driven nonlinear dimension reduction model:

• Data assimilation in small nonlinear latent space of unknown parameters with dim(z)
• Only require “dim(z)” forward model executions at each iterations instead of dim(m) or 

dim(obs)
• Can encode prior beyond Gaussian

Ensemble realization

Unknowns:

decoder

𝜇

𝒩(𝟎, 𝚺)

𝒌,𝝓

Measurements:
𝐆(𝒌,𝝓)

decoder

Unknowns:

Σ

𝒌,𝝓 = 𝐆(𝒛)

𝐆(𝐃(𝐳))

𝒑, 𝑺

𝒌,𝝓

encoder



Variational AutoEncoder(VAE)-based Inversion

Latent space “z” obtained by VAE, i.e., deep 
learning-based encoder will be updated in 
EnDA-based methods for data assimilation 
with various measured data.

Forward problem: 𝐲 = 𝐆 𝐦

with 𝑙 Gauss Newton iterations from 𝐦0 = 𝐦𝑝𝑟𝑖𝑜𝑟

𝒎𝑙+1 = 𝒎0 + 𝐂prior𝐉 𝐉𝐂prior𝐉
T + 𝐂𝐨𝐛𝐬

−1
𝐲 − 𝐆 𝐦𝑙 + 𝐉 𝒎𝑙 −𝒎0

With any (nonlinear) dimension reduction 𝐆 of 𝐦

𝒚 = 𝐆 𝐃(𝐳) , 𝐝𝐢𝐦 𝒛 ≪ 𝐝𝐢𝐦(𝒎)

𝐳𝑙+1 = 𝐳𝑙 + 𝛼 𝐉𝐳
𝐓𝐂obs

−1 𝐉𝐳 + 𝐂priorz
−1 −1

𝐲 − 𝐆 𝐃 𝐳𝑙 − 𝐂priorz
−1 𝐳𝑙

with step length (learning rate 𝛼). And the posterior covariance is given as

𝐂𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓𝒛 = 𝐉𝒛
𝐓𝐂𝒐𝒃𝒔

−𝟏 𝐉𝐳 + 𝐂𝒑𝒓𝒊𝒐𝒓𝒛
−𝟏 −𝟏

VAE is our choice since it constructs the prior 𝒛 ∼ 𝑵(𝟎, 𝐈)!

Formulation for (optimization-based) Data Assimilation with VAE-based prior



Description of the data used
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- 3D Toy problem (25x25x3)
[ a total of 27 cases with 3 permeability 
fields x 9 injection rates]

Pressure SaturationPermeability Porosity

CO2 injection well Water extraction well

• Field scale-based permeability distribution

• 100 realizations based on probability  
(P05/10/25/50/75/90/95)

* Visualizations provided by LLNL. Data generated 
by EERC (Courtesy: Nick Azzolina)

Four CO2 injection wells

• High fidelity numerical simulator to generate multiphase CO2

flow in 3D heterogeneous field
• Heterogeneous material properties (permeability & porosity)

• Injection & extraction well operations

• CO2 saturation, pressure, and production in space and time

Injection Rate per Well
per Realization



Results I: Single phase flow
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• Inversion example using a single-phase flow model:

• Here we used a “full” physics single phase flow model 

• 10,000 (100x100) unknown permeability (k) 

=> latent space (z) with 32 latent dimension

• 16 observation wells with head data 

• 33 forward model runs/iteration to construct Jacobian

• Initial guess: any guesses converged

• Only 3-4 iterations required due to accurate gradient information in 

latent space



Results II: Multiphase Flow
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• the latent space is constructed based on both (k,) and (P, S)
• the cost of the trained reduced order model ~O(1 sec)
• can run optimization-based inversion or stochastic Newton 

MCMC for full posterior pdf characterization of the latent space

• Use a simple 3D problem to demonstrate VAE-based inversion

z
k


p
S

k


CNNCNN
CNN
LSTM
NN

• Inversion example using DL-based 

reduced order model for multi-phase flow 

with nonlinear dimension reduction:

• ML trained reduced order model with 3D toy 

problem

• 25x25x3 unknown k => z with 32 latent dimension

• 720,000 noisy transient pressure observations

• 33 forward model runs/iteration to construct 

Jacobian

• Initial guess: Perturbed field with ~10% error

• Only ~3 min inversion time on a single core laptop

• Convergence with any (reasonable) initial guesses 

due to data-driven prior!

VAE DL



Multiphase Flow at Realistic Reservoir
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• the latent space is constructed based on k and Pressure
• the cost of the trained reduced order model ~O(1 sec)

• Use a realistic 2D problem to demonstrate VAE-based inversion

• Inversion example :

• 71x71 unknown k => z with 32 latent dimension

• 9 observation wells for time series pressure data & 

permeability (hard data)

• Latent space was constructed from training data

• Initial guess: Zero mean & STD

• Only ~3 min inversion time on a single core laptop

• Inversion in the latent space identifies the k 

structures well!



Conclusions

Variational autoencoder for real-time history matching of CO2
operations and forecasting CO2 and pressure plume 
development with fast deep learning-based forward modeling.

Latent space optimization with interpretability including optimal 
choice of the nonlinear dimension reduction requires further 
study.

ML/DL with domain knowledge can lead to dramatic 
improvement in challenging spatio-temporal data analytics and 
decision making for optimal operations. 
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