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2 1 Qutline

Magnetoencephalography
o What it is?
° What is it good for?

Next generation sensors
o Optically pumped magnetometers
> High T, SQUID magnetometers

Measuring closer to the brain
° Primary advantages

° New applications



3 ‘ Magnetoencephalography (MEG)
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= Postsynaptic currents flowing in the dendrites of the pyramidal
neurons constitute the primary current (/).
= <10 Tor100fT

= Both the primary and return currents contribute to the magnetic field
sensed outside the subject’s skull.



Traditional MEG System:
Superconducting Quantum Interference Device (SQUID)

MEGIN® TRIUX CTF cMEG Tristan MAGViewTM

Mature technology Disadvantages
* Highly sensitive, 2-3 fT/rt-Hz « Low T, superconductor: 4 K
* High bandwidth * Helium is expensive, sources unreliable

* Whole head coverage (> 300 channels)

[1] Rainer Kdrber et al, “SQUIDs in biomagnetism: A roadmap towards improved healthcare,” in Superconductor
Science and Technology 29(11):113001, DOI: 10.1088/0953-2048/29/11/113001



5 ‘ What is it good for?

— Understand spatial/temporal brain function.
— Study psychological/neurological disorders.
— Localize a pathology (e.g. epilepsy).
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Medical Use of MEG

MEG can be used to diagnose conditions
manifesting in brain transient response

Pre-surgically locate the sources of * Depression

epileptic seizures - Dyslexia IRl
Presurgical Functional Mapping - Migraine

Diagnose concussions - Multiple Sclerosis

Diagnose Traumatic Brain Injuries - Neoplasms

Post-traumatic Stress Disorder s Pain

Schizophrenia  Parkinson's Disease

Aging * Stroke

Alzheimer’s Disease « Tinnitus

Attention Deficit and Hyperactivity
Disorder

Autism Spectrum Disorders



MEG offers excellent spatial and temporal
resolution.

EEG MEG fMRI
Spatial Great Great
Resolution (~mm) (~-mm)
Temporal Great Poor
Resolution (~ms) (~s)
Cost High, but new sensors High, but widespread




g ‘ Traditional SQUID MEG vs. On-Scalp MEG

» SQUIDs require liquid He (4 K).
Ly = Rigid helmet manufactured to fit 95%
- &S adult male subject’s head size.
Y 9 S, ok = Large sensor-source distance
d—

= Diminished signal
= | ess spatial complexity

= On-scalp MEG enhances spatial
resolution

= Potentially wearable systems
= Applications:
= Neuroscience research

» Brain Computer Interface (BCI)

~10 mm

= Clinical, e.g. epilepsy I

T~300K

[1] Rainer Korber et al, “SQUIDs in biomagnetism: A roadmap towards improved healthcare,” in Superconductor Science and Technology
29(11):113001, DOI: 10.1088/0953-2048/29/11/113001

[2] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer SS, et al. Moving magnetoencephalography towards real-world applications
with a wearable system. Nature. 2018;555(7698):657.



On-scalp sensors: Optically Pumped Magnetometers

Use (rubidium) atoms to detect the magnetic field '
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Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer SS, et al.
Moving magnetoencephalography towards real-world applications
with a wearable system. Nature. 2018;555(7698):657.




Two-color pump/probe scheme

Two optical resonances in Rubidium (fine structure)
* Use D1 for optical pumping and D2 for probing

Based on: V. Shah and M. V. Romalis, PRA 80, 013416 (2009)

8’Rb Fine Structure
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Early Groups Working on OPM MEG
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12 ‘ Emerging Companies

FieldLine

mQGoIth



13 | Potentially less costly systems

Cost savings in the sensor system (no
cryogenics)
o Can by individual sensors or whole head
systems

o Smaller initial investment

Smaller magnetic shielding systems
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On-scalp MEG with high-T, SQUIDs
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& White magnetic field noise:
50-130 fT/VHz to < 10 Hz

& Bandwidth: > 10 kHz

¢ Temperature independent
calibration (stable within 0.5%)

{3 Sensor-to-sensor crosstalk
problem solved (< 0.5%)

£ Scalp standoff: approaches 1 10° 10! 102 10° 10*
mm f [Hz]
[Pfeiffer et al. IEEE Trans. Biomed. Eng. 67, 5 (2020)] " — Channel 2 magnetometer in
[Ruffieux et al. Supercond. Sci. Technol. 33, 025007 (2020)] dipstick at 78 K with superconducting
[Ruffieux et al. Supercond. Sci. Technol. 30, 054006 (2017)] shield for comparison

[Ruffieux. PhD Thesis. Chalmers University of Technology (2020)]

MedTech




Benchmarking: seven high-T_ SQUIDs vs Elekta (KI NatMEG)
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Benchmarking: seven high-T_ SQUIDs vs Elekta (KI NatMEG)

Somatosensory evoked fields: shallow sources, strange results

.fl )
4x7-channel (24 channels) i‘.
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TRIUX (102 channels)
N20m ~350 fT peak-to-peak

t [ms]

Xie et al, Benchmarking for on-scalp MEG sensors, IEEE Trans. In Biomed. Eng. 2016 DOI: 10.1109/TBME.2016.2599177

C Pfeiffer et al., IEEE Trans. On Biomed. Eng. 67(5), 1483-1489

MedTech




Moving closer to the brain: Benefits of OPM-MEG

Closer proximity to brain means increases in
o Sensitivity (larger signals)
o Spatial resolution (more detail)
o Information

Simulation
° 102 OPMs vs. 102 SQUIDs
> OPM noise 6 fT/rHz
o SQUID 3 fT/rHz

Group of Lauri Parkkonen, Aalto University
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Subspace angles SQUID vs. OPM

including up to L=8 including up to L=11

0,00 2,86 5,71 8,57 11,4 14,3 17,1 200 0,00 9,40 18,8 28,2 37,6 47,0 56,4 65,8
[

Samu Taulu, University of Washington



: Number of A Normalized
‘ Benefits of OPM-MEG Label | Amay 00O {bx;tesrfasgae) {b?t;Tsa:;E)

—=— | aOPM 306 1307 43

—— | toPM 204 939 46

—— | nOPM 102 656 6.4

—+— | asQuID 306 506 1.7

Closer proximity to brain means increases in —&— | mSQUID 102 413 4.0
o Sensitivity (larger signals) o TgSQ,UID , 20:" T 383 , T1'9 .

o Spatial resolution (more detail) 1400 |
° Information

—_
%)
o
(=]

Simulation
° 102 OPMs vs. 102 SQUIDs
> OPM noise 6 fT/rHz
o SQUID 3 fT/rHz
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Group of Lauri Parkkonen, Aalto University livanainen et al. Neurolmage 2017



Spatial-frequency basis (uniform sampling)

Number of spatial-frequency

components
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21 1 Conclusion

Next generations sensors
o Optically pumped magnetometers
° High Tc SQUIDs

Multiple research groups and companies

Advantages
o Sensitivity (larger signals)
o Spatial resolution (more detail)
° Information

New applications
° New neuroscience paradigms with wearable systems
° Brain computer interface

° Larger information volume




