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Coupled electrochemical-mechanical effects at connect battery manufacturing and performance




Mechanics in Batteries: 3 Vignettes Apply pressure to

suppress dendrite growth
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Impact of mechanics on
binder in intercalating

electrodes

Work in this section with Mark E. Ferraro,
former Sandia post-doc



Mesoscale geometry from CT data using CDFEM
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How does mechanics affect NMC electrode

modeling?

NMC particles
expand as they
lithiate (discharge)
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But CBD
conductivity

increases as it’s

compressed



Mechanics of CBD drive current transport

Von Mises Stress Electrical Conductivity Voltage Drops
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Stress generation in

conve rsion electrode
particles l
K |

Work in this section with Jeffery S. Horner,
Sandia post-doc



FeS, — Conversion reactions are brutal

Fracture

Generalized Reaction Mechanism

(1) FeSz+ 2Li* + 2e~= LijFeS, Intercalation
(2) LigFeS; + 2LiT + 2e 7= Fe? + Li,S Conversion

Fracture 231

ﬂ'l Boebinger Joule (2018)




FeS, mathematical model

Li,FeS, Particle “Core”:
/ Electrical transport (voltage) — Ohm’s Law

Intercalated lithium diffusion (Li,FeS, concentration) — Non-
ideal solution transport (i.e. electrochemical potential-driven)

Quasi-static mechanics (stress) — Lithiation-induced swelling




FeS, mathematical model

Li, FeS, Particle “Core™
4Fe0 + 2 Li,S Particle “Shell”:

Electrical transport (voltage) — Ohm’s Law

Lithium ion diffusion (Li+ concentration) — Fick's Law

Quasi-static mechanics (stress) — Density change vs. Li,FeS,




FeS, mathematical model

Li, FeS, Particle “Core™
4Fe0 + 2 Li,S Particle “Shell”

/ LiTFSI in DOL/DME Electrolyte + Diffuse CBD:

/ Charge transport (voltage) — Ohm’s Law + Nernst-Planck Flux

Lithium ion diffusion (Li+ concentration) — Fick’s Law + Nernst-
Planck

Electrical transport (voltage) — Ohm’s Law
Conductivity set to represent an evenly distributed CBD

phase




FeS, mathematical model

Li, FeS, Particle “Core™
/ Fe, + 2 Li,S Particle “Shell”:

. =1 ex aFny — ex —ackn,
Reaction Surface: r = bor |SXP T P\ RT

Butler-Volmer reaction kinetics —
2 simultaneous reactions .

? LiTFSI in DOL/DME Electrolyte + Diffuse CBD:
/

Intercalation OCV

- — — Conversion OCV

Reaction surface moves using /20 0ata
level-set field + CDFEM =
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nkF p
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Electrochemical results

Voltage (V)

Intercalation OCV
Conversion OCV

\ ——— C/20 Data Lithium Concentration Current Density
\ Model Fit
e m e e e e e e e Y VY VYV VvV Yyg IMTMmTTTSSS

«— - ISV VEN S

_C_Li _J_solid_vec
R - L P LN, 1.000e+00 3.500e+00
7.500e-01 2.625e+00

0 100 200 300 400 500 5.000e-01 1.750e+00 H
' 2.500e-01 8.750e-01
Capacity (mAh/g) U,GOD:+OD 0.0006+00



Stress generation in two conversion reactions of FeS,
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/\pp]}‘ pressure to
suppress dendrite growth

oo

Role of mechanics in —
mitigating dendrite growth on

[Ithium metal

Separator

[.ithium anode

Work in this section with Julia Meyer,
Purdue Ph.D. student with Partha P. Mukherjee



Pressure suppresses dendrite formation in Li metal

Apply pressure to
suppress dendrite growth
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Li model workflow

1. Mechanics 2. Re-Meshing
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3. Electrochemistry
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Impact of mechanics on electrochemistry

Porosity
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Separator, Electrolyte

Charge (V) and porous species
(CLi4) transport

Lithium metal

Charge (V5) transport

( * Celgard tortuosity approximation [1]:
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* Effectof strain on separator porosity:
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* Reaction rate at interface [2]:
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Interplay between pressure, geometry, and

compressibility

Separator onl
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Interplay between pressure, geometry, and

compressibility
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Interplay between pressure, geometry, and

compressibility
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Interplay between pressure, geometry, and

compressibility
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Interplay between pressure, geometry, and

compressibility
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Taller protrusions increase mechanics impact

Hydrostatic Stress [Pa] Local Porosity
-Be+07 -de+07 0 0 05 1

| -

6e+07 -2e+07 0.25 0.75

~

0.30 A

0.25 A
ie)
5
- 0.20 A Height [um]
§ — 0.4
& 0.15 — 08
'?é ) — 1.0
Q —_— 1.2
o

0.10 A

0.05 A

0.00 A . .

0 2 4 6 8 10
Pressure [MPa]




Mechanics in Batteries: 3 Vignettes Apply pressure to

suppress dendrite growth
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