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With interest resurging in vertical-axis wind turbines, there is a need for a fast and accurate
vertical-axis turbine aerodynamics model. Although 3-D vortex methods are faster than 3-D
computational fluid dynamics, they are orders of magnitude slower than required for design
optimization. Lower fidelity models like actuator cylinder and double multiple streamtube are
popular choices. However, both original formulations assume a steady-state infinite cylinder
of unchanging radius, uncharacteristic of offshore turbines. Although stacks of cylinders
can be used to approximate curved blades, this yields errors in excess of 50% and does not
capture active deformation. Despite current consensus that these are errors inherent to the
2-D formulation, we show the error can nearly all be resolved by including considerations
for curved blades. Unsteady effects have historically been captured using a first-order filter
on the steady-state induced velocities. Although active deformation can be captured with
proper discretization, the unsteady model requires a full revolution solution at each timestep.
We found that with a rotating point iterative approach, only solutions at the blade positions
are required, which gives a 5-10x speedup. These modifications together enable full-turbine
unsteady simulations with accuracy comparable to vortex methods, but as much as 5000x
faster.

I. Introduction

VERTICAL axis wind turbine (VAWT) aerodynamics are unique in that the blades pass through their own wake

capturing energy and inducing velocity in both the upstream and downstream areas (as depicted in Fig. 1). This
requires the mutual influence of the upwind and downwind portions to be calculated for accurate predictions. Although
vortex methods and computational fluid dynamics (CFD) do this very well, a faster method is needed to enable trade
studies, fully coupled aerostructural analysis, and optimization. The need for a simplified acrodynamics model has led
to many variations including streamtube [1], multiple streamtube [2, 3], double multiple streamtube (DMS) [4—6], and
actuator cylinder (AC) theory [7]. DMS and AC are the primary models used, with AC being more preferred [8§—10] due

to its more physically accurate nature [11]. However, DMS is generally comparable and runs approximately 20x faster.
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Fig.1 VAWT 2-D horizontal slice with induced velocity # and v components depicted by arrows.
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Both the DMS and AC formulations were originally derived for a steady-state infinite cylinder of unchanging
radius. Although these simplifications have been proven useful, they are not representative of a large VAWT with
curved deforming blades. Previous studies have shown that stacks of cylinders can be used to approximate 3-D curved
blades [8, 12] however, a rigorous validation of this approximation has not been made. This is partly due to the general
lack of the appropriate aerodynamic data for vertical-axis wind turbines. For example, the Sandia 17 meter turbine has
aerodynamic data at the center of the turbine where the blade is vertical but not at the curved areas [13]. Additionally,
the Sandia 34 meter, though highly instrumented, did not include blade pressure distribution instrumentation [14]. In
this paper, we use the Sandia 5 meter turbine [15]. We first validate a 3-D vortex method, CACTUS [16], using turbine
performance data, then use the vortex method’s detailed loads as pseudo-validation data for AC and DMS.

In a recent paper by Tavernier [17], many fully 3-D and pseudo 3-D VAWT models are compared. The authors
identify CACTUS as the most physically accurate and show the stacked AC method as the most similar, but with
significant differences in predicted loads for highly sloped blade regions. Other studies that attempt to add blade
slope considerations for either AC or DMS [9, 12, 18-20] are focused on other objectives, are inconsistent in how the
modifications are made, and lack blade-element level verification. Only Leroy [20] seems to fully address blade slope,
but it is done in passing for only DMS and without blade-element level verification. The general consensus seems to
be that the differences in predicted loads between these 2-D and 3-D models is inherent to 2-D limitations. However,
by revisiting the fundamental assumptions in a curved-blade frame of reference, the 2-D models can account for the
majority of what were previously described as 3-D effects. Additionally, details for handling actively deforming blades
are limited in the literature and are revisited in this study. Finally, we also revisit the method that makes these steady
models operate in the unsteady domain and identify a numerically superior solution method.

I1. Baseline Model Theory

A. Actuator Cylinder and Double Multiple Streamtube

Both the AC and DMS methods have no closed form solution, but rather require an iterative solution similar to
blade element momentum theory [21]. These models solve for the aerodynamic flow field subject to blade forces, while
the blade forces depend on the flow field. The methods both use a residual equation to solve for the turbine induced
velocities which are iterated on until the blade-induced velocities equal the input velocities. The blade element forces
are calculated similarly for both methods using the normal and tangential velocities due to freestream, blade motion, and
induction. Both methods also use the stacked disk method to approximate a 3-D turbine, and each disk is completely
independent. Any improvements gained by revisiting the models from a curved and deforming frame of reference can
be applied to the blade element portions of both methods.

Our specific AC implementation is based on Ning’s work [12] due it its full definition of frames of reference,
equations, and availability of open source code. Our DMS implementation is based on Ayati’s work [6] due to similar
levels of detail in equations.
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Fig.2 Depiction of DMS streamtubes of constant angular discretization. Aerodynamic coupling one-way with
respect to the downstream (light grey tubes) using the upstream (black tubes) exit velocity for a given streamtube.



The AC and DMS methods differ in how adjacent locations around the cylinder affect one another. For DMS,
the only coupling is between two collinear streamtubes where the outlet velocity of the upstream is imposed as the
inlet condition on the downstream (see Fig. 2). Because of the simple nature of the coupling, the only assumption
required is that respective upstream and downstream streamtubes remain relatively aligned. Because of the intuitive and
straightforward nature of shifting the index between upstream and downstream streamtubes so the coupling is realigned
with the freestream, we do not explore it. However, the intra-turbine coupling in AC is much less straightforward. All
azimuthal locations affect one another with what has been termed as an influence coefficient matrix [12]. This matrix is
the influence factor of every position on every other position, but was also originally derived for an unchanging radius
and straight blades.

B. Unsteady Approximation

The method to approximate unsteady characteristics for a VAWT using AC or DMS has historically been a first order
time filter [22]. This is similar to the method used for horizontal-axis wind turbine (HAWT) blade element momentum
theory [23] and has been used in the VAWT adaptations of HAWC?2 [8, 22], SIMO-RIFLEX-AC [9], and a TU Delft
study [10].

The first order filter method is a three step process incorporating what we will term as near and far wake influences.
First, AC or DMS is solved for steady-state using the current conditions (near wake influence). Second, the resulting
induced velocities are combined with historical induced velocities (far wake) using the filter. Third, the filtered induced
velocities are then used to get the turbine performance at the current timestep. This process is repeated at each timestep
for all time. Details on the specific equations can be found in [22].

II1. Steady-State Theory Modifications

A. Baseline Turbine for Verification

Prior to introducing modifications to the models, we define a baseline turbine
and model setup that will be used for verifying the modifications. We use the
Sandia National Laboratories (SNL) three-bladed 5 meter turbine [24], upgraded
with full troposkein NACA-0015 blades [15]. This turbine was chosen for its
simplicity and availability of performance data. The turbine is 5 meters in
diameter, has a height to diameter ratio of 1.02, a constant chord of 6 inches,
and zero degrees installed twist, but a 40% chord mount point (which gives an
effective twist that varies along the blade, see [25]). We model the SNL 5m with
CACTUS, AC, and DMS using 31 vertical discretizations (making 30 slices).
The CACTUS case models the turbine in full 3-D, while the AC and DMS cases
use the stacked cylinder approach. All cases use the Boeing-Vertol [26] dynamic
stall model and 30 timesteps per revolutions unless otherwise specified. The
flow conditions are matched with the nominal test site parameters (Albuquerque,
NM). The rotor rotation rate was held constant at 150 RPM. The curvature, local
radius, and other required parameters are based on the nominal turbine parameters
and troposkein shape. Figure 3 shows the turbine and the troposkein shape. For
CACTUS specifically, the wake cutoff parameter was set at 3 diameters, and the Fig.3 SNL 5m three-bladed tur-
model was run until the change in coeflicient of performance had converged below bine showing troposkein shape.
1E-4 unless otherwise specified.

B. Blade Element Theory Modifications

As stated previously, the original formulations for DMS and AC assumed an infinite cylinder (straight blades). This
assumption was also used in the blade element formulations. Even though the original model derivations use the term
normal, they do not include cases where the normal vector differs from the radial vector. Solving for curved blades
with only the radial component does not yield the same solution as solving with the true normal. Additionally, this
effect cannot be captured by simply stacking an infinite number of cylinders in the same way that the diagonal distance
between two points cannot be approximated by an infinite number of zig-zags. The slope must be included.



Blade slope is defined from the vertical-axis by the arctangent of the
change in x-direction divided by the change in z-direction. Therefore, blade
slope is positive for the lower portions of the blade and negative for the
upper. This follows right hand rule convention when aligned with the blade
tangential direction of motion. The angle from the horizontal axis to the
blade normal equals the blade slope angle because the blade slope and blade
normal are perpendicular. To convert from the radial to normal frame of
reference is a simple trigonometric matter. However, as depicted in Fig. 4,
blade slope affects forces and velocities differently.

The frame of reference used in this paper is consistent with Ning [12].
Of note is that positive velocities are in the following directions: vertical
is towards the top of the turbine, radial is towards the center of rotation,
and tangential is towards the blade leading edge (opposite of the advancing
blade direction). Positive forces are in the opposite direction; they are the
forces the blades exert on the fluid. More details and depictions can be
found in Ning’s paper.

Fig. 4 Force and velocity vectors
transformed from radial to normal.

1. Blade Slope Effects on Velocity

Local normal and tangential velocities are used to calculate the local blade angle of attack and local velocity
magnitude, both of which have a strong influence on the local blade forces. For the 2-D models, the normal velocity V,,
is calculated via the blade slope ¢ and azimuthal angle 6 from the local radial velocity due to the freestream V., and
induced velocity flow field u and v. This is shown in the left side of Eq. (1). The tangential velocity needs no correction
as it is perpendicular to changes in blade slope. While Wang [19] does show blade slope considerations in his velocity
equations, he does not completely include blade slope effects on forces. Only Leroy [20] seems to fully address blade
slope, but it is done in passing for only DMS without any blade-element level verification. The right hand portions
of Eq. (1) show how velocities from deformation can be added.

from freestream, induction, rotation from deformations
Vi = (Voo (1 + 1)$ind — Vo (v)c086) 0SS + Vyertical * SING + Viadial * COSS (1)
Vi = Voo(1 + 1)cos + Vo (v)sing + Qr + Viangential

2. Blade Slope Effects on Force

Blade slope has two effects on forces: first, element span length, and second, how normal force is resolved into
radial and vertical force. In the blade element formulations used by DMS and AC, once the local velocity vector is
known, the local airfoil 2-D lift and drag coefficients can be found from airfoil polars. These coefficients are then rotated
by the local inflow direction to get the local blade normal and tangential force coefficients ¢, and c,. However, the
airfoil 2-D lift and drag coefficients used are per unit span. For a turbine slice of unit height, the sloped blades’ span is
not the same as the unit height, but is increased by dividing by the cosine of the blade slope. The modification required
for the discrete normal force F; used in the AC residual equation is shown in Eq. (2) (compare Ning [12] Eq. 28 and
note that radial loading should now be termed normal loading). The modification for the DMS thrust force 7, used in its
residual equation is shown in Eq. (3) (compare Ayati [6] Eq. 11). Air density is p, local velocity magnitude is W, chord
length is ¢, and B is number of blades. Both equations assume unit height. Although this modification was discussed in
part by Cheng [18], no mention was made of the other modifications needed and only high level validation was done.
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More intuitively, blade slope allows us to break a normal vector into radial and vertical components. The normal force
is multiplied by the cosine of ¢ to get radial and multiplied by the sin of ¢ to get vertical. However, the aforementioned



span length must also be included. The resulting reduced equations are shown in Eq. (4) and match those given by
Ning [12] including the frame of reference. Ning discusses these effects for output forces in full detail, but does not
include the slope in the residual or velocity equations. Fip,, F;, and F. é are the radial, tangential, and vertical force per
unit height.
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Also of note is that the AC instantaneous thrust F, used for the AC nonlinear correction factor is the force parallel
to the freestream. This force is comprised of the radial and tangential forces as shown in Eq. (5) and is also correctly
defined by Ning for curved blades (compare Ning [12] Eq. 35).

Fy = —Fgsing — F.cosf (5)

3. Verification

The effects of the blade slope corrections as previously described are shown in Fig. 5. The case shown is of the
baseline Sandia 5 meter turbine for a tip speed ratio (TSR) of 5.2. The AC and DMS models were run using stair-stepped
vertical slices (piecewise straight blades) and the improved formulation including slope just described. The AC and
DMS models are compared in the figure with CACTUS results for the average tangential force along the vertical axis,
using CACTUS as the “truth” model. This measure was chosen to give a 3-D projection of the high level accuracy of
the models’ blade load predictions, particularly concerning turbine torque performance. Similar effects are seen for the
full range of TSR and for the other forces. The curved models match much better than the straight over the entire height
of the turbine. Surprisingly, (as will be shown in the steady-state validation section) the curved models’ vertical forces
are in such good agreement with CACTUS, that the vertical induction for this type of turbine may not be as significant
as previously thought.
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Fig. 5 Average tangential force per span along vertical-axis for SNL 5 meter turbine at TSR of 5.2. Turbine
blade shape is in black. Blade slope considerations decrease error compared with the CACTUS 3-D vortex
method.

C. Actuator Cylinder Intra-Turbine Coupling

The actuator cylinder method commonly used today is actually a linearized version with a nonlinear correction term.
By linearizing the method, significant computational improvements can be made. However, even greater improvements
can be made by reducing the computation required for the intra-turbine influence coefficients. The original formulation
did this by assuming an unchanging unit radius and no blade slope. By doing this, the relatively expensive computation



associated with integrating each influence term can be done once and reused for any turbine or operating condition.
The matrix becomes only dependent on the azimuthal discretization. While a curved deforming blade violates the
assumptions stated above, we will show that under most conditions this original formulation may be used with minimal
error.

To determine what the influence coefficient matrix should be for a curved deforming blade, we re-derive the
linearized equations in 3-D. This is done by starting with the nonlinear actuator surface method [27] and linearizing it
using the process for the 2-D AC method as described in Appendix A of Cheng’s paper [18]. Including the normal force
and velocity considerations in 3-D during this process results in the pressure equation shown in Eq. (6).

h 2r o : _ 1 _
. / / 0, (rcosé( sinfcosd) (x + rsind) + (cosfcosd)(y — rcosd) + (s;né)(z 25) )d@dz ©
0 J0 ((x +rsind)2 + (y — rcost)? + (z — Zf)z) ’

The intra-turbine influence portion of the equation is in parenthesis. Although we did complete the derivation for the
tangential portion, we do not show it because it is not required for an accurate solution as described by Ning [12] and
Cheng [18]. Integrating the equation over the turbine surface for each surface position’s influence on each other surface
position gives the influence coefficient matrix. The position for which the calculation is being performed is x, y, z and
the position where the force is generated is depicted by rsinf, rcosf), and zy. The actuator cylinder normal volume
force Q,, is as described by Cheng and others (corrected for blade slope as described previously). As a verification, if
one assumes a unit radius, no blade slope, and unit height (2-D) then all of the r, cos(d) and z terms drop out. The %
bottom exponent drops out as well because integration by parts is now done for 2 dimensions instead of 3. The equation
then becomes the original infinite-cylinder and unchanging radius equation as described in the literature.

For our purposes, we need to transition this 3-D equation to 2-D. This is done by dropping the z terms and the
bottom exponent as described above, but keeping the blade slope and radius terms. However, to maintain the original
unit-radius frame of reference, we use a radius vector normalized by the mean section radius. In other words, for a
deforming turbine, we use a vector of radii that have all been divided by the mean radius so that the mean now becomes
1. The downside of doing this is that though the influence coefficient matrix is still independent of absolute radius, it
must be recalculated every time there is a change in the normalized radius vector or blade slope.

Vectors of parameters/conditions associated with each azimuthally discrete point around the turbine must be used as
opposed to singular values. This is how varying blade shape, inflow conditions, rotational speed, and the other varying
parameters are incorporated for both the blade element equations and this influence coefficient matrix.

1. Varying Radius

To show the relative effect of varying radius, we define a test case based on a circular path with increasing ovality.
This is done using the SNL 5 meter turbine at the constant rotation rate and inflow velocity used previously for the
5.2 TSR case. Additionally we look at a slice at the equator to decouple from blade slope. We keep the mean radius
of the oval at the nominal turbine radius, but increase the ovality from 0-100%. Percent ovality is defined as percent
elongation of radius along the x-axis, with the y-radius scaled such that the mean radius equals the nominal radius. We
then rotate the skewed path from 0 to 180 degrees and find the greatest root mean square error between the two influence
coefficient methods to occur with a path tilted approximately 45 degrees. The resulting path is shown in Fig. 6a. We
show the solution with the influence coefficient modifications as dashed lines, and the standard approach as straight
lines in Fig. 6b. Both types include the varying radius in the blade element equations, but only the modified case has
the radius effect in the influence coefficient matrix. Similar levels of difference were seen for the vertical and radial
forces. The worst case root mean square error is 0.86 (2.8% of the max absolute value) and occurs with 100% ovality.
Error at the peak negative load is 7.7% (approximately 45 degrees azimuth). Error at the peak positive load is 1.5%
(approximately 100 degrees azimuth).

Based on this analysis and the minor relative difference, one might neglect the varying radius interaction in the
influence coefficient matrix even for a turbine with moderate deformation. One might also neglect this effect during an
exploratory phase where the speed associated with a constant influence coefficient matrix is needed. The speed difference
of precomputing the influence coefficient matrix can be as much as 7x faster depending on operating conditions, but
most cases we ran gave a 2-3x speedup.
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Fig. 6 Effect of capturing varying radius in the actuator cylinder influence coefficient matrix. Maximum root
mean square error is 0.86 for 100% ovality.

2. Varying Blade Slope

To show the relative effect of varying blade slope on the influence coefficients, we use the same SNL 5m turbine
at a TSR of 5.2. This turbine naturally has a blade slope ranging from approximately 0-60 degrees. As before, the
blade slope vector is included in the blade element equations, but only the modified version includes blade slope in the
influence coefficients. Figure 7a shows the resulting revolution-averaged tangential forces and Fig. 7b shows the percent
difference. The difference becomes significant as the slope increases towards 60 degrees. However, when we scale the
percent difference based on the relative contribution to turbine performance, the difference stays below 1%. This is done
by dividing by the corresponding force from Fig. 7a (normalized by the peak force to keep the percent difference frame
of reference). Similar levels of difference are seen for the radial and vertical forces. Therefore, similar to a varying
radius, it seems that neglecting this effect entirely would be reasonable for this type of turbine. However, turbines with
large or actively changing blade slope in areas that contribute significantly to forces would need this modification. This
may be the case for a V-VAWT or H-VAWT with tilted blades. Computational speed differences between precomputing
or including this effect are the same as for the radius effect and the two modifications should be used together if used.
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Fig. 7 Effect of capturing varying slope in the actuator cylinder influence coefficient matrix. Although the
difference becomes significant for increasing slope, the difference as it contributes to the tangential force remains
below 1%. Similar differences were seen for the radial and vertical forces.



IV. SNL 5m Steady-State Performance Validation

Prior to exploring unsteady model modifications, it is important to understand that the unsteady model is based on
steady-state performance. Therefore, this sections switches from model modifications to fully exercise and validate our
implementation of the 2-D steady models. Because there are no recorded azimuthally varying aerodynamic forces for
the SNL 5 meter turbine, we first compare against the turbine aggregate performance and then use CACTUS detailed
data for a surrogate validation.

Figure 8 shows the turbine coefficient of performance, as measured by experimental torque, versus operational tip
speed ratio. The numerical models match well for tip speed ratios between 2 and 4. Above a TSR of 4, there is about a
12% maximum difference between the experiment and simulations. However, all of the numerical models are closely
grouped. With the levels of accuracy for the numerical models shown, we move on to the blade level forces.
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Fig. 8 SNL 5m coefficient of performance comparison with the pseudo 3-D AC and DMS methods.

Figure 9 shows the tangential force of one blade over a revolution at a TSR of 5.2. The two different load profiles
correspond to approximately 23% and 49% of the height (slices 7 and 15 of 30). Although the general shape of the
load profiles match reasonably well between the higher and lower fidelity models, there is a noticeable deviation in the
CACTUS results over the straight airfoil section (49% height). This may be due to 3-D blockage or vertical induction
effects increasing inflow towards the center of the turbine. The peak force error for this slice is about 25% and the mean
absolute error for either AC or DMS is less than 5% for all slices.
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Fig. 9 SNL 5m tangential force comparison between CACTUS, AC, and DMS.

Figure 10 shows both the vertical and radial forces. These forces match better than the tangential with the mean
absolute error for both AC and DMS of less than 1% and a peak force error under 15% for radial and 10% for vertical
forces. From these high level comparisons, it might be said that the vertical induction for this type of turbine may not be
as significant as previously thought.
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Fig. 10 Radial and vertical force comparisons between CACTUS, AC, and DMS.

V. Unsteady Theory Modifications

As previously described in Section II.B, the current method for unsteady response of the DMS and AC models is via
a first order filter on the steady-state induced velocities at each timestep. Because the method is highly dependent on the
steady-state solution at each timestep, care must be taken with respect to how the steady formulation is made and how
parameters are updated. Otherwise, dynamically changing geometry cannot be accurately captured by these models.
Like previously mentioned, the steady-state AC and DMS models’ previously singular values, such as radius, inflow
velocity, and rotational speed, are made into vectors corresponding with each azimuthal location around the turbine.
All of these vectors should be updated at each time step as new information is gained from structures, dynamics, or
turbulent inflow, etc. For the majority of parameters, such as rotational speed and radius, this is a simple matter of
updating the vectors at the current blade position for a given timestep. In this way, a short history is preserved in the
vectors which remains a part of the solution until updated by the next blade that passes. Inflow velocity is the only
parameter that must be updated at all positions at each step regardless of blade position.

VAWTs differ from HAWTS in that they have non-negligible depth in the freestream direction. This makes modeling
turbulent transport [28] imperative for VAWTs. As a gust passes through the turbine, different sections of the turbine
encounter different freestream speeds. A rotating blade can go in and out of the gust as it passes. For example, in Fig. 11
we compare the freestream velocity as seen at the hub versus the freestream velocity seen by blade 1 as it moves up and
down stream (blade 1 starts at 0 azimuth angle per Fig. 1). The base simulation used matches the SNL 5 meter 5.2
TSR simulations as previously described. The gust velocity used is a moderate 5 m/s and a duration of 0.8 seconds
corresponding to approximately one revolution. This time-changing velocity distribution must be correctly mapped to
the numerical vectors corresponding with each azimuthal location for AC and DMS. Additionally, this update must be
made for all azimuthal locations at each timestep, regardless of blade position to minimize error.
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Fig. 11 Freestream velocity at the hub and at blade 1 (as it moves) during large gust passage (at 22% height or
slice 7 of 30).



A. Rotating Point Iterative (RPI) Solution Method

The original formulation of the first order filter requires solving for the turbine induced velocity of all blade positions
at each timestep. For our discretization, this requires at least 10x more computation than is needed because we are only
interested in forces at the blade positions. We found that with careful consideration to how vectors of parameters are
updated, the AC or DMS model need only be solved for the blade positions at a given timestep.

Solving AC or DMS for only the blade positions requires what we will term a rotating point iterative (RPI) solution
method. This method numerically revolves around the discretized circumference and vectorized parameters following the
blade positions. It solves the DMS or AC residual equation with respect to the current blade locations’ induced velocities
while all other induced velocities and parameters (except incoming freestream velocity as previously discussed) are held
constant (see Fig. 1 for a visualization aid). This is done iteratively, shifting the index at each timestep (or as dictated by
unsteady dynamics on the rotor position), with the index resetting once the blades begin to overlap the starting points.
For a given point along the circumference, this looks like a fixed point iterative method. However, because the index of
points being iterated on is rotated, we term it a rotating point iteration. The first order filter is still used to model the
unsteady behavior of the turbine, but the original time constants must be retuned (see [22] for more details on these time
constants). We found new values of 0.3 and 3.0 for the near and far wake time constants by tuning against CACTUS.

1. RPI Algorithmic Implementation

Algorithm 1 gives an in-depth look at how the RPI method is implemented. For completeness, the algorithm shows
how the modifications fit into the first order filter (Line 38). It also shows how to resolve timesteps that cause rotations
smaller than the azimuthal discretization as can be common if coupled to unsteady structural dynamics (Line 43). Due
to the O(N?) nature of the AC influence coefficient matrix, using an aerodynamic azimuthal discretization of less than
60 and taking much finer steps may be more computationally effective without sacrificing accuracy. It should also be
noted that the algorithm shown assumes Fortran-like one-based indexing.

2. RPI Verification

Using the gust as defined in Fig. 11 and the surrounding text, we compare the AC, DMS and CACTUS models.
Note that 36 timesteps per revolution were used. Figure 12 shows the baseline CACTUS response in tangential force for
the specified blade position. Referring back to Fig. 11, the gust is centered at revolution 22.75, and has multiple rapid
increases and decreases in velocity seen by the passing blade. Looking at Fig. 12 at revolution 20, the loads are periodic
steady-state. At revolution 21, there is a slight decrease in the peak force as the blades start to dip into the gust on the
upstream, or high torque side. At revolution 22, most of the turbine is in the gust and the high torque side increases and
widens. Then, associated with a sharp decrease-increase-decrease in velocity on the downstream, or low torque side, the
force spikes just before revolution 23. After revolution 23, the forces tend to return to periodic steady-state. There are
several key takeaways here: 1) the 2-D methods capture much of the load profile and variation, but with uniformly lower
magnitude peaks than CACTUS (as also seen in Fig. 9). 2) The DMS method gives similar results as AC, favoring the
peak upstream loads while under-predicting the secondary downstream loads. 3) The RPI method is nearly identical
(less than 1% error) to the 1st order filter method for all cases while being numerically more efficient.
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Algorithm 1 Rotating Point Iterative (RPI) Solution Method

1: Initialize scalars and integers:

. Tol # convergence tolerance

: Ng # number of azimuthal discretizations

: stepy,q # index of last timestep

. Vwakeold # average wake velocity at last timestep
B # number of blades

: Rper # reference radius

p # air density

. dt # timestep

. tmax # total time

. Tnear # Near wake time constant

12: T # far wake time constant

13: Initialize arrays and matrices:

14: w # rotation rate

15: r # radius

16: B # blade twist

17: ¢ # blade slope

18: VinfLocal # local freestream velocity

19: weiq # stacked array of induced velocities for u# and v for last timestep
20: cl, cd « getAirfoilPolars

21: A « getInfluenceCoefficients(Ny) #If DMS, A is not used
22: fort « 0 : dt : tpax do

© ® N U AW

—_ =
- O

23: W — Wold

24: 0, WRPI, 'RPI, BRPIs ORPI> Vinf ALL,> Vdeflections <— rotorState (i.e. deformation, dynamics, inflow)
25: step «— ceiling (WLNH

26: StePircular < Step — floor (%) %

27: idXrpr < (Stepcircula.r) : (%) : (2N9 - % +1+ Stepcircular)

28: a)(idepI) — WRPI

29: r(idepl) «— I'RPI

30:  B(idxrpr) < Brei

31: 6 (idxgpr) < Orp1

32: Vinf Local < Vinf ALL

33: while residual(w, w, r, 8, 6, Vinf Local> B, P, cl, ¢d, Viefiections, A) > Tol do

34: w(idxgpy) « root solver

35: end while

36: # Get average turbine induction in the freestream direction a

37: [~, ~, ~, @new] « turbinePerformance(w, w, r, B, 8, Vint Local> B> 05 €1, ¢d, Viefiections)

38: T1 < TnearRret/Vivakeold

39: T ¢ TarRref/Vivakeold

40: Wiiltered < Wolde /™ +w(1 — e~d!/m)

41: ViwakeFiltered < VwakeOlde_m/T2 + Vinf Local (1 = 2@new) (1 — e_dl/Tz) # use average local velocity
42: [R,(6),Ty(6),Z,(0), ~] « turbinePerformance(Wiered, W, 7> B, 6, Vint Locals B, 0, cl, ¢d, Viefiections)
43: if stepy,; # step then

44: Wold €~ Wfiltered

45: VivakeOld <= ViwakeFiltered

46: Stepy,g < Step

47: end if

48: end for
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Fig. 12 Tangential force for blade 1 at 22% height (slice 7 of 30). RPI and original 1st order filter methods
differ by less than 1%.

The trends for the radial and vertical forces are similar to the tangential force as seen in Fig. 13. Though not shown,
these similar trends also are exhibited for the other two blades and as blade slope increases towards the top of the turbine.

Radial Force per Span (N/m)

Vertical Force per Span (N/m)

_60 T T T T 1 T T T T 1
20 21 22 23 24 25 20 21 22 23 24 25
Revolution Revolution
(a) Transient Radial Force Blade 1. (b) Transient Vertical Force Blade 1.

Fig. 13 Radial and vertical force at 49% height (slice 15). RPI and original 1st order filter methods differ by
less than 1%. Plot colors match Fig. 12.

3. Numerical Efficiency

To summarize the numerical efficiency of the RPI method, we run time tests with a i7 3.1GHz processor limited
to 1 thread. The CACTUS solver is fortran and is locally compiled per the user instructions. Both AC and DMS are
implemented in the Julia language, version 1.5 [29]. The comparison case is the gust case detailed above. CACTUS
solves for the entire turbine with 30 vertical discretizations, so for simplicity we multiply the time of the unsteady
AC and DMS single slice by 30. For a best case timing scenario, and because dynamic stall is not active at this tip
speed ratio, the dynamic stall model was turned off. (Dynamic stall adds about a 1.5x penalty on average but some
AC cases can see as much as a 7x penalty). The AC influence coefficient modifications were also turned off and the
faster precomputation method used, though vectors of parameters were used in the blade element and residual equations
(which has negligible effect on speed). All unsteady simulations were run for 40 revolutions, which gives a real time
turbine at 150 rpm 16 seconds to complete the revolutions. The steady case is for 1 revolution, which a real time turbine
would complete in 0.4 seconds.
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Table1 Computational speed comparison for a full turbine running for 40 revolutions (16 seconds of simulated
time, 0.4 s/rev).

Steady 1st Order Filter RPI 3-D Unsteady Vortex
Actuator Cylinder 1.2s 42 min (1.05 min/rev)  8.35 min (12.53 s/rev) -
Double Multiple Streamtube  0.06 s 117 s (2.93 s/rev) 11.7 sec (0.29 s/rev) -
CACTUS - - - 17 hours (25.5 min/rev)

Table 1 summarizes the relative performance. Note that DMS with RPI is the only model able to run faster than
real-time for a full 3-D unsteady turbine. The RPI method in this case is only solving for three induced velocities
associated with the three blade positions at each timestep. The difference in RPI solution speed is directly proportional to
the circumferential discretization. Because this case is discretized by 36, the relative speedup should be 12x (azimuthal
discretizations divided by number of blades). This is very nearly realized for the simple DMS method because it uses
a 1D superlinear root finder for its residual equation. However, AC requires an n-dimensional root finder due to the
intra-turbine coupling. Because the set of equations solved in RPI is non-square for AC (n-blades input minimizing a
n-theta residual), a less efficient minimization algorithm (Levenberg-Marquardt [30]) must be used. (When solving AC
with the original first order filter, the more efficient trust-region method [31] can be used). This, combined with AC’s
unchanged overhead associated with the rest of the interrelated analysis makes the speed difference only about 5x faster
(azimuthal discretizations divided by number of blades divided by two). A one-to-one comparison puts DMS with RPI
at about 5275x faster than CACTUS and enables a new level of system design optimization not previously feasible.

To further close the gap or exceed real-time, we can use larger turbines and parallelization. A larger turbine, such as
would be needed for offshore applications, spins much slower, at 5-10 RPM. AC and DMS scale primarily with the
number of azimuthal and vertical discretizations and not operating conditions. (This assumes turbulent inflow is not
used, otherwise the discretizations may need to be refined.) Therefore, for the same discretization, the simulations will
run in about the same amount of time, but the real turbine runs slower. The 40 revolution example above would take
the turbine 4-8 minutes instead of 16 seconds to complete. This would give a speedup of 15-30x relative to real-time.
This alone does not quite close the gap for unsteady AC, but may give enough margin for a single process computer
running DMS with RPI to handle the overhead of real-time 3-D unsteady predictive control. These models also lend
themselves well to parallelization due to the uncoupled vertical discretization used by both methods, and particularly for
DMS that employs decoupled streamtubes within a slice. Using the same discretizations and number of blades outlined
previously, parallelization could give an additional speed increase of up to 30x for AC and 90x for DMS (requiring 30
and 90 parallel processes respectively). In all, these considerations could make AC as much as 28x faster than real-time
and DMS as much as 3690x faster than real-time. This could then enable real-time 3-D unsteady predictive control with
AC, and more complex processes such as active real-time machine learning with DMS.

VI. Conclusions and Future Work

The motivation of this study was to improve the actuator cylinder (AC) and double multiple streamtube (DMS)
models for VAWTs with curved deforming blades. We summarized the linearized 3-D actuator surface derivation as it
pertains to a 2-D turbine slice with curved deforming blades. In so doing, we found significant discrepancies due to the
original assumptions in both the blade element portions (common to AC and DMS) and intra-turbine aerodynamic
coupling (specific to AC). Prior general consensus was that the large (in excess of 50%) discrepancy in forces compared
to fully 3-D models was due to these models’ 2-D nature. However, we found that by including considerations for curved
blades, we could resolve the majority of these discrepancies, reducing the error by a factor of 10. Additionally, we
examined deforming blades and reevaluated the method of taking the steady AC and DMS methods into the unsteady
domain. We outlined the specific considerations required to accurately model actively deforming curved blades and
found a numerically superior rotating point iterative (RPI) solution method. With this method, a 5-10x speedup was
realized enabling faster-than-real-time calculations for accurate full turbine unsteady simulations.

The developed speed and accuracy improvements for these 2-D aerodynamic models will enable previously
infeasible levels of concurrent system design optimization, essential to the design of floating VAWTs. The next step
towards fast and accurate aero-hydro-servo-elastic simulations using these models is to couple and validate aero-elastic
simulations. By coupling to a structural code such as OWENS [32] we can explore full aero-elastic turbine design with
CACTUS-comparable accuracy, but as much as 5000x faster.
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