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Motivation

With growing interest
in decarbonization,
hydrogen is being
considered as a
means to reduce
carbon in energy
infrastructure

~Challenge

+ “Hydrogen degrades

“fatigue and fracture
_resistance of steels,
. and the effects on
pressure vessel and
line pipe steels are
significant

Mechanics
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Materials

 Strength
* Microstructure and
homogeneity

Hydrogen embrittlement occurs in materials under
the influence of stress in hydrogen environments




Structural integrity assessment mcludes fracture

- mechanics-based analysis
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ASME B31.12 describes rules for hydrogen pipelines with
reference to ASME BPVC Section VI, Division 3, Article KD-10




The effects of high-
pressure hydrogen
on fatigue crack
growth in pressure
vessels steels are
characterized by the
ASME CC2938

design curve
3

' The pressure compen-
sation term is not in
1.€C2938

[ is the thermodynamic
|+ pressure or fugacity
f, is a reference fugacity

Ref: San Marchi et al,
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The effects of hydrogen on pipeline steels are captured

- by CC2938 design curve for pressure vessels
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Similar fatigue crack growth behavior is
observed in pipeline steels for:

— Wide range of strength

— Wide range of microstructure

« What about welds?

* Does this design curve capture
fatigue behavior of relevant
piping and pipeline steels at low
pressure?

 What is the effect of pressure on
fracture?




Welds -and base materials behave similarly
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To first order, welds show similar
fatigue and fracture behavior in
gaseous hydrogen as the base
metals

Similar trends have been observed
for a variety of weld processes

HAZ




Fatigue crack growth and fracture resistance were

measured in low partial pressure hydrogen

Material Evaluation: transmission pipe

« Material: APl grade X52
— Fe-0.87Mn-0.06C, polygonal ferrite with ~10% pearlite

—YS =429 MPa, TS = 493 MPa

* Environment:
— 21 MPa total pressure: pure H,
— 21 MPa total pressure: 3% H, (in inert) ~ 0.6 MPa hydrogen partial pressure

€

- Stress:
— Fatigue crack growth rate measured consistent with ASTM E647
- fatigue typically terminated at a/W ~ 0.65

— Elastic-plastic fracture resistance evaluated consistent with ASTM E1820
(rising load J,c value)
* Determined at the conclusion of the fatigue crack growth test



Fatigue crack growth of X52 is strongly affected by low

partial-pressure hydrogen

W
- X52 steel
[ 21 MPa H,
- R=0.1
| f=1Hz

* Large AK
FCG remains independent of pressure

— FCG in hydrogen at partial pressure of
0.6 and 21 MPa converge

* Intermediate AK
FCG is dependent on hydrogen partial
pressure
— Dashed lines represent pressure-
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Hydrogen-assisted fracture is apparent in low partlal-

pressure hydrogen
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* Fracture resistance does not scale

linearly with pressuret t thermodynamically, pressure should be

replaced with fugacity, see PVP2021-62045



Fatigue crack growth of black pipe is similar to APl X52

Material Evaluation: distribution piping

* Material: ASTM A53 Grade A (black pipe)
— polygonal ferrite, pearlite
—YS =390 MPa, TS = 495 MPa

* Environment:
— 21 MPa pressure: pure H,

» Stress:

— Fatigue crack growth rate measured
consistent with ASTM E647
* Multiple R-values on same specimen
— Elastic-plastic fracture resistance evaluated
consistent with ASTM E1820 (rising load J,¢
value)
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Fatigue crack growth rates are
similar to X52
Fracture resistance ~ 100 MPa m?/2




Fatigue life testing of yellow pipe in gaseous hydrogen

- shows no short-term degradation

Material Evaluation: distribution piping

« Material: ASTM D2513, PE2708
(yellow pipe)

— Medium density polyethylene (MDPE)

— IPS 6, DR 11 (standard size designation)

* Environment: pure H,
— 3.4 MPa pressure (500 psi)

« Stress:

— Fatigue life testing consistent

e

with ASTM E466

* Tension-tension configuration
(R=0.1)
* Notched axial geometry
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Analysis of transmission pipe structure

Structural Evaluation: transmission pipeline

— API grade X52 pipe
— OD =324 mm drowth
—t=12.7 mm \

- Environment: "Mitial defecy \

 Material: .
th’ckneSS /

— Pure hydrogen at pressure of 10 MPa | MSide surfyce
— Consider aggressive service environment (100% H,)

- Stress:
— Hoop stress ~ 120 MPa (~35% SMYS)
— Cyclic pressure: AP =5 MPa

— Flaw depth: 25% and 50% of wall thickness
propagate with constant aspect ratio of 3:1 (length:depth)




Analy___s.is of transmission pipe structure

- Stress is rather modest in this example,

where P =10 MPa, AP =5 MPa
- Initial flaw depth (a/t) = 0.25
- Kapplied =11.2 MPa m12

— Crack does not extend significantly after
100,000 cycles with AP =5 MPa

* Initial flaw depth = 0.50
— Kappliea = 16.5 MPa m12

— Nearly 100,000 cycles required to extend
crack to a/t = 0.80

* Crack depth = 0.80
— Kapplied = 22 MPa m1/2
- Kmaterial >100 MPa m'?
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Structural Evaluation:
transmission pipeline
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Analysis of distribution piping structure

Structural Evaluation: distribution piping , \
t iCkness
* Material- /

— ASTM A53 grade A pipe (black pipe)
— NPS 6, schedule 40: OD =168 mm, t=7 mm initialdefect

 Environment: \

: . inside
— Pure hydrogen at pressure of 3.4 MPa Consider especially SUrface

— Consider aggressive service environment: ) large defec.ts:
excessively high pressure of 100% H, 250% of wall thickness

- Stress: @
— Hoop stress ~ 38 MPa (<20% SMYS)
— Cyclic pressure: AP = 3.4 MPa



Analysis of distribution piping structure

Structural Evaluation: distribution piping

- Stress is extremely low for standardized piping in distribution system
— In practice, P << 3.4 MPa

— Here, we use P = AP = 3.4 MPa thiCk\
— Defects do not grow ess /
- Initial flaw depth (a/t) = 0.50
~ Kappiioa <4 MPa m™ \initiald
* Initial flaw depth = 0.80 Lar, efect
o

— Kapplieda = 5.2 MPa m12
* In general, the driving forces (K) for crack
extension are very low due to low stress
— Relatively thick walled, small-diameter piping
— Low pressure




Failure Assessment
Diagram (FAD) for
black pipe shows
large margins for
failure

* K, ) characterizes
unstable crack
growth in hydrogen

=L, characterizes
.4 plastic collapse
(%SMYS).

.« |dealized example
- calculations
assuming crack
depth 80% of wall
- thickness

Structural Evaluation: distribution piping
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Hydrogen seems very unlikely to induce unstable
fracture in distribution piping from quality pipe steels
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Summary: Materials Perspective.

Gaseous hydrogen strongly affects fatigue and 10 3
fracture properties of steels, ;‘.33&m 5
even at low pressure 5O
» Fatigue crack growth
- for small AK < 5 MPa m'2, FCG is exceptionally “[ x, e
slow (<10° m/cycle) , even for pure hydrogen AR
10°F f=1Hz

- for intermediate AK, FCG depends on square

root of hydrogen fugacity
- for large AK, FCG >10x faster in hydrogen than

da/dN (m/cycle)
=)

X52 pipeline steel
P (total) = 21 MPa

air and FCG is independent of pressure 3 , a) =21
. . 10°F - f=1Hz
* Fracture resistance decreases with pressure, but 5 '.-’ | ——a 3%H (N
but remains >100 MPa m"2 in 21 MPa hydrogen P N k.. T
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Summary: Structural Integrity Perspective . Q’

Gaseous hydrogen will not substantially accelerate
fatigue crack growth in fatigue and fracture will not become

unstable if the stresses (driving forces) are sufficiently low

« Transmission pipeline example
For realistic conditions, very large flaws are needed to extend a

crack and driving forces remain modest relative to hydrogen-
assisted fracture resistance of ductile steels

- | Actual results will depend on stresses and defect population

* Distribution piping
- - Hydrogen is unlikely to be an issue for ductile steels:
/[ _for P <1 MPa, the driving force will be >10x less than fracture

resistance of ductile steels (K., < 5 MPa m'?)




HyBlend: assessment of technical barriers and value

proposition to blending hydrogen in natural gas pipelines

 NREL (lead), SNL, PNNL, ANL, NETL (and ORNL) (@J
* More than 20 partners from industry and academia HYBlend @

» 2-year project
« >$12 million from DOE-EERE

* + $3-4 million anticipated
from partners
* Anticipated start summer FY21

Important pipeline tasks:

U.S5. DEPARTMENT OF ENERGY

Three research tasks in HyBlend:
1) Hydrogen compatibility of piping and pipelines
+ Both metals and polymer piping (SNL, PNNL & ORNL)
2) Life-cycle analysis (ANL & NETL)
3) Techno-economic analysis (NREL)

- Structural Integrity and Risk Assessment of Hydrogen Pipelines

- key deliverable: Probabilistic fracture mechanics framework for structural
integrity of assessment of natural gas pipelines in hydrogen service

- Degradation of Structural Properties (metals and polymers)

- key deliverable: fundamental understanding of behavior of materials in natural
gas network (emphasis on pipelines and piping)




Thank You!

Joe Ronevich
jaronev@sandia.gov

Chris San Marchi
cwsanma@sandia.gov

Y 7 Special thanks to James McNair
~_and Brendan Davis for execution
of the environmental testing

https://www.sandia.gov/matisTechRef/ &

https://granta-mi.sandia.qov/
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