Stable Parallel Training of Wasserstein Conditional
Generative Adversarial Neural Networks

“Note: Sub-titles are not captured in Xplore and should not be used

1% Massimiliano Lupo Pasini
Computational Sciences and Engineering Division
Oak Ridge National Laboratory
Oak Ridge, USA
lupopasinim@ornl.gov

Abstract—We use a stable parallel approach to train Wasser-
stein Conditional Generative Adversarial Neural Networks (W-
CGAN:Ss). The parallel training reduces the risk of mode collapse
and enhances scalability by using multiple generators that are
concurrently trained, each one of them focusing on a single data
label. The use of the Wasserstein metric reduces the risk of
cycling by stabilizing the training of each generator. We apply
the approach on the CIFAR10 and the CIFAR100 datasets, two
standard benchmark datasets with images of the same resolution,
but different number of classes. Performance is assessed using
the inception score, the Fréchet inception distance, and image
quality. An improvement in inception score and Fréchet inception
distance is shown in comparison to previous results obtained
by performing the parallel approach on deep convolutional
conditional generative adversarial neural networks (DC-CGANSs).
Weak scaling is attained on both datasets using up to 100 NVIDIA
V100 GPUs on the OLCF supercomputer Summit.

Index Terms—Artificial Intelligence, High Performance Com-
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I. INTRODUCTION

Generative adversarial neural networks (GANSs) [1]] [2] [3l
[4]] are deep learning (DL) models whereby a dataset is used
by an agent, called the generator, to sample white noise from
a latent space and simulate a data distribution to create new
(fake) data that resemble the original data it has been trained
on. Another agent, called the discriminator, has to correctly
discern between the original data (provided by the external
environment for training) and the fake data (produced by the
generator). The generator prevails over the discriminator if the
latter does not succeed in distinguishing anymore the original
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from the fake. The discriminator prevails over the generator
if the fake data created by the generator is categorized as
fake and the original data is still categorized as original. The
interplay between generator and discriminator can be inter-
preted either as a collaborative game, or a competitive game,
according to the specifics of the application. In national secu-
rity applications, the generator and the discriminator are truly
adversarial because the generator plays the role of a hacker that
tries to breach through a security barrier and the discriminator
aims at correctly distinguishing between legitimate operations
of regular users against harmful illegal attacks operated by
hackers. In other situations, the discriminator collaborates
with the generator by helping it to improve its performance.
An example is provided by data augmentation, where the
generator aims at sampling from a given data distribution by
extracting relevant features that can be used to produce new
data samples. Another example occurs in healthcare, where
GANs are used for the design of new drugs. In this case,
the goal of the generator is to propose the composition of
new drugs either to improve existing treatments or to propose
treatments to types of diseases that are not curable yet, and
the goal of the discriminator is to help the generator design
more effective drugs by assessing their efficacy. GANs agents
collaborate with each other also in animation applications,
where the generator is in charge of creating virtual (but
still realistic) representations of the reality, which are used
in video games to formulate alternative scenarios, and the
discriminator provides feedback to the generator to quantify
how realistic the proposed scenario is. One final example of
an application where the GANSs training is set as a formally
adversarial, but essentially a collaborative game is provided
by photograph editing. In this context, GANs can be used for
reconstructing images of faces to identify changes in features
such as hair color, facial expressions, or gender, etc. This can
help authorities identify criminals that might have undergone
surgeries to modify their appearance.

In general, the training of GANs runs into two main
numerical issues, namely cycling [5] and mode collapse [6].
Cycling happens when the generator alternates between differ-
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ent regions of the data space without necessarily improving its
performance. Mode collapse happens when the generator gets
stuck in a small region of the data space and produces the same
image over time. Avoiding cycling prevents the generator from
wasting computational power by exploring the same region.
Avoiding mode collapse allows the generator to escape local
minima and more thoroughly explore the data space to ensure
that the entire data distribution is equally represented in the
new generated data. Cycling is due to large gradients. While
large gradients are needed to escape local minima, thereby
avoiding mode collapse, to prevent the cycling induced by
large gradients, one needs stabilization. Existing approaches
to train GANs address separately either cycling or mode
collapse, but not both simultaneously. Performing a parallel
independent [[7] training of Conditional GANs (CGANSs) [8]-
[13] that assigns different classes to different processes has
been recently showed to reduce the chances of mode collapse,
but does not address cycling. Wasserstein GANs (WGANSs)
[14] address the problem of cycling, but do not address mode
collapse.

To address simultaneously the problem of cycling and mode
collapse in the parallel independent training of GANs, we use
the Wasserstein metric to define the cost functions associated
with the discriminator and the generator, and adapt WGANs
to a conditional variant [7], where the data label is used as
additional input to the generator in conjunction to the white
noise. From now on, we refer to this variant as Wasserstein
Conditional GANs (W-CGANs). In situations where the
data is characterized by a large number of data classes, our
approach fully takes advantage of high performance computing
(HPC) resources because the number of processes engaged
in the trainign of GANs scales with the number of classes.
Numerical results performed on CIFAR10 [15]] and CIFAR100
[16] show that W-CGANSs stabilize the parallel training and
lead to the production of better images with respect to past
results obtained with the parallel training on deep convo-
lutional GANs (DC-GANSs) [7]. The better performance of
W-CGANs with respect to DC-CGANSs is validated both in
quantitative terms using performance metrics as well as by
visual inspection.

II. BACKGROUND ON GANS

In the context of GANSs, original data and new generated
data are described through two probability distributions. Given
two probabilities p and ¢ defined on a metric space X, the
Kullback-Leibler divergence (KL) [[17]]

KL(p>q)=/Xp(x)1og (Zgg)dx, (1)

and its symmetrization, the Jensen—Shannon divergence (JS)
(18]

1 1
JS(p,q) = §KL(p,q) + §KL(q7p) (2)

measure the distance between the probability distributions p
and ¢ by computing the pointwise discrepancy in the values

attained. The Wasserstein distance between p and q is defined
as

W(p,q) = sup

Lip(f)<1
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where Lip(f) < 1 represents the family of Lipschitz functions
defined on X with Lipschitz constant less or equal to one. KL
divergence and JS divergence attain indefinitely large values
for any situations where the peaks of the two distributions
do not overlap, and their value abruptly drops to zero only
when the peaks of the distributions are located at the same
point. In comparison, the Wasserstein metric represents a more
informative estimate for measuring the distance between two
probability distributions than KL divergence and JS diver-
gence, since it measures the distance between the two expected
values of the probabilities and suggests an update of the two
probabilities to reduce that distance.

In order to contextualize the use of the Wasserstein metric
for CGANSs, we define the following input and output spaces,
each with an associated probability distribution:

e Z is a noise space used to seed the generative model.
Z = R9z | where dz is a hyperparameter. Values z €
Z are sampled from a noise distribution p,(z). In our
experiments p, is a white noise distribution.

e Y is an embedding space used to condition the generative
model on additional external information, drawn from the
training data. Y = R | where dy is a hyperparameter.
Using conditional information provided in the training
data, we define a density model py (y).

o X is the data space which represents an image output
from the generator or input to the discriminator. In our
application the data are colored face images. Values are
normalized pixel values: X = [0,1]" x C, where W
represents the number of pixels in the images, and C'
is the set of distinct color channels in the input images.
Using the images in the training data and their associated
conditional data, we can define a density model pga (%)
of face images. This is exactly the density model we wish
to replicate.

We now define two functions:

e G:Z xY — X is the conditional generative model (or
generator), which accepts noise data z € Z and produces
an image x € X conditional to the external information
yey.

e D: X — [0,1] is the discriminative model (or discrim-
inator), which accepts an image x and condition y and
predicts the probability under condition y that x came
from the empirical data distribution rather than from the
generative model.

The goal of the discriminator is to maximize the discrepancy
between the data distribution and the probability distribution
created by the generator G. For W-CGANSs this means that
the discriminator aims at maximizing the distance between the
expected value of the probability distribution associated with
the original data Ex.,,,D(x) and the expected value of the
probability distribution associated with fake data E, D(G(z)).



In order to use the Wasserstein metric to define the cost
function of the discriminator, we choose D(x) to play the
role of the function f in Equation (3), and we substitute the
two probabilities p and ¢ with pgy, : X — [0, 1] and puoger :
Z — [0, 1]. Using the definition of expected value of D under
the probability distribution pga, and ppeder as follows

Exepon D(x) = /X D(x)paual(x)dx @)

Baias DIG@) = [ DG posa@)dz, )
Z
we define the cost function for the discriminator as

(D)
Wasserstein
o(D)

(6)

The generator GG is parametrized with 6'“) and we define

its cost function as
J)

Wasserstein
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Contextualizing the difference between the Wasserstein metric
and the KL divergence and JS divergence in the case of
CGANSs, we can explain why the Wasserstein metric reduces
the occurrence of cycle during the training of CGANs with
respect to situations where the training of CGANs is driven
by the minimization of the KL divergence. Indeed, the KL
divergence and JS divergence can be reduced by keeping
the expected value of the probability distribution fixed, and
just augmenting the variance. However, by doing so, the
characteristics of the points sampled by the generator (new
data) may not necessarily change significantly. On the other
side, the minimization of the Wasserstein metric forces the
probability distribution associated with the new generated data
to shift in order to have the expected value E,D(G(z)) get
closer to Ex.p,,D(x). Therefore, it is less likely that new
data sampled at later iterations will resemble data generated
at earlier iterations.

Our parallel approach to train W-CGANSs relies on the
equality

K

pmodel(X7 6) = Z pmodel(xa 0|YIc )py (Yk) 3
k=1

that allows to parallelize the computation of each term
Pmodel (X, Y ) by training K parallel W-CGANSs, each one per
class, and then we combine the results at the end of each
training to yield pmoder(x). The numerical examples presented
in this paper are characterized by a one-to-one mapping
between yj and the labels in the image dataset. The advantage
of our approach consists in the fact that all the K parallel
W-CGANS can be trained concurrently and independently of
each other. If the complexity representation of the objects
in each category is comparable, the training time for each
parallel W-CGANs model is approximately the same, which
in turn translates into promising performance in terms of weak

0P ) = sup {EXNPMD(X)—EZD(G(Z))].
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Fig. 1. Illustration of parallel W-CGANSs.

scalability. An illustration that describe the distribution of W-
CGANES is provided in Figure

The parameters @ for each replica of the W-CGAN model
are updated independently using Adam. When the trained
model is deployed, a random number generator provides the
white noise and the label of the object whose image has to be
generated. The randomly selected label determines which W-
CGAN pair to call, and the white noise is passed to the selected
W-CGAN pair to generate a new fake image for the specific
object category associated with the label. Our approach differs
from ensemble learning, where each model replica still has to
span the entire dataset in a round-robin fashion. Our parallel
approach confines each model replica to be trained on data
associated with a single label. Ensemble learning can benefit
the W-CGANS training in situations where interpolating across
different classes is reasonable. However, image classification
generally does not need interpolation (e.g., interpolating an
image of a dog with an image of a car produces clearly
unrealistic images). Therefore, parallel independent training is
appropriate for this type of situations, and in turn it accelerates
the training because the number of data batches processed by
each GANSs pair is significantly reduced. The partition of the
data according to the classes facilitates our approach to scale,
as confirmed by the weak scaling tests presented at the end of
numerical section.

III. NUMERICAL RESULTS

In this section we present numerical results using CIFAR10
and CIFAR100 benchmark image datasets to compare the per-
formance of W-CGANs with DC-CGANSs. The two benchmark
datasets have the same total number of images, and images
of both datasets have the same resolution, but the number of
classes represented in the two datasets is different. Specifically,
CIFARI10 has more images per class than CIFAR100. Since
the GANSs training is data intensive, the fact that CIFAR100
has fewer images per class results into a more challenging task
for the model to produce good quality images. The specifics of
the neural networks used to model generator and discriminator
is provided in Tables [[]and [l Although the architectures of
generator and discriminator can be tuned using hyperparameter
optimization, this goes beyond the scope of this work since



Generator Discriminator
Layer | Input dim | Output dim | Kernel size | stride | padding Layer | In.dim | Out. dim | Kernel size | stride | padding
Input 100 8192 / / Conv.1 1or3 16 3 2 1
LeakyReLU(slope = 0.2, inplace=True) leakyReLU(slope = 0.2, inplace=True)
Resizing Dropout(0.25)
Batch normalization(epsilon = le-5 , momentum = 0.1) Conv2 | 16 ] 32 [ 3 [ 2 ] 1
Upsample(scale factor = 2) LeakyReLU(slope = 0.2, inplace=True)
Conv.1 | 128 [ 128 [ 3 [ 1 ] 1 Dropout(0.25)
Batch normalization(epsilon = 0.8 , momentum = 0.1) Batch normalization(epsilon = 0.8 , momentum = 0.1)
LeakyReLU(slope = 0.2, inplace=True) Conv3 | 32 ] 64 [ 3 [ 2 ] 1
Upsample(scale factor = 2) leakyReLU(slope = 0.2, inplace=True)
Conv.2 | 128 [ 64 [ 3 [ 1 ] 1 Dropout(0.25)
Batch normalization(epsilon = 0.8 , momentum = 0.1) Batch normalization(epsilon = 0.8 , momentum = 0.1)
leakyReLU(slope = 0.2, inplace=True) Convd [ 64 | 128 ] 3 [ 2 ] 1
Conv.3 | 64 [ Tor3 ] 3 [ 1 ] 1 leakyReLU(slope = 0.2, inplace=True)
Tanh Dropout(0.25)
TABLE T Batch normalization(epsilon = 0.8 , momentum = 0.1)
ARCHITECTURE OF THE GENERATOR. output | 2048 | 1 [ 7 [ 7 ] 7
Sigmoid(for DC-CGANS), no activation function for W-CGANs
TABLE 1

we aim at improving the performance of GANs for a fixed
architecture.

Since ablation studies to assess how the parallel independent
training improves the performance of GANs with respect to
sequential training have already been performed in [7]], in
this work we focus on the benefit obtained from combining
the Wasserstein metric with the parallel independent training.
The training is performed using the optimizer Adam and a
learning rate of 2e — 4, and a total number of 1,000 epochs.
The comparison between parallel DC-CGANSs and parallel W-
CGANSs is performed on a quantitative level by measuring the
Inception Score (IS) [[19] and the Fréchet Inception Distance
(FID) [14]. The IS takes a list of images and returns a single
floating point number, the score. The score is a measure of
how realistic a GAN’s output is. IS is an automatic alternative
to having humans grade the quality of images. The score
measures two things simultaneously: the image variety (e.g.,
each image is a different breed of dog), and whether each
image distinctly looks like a real object. If both things are
true, the score will be high. If either or both are false, the score
will be low. The lowest score possible is zero. Mathematically
the highest possible score is infinity, although in practice a
finite ceiling is imposed. Unlike IS, which evaluates only
the distribution of generated images, the FID compares the
distribution of generated images with the distribution of real
images that were used to train the generator. Lower values
of FID correspond to the distribution of generated images ap-
proaching the distribution of real images, and this is interpreted
as an improvement of the generator in creating more realistic
images.

A. Hardware description

The numerical experiments are performed using Summit
[20], a supercomputer at the Oak Ridge Leadership Computing
Facility (OLCF) at Oak Ridge National Laboratory. Summit
has a hybrid architecture, and each node contains two IBM
POWERY9 CPUs and six NVIDIA Volta GPUs all connected
together with NVIDIA’s high-speed NVLink. Each node has
over half a terabyte of coherent memory (high bandwidth
memory + DDR4) addressable by all CPUs and GPUs plus

ARCHITECTURE OF THE DISCRIMINATOR.

1.6 TB of non-volatile memory (NVMe) storage that can be
used as a burst buffer or as extended memory. To provide a
high rate of communication and I/O throughput, the nodes are
connected in a non-blocking fat-tree using a dual-rail Mellanox
EDR InfiniBand interconnect.

B. Software description

The numerical experiments are performed using
Python3.7 with PyTorch v1.3.1 package [<21]
for autodifferentiation to train the DL models with the use
of GPUs, and the mpidpy v3.0.2 tool is used for parallel
computing.

C. CIFARIO

The training portion of the CIFAR10 dataset [[15] consists
of 50,000 32x32 color images in 10 classes, with 5,000 images
per class. The classes represented in the dataset are airplanes,
automobiles, birds, cats, deers, fogs, frogs, horses, ships, and
trucks.

A comparison in quantitative terms between parallel DC-
CGANs and the parallel W-CGANs is shown in Table [II|
where the performance of the models is measured in terms
of IS and FID, and W-CGANs outperform DC-CGANs with
respect to both indices. A visual comparison between the
images produced by DC-CGANSs in Figure [2] and the images
produced by W-CGANSs in Figure 3| shows that W-CGANs
succeeds produces objects with more refined contours, and
the objects are much easier to recognize with respect to the
object class they attempt at sampling. Weak scaling plot for
DC-CGANs and W-CGANSs trained on the CIFAR10 dataset is
presented on the left side of Figure [6| by reporting the runtime
of the slowest process. The independence of the generator-
discriminator pairs allows the code to scale with the number of
processors that take care of separate data classes. The average
GPU utilization is 87.5% with a standard deviation of 2.2%,
and the memory utilization is 7,839 mebibytes (MiB).



1S FID
6.43 | 9.41
7.43 | 8.53

Parallel DC-CGANSs
Parallel W-CGANs

TABLE IIT
INCEPTION SCORE (IS) AND FRECHET INCEPTION DISTANCE (FID) FOR
THE TRAINING OF PARALLEL DC-CGANS AND PARALLEL W-CGANS ON
CIFARI10.
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Fig. 2. Fake images generated by parallel DC-CGANs trained on the
CIFAR10 dataset.

D. CIFARIO00

The training portion of the CIFAR100 dataset consists
of 50,000 32x32 color images in 100 classes, with 500 images
per class. We refer the reader to [16] for details about the
objects represented in each class.

The fact that CIFAR100 has fewer image data per class than
CIFARI10 makes the GANs training more difficult, but the
use of the Wasserstein metric stabilizes the parallel training
of W-CGANSs, which results into a higher IS score and
lower FID score as shown in Table [[V] A visual comparison
between the images produced by DC-CGANs in Figure [
and the images produced by W-CGANs in Figure [5] shows
that W-CGANSs outperforms DC-CGANs on objects that are
particularly complex to represent, such as houses surrounded
by a garden (second row, third picture from the left), butterflies
(second row, fifth picture from the left), and camels (second
row, sixth picture from the left).

Weak scaling plot for DC-CGANs and W-CGANSs trained
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Fig. 3. Fake images generated by parallel W-CGANS trained on the CIFAR10
dataset.

1S FID
Paralle]l DC-CGANs | 6.61 | 9.23
Parallel W-CGANs | 6.93 | 8.92

TABLE T

INCEPTION SCORE (IS) AND FRECHET INCEPTION DISTANCE (FID) FOR

THE TRAINING OF PARALLEL DC-CGANS AND PARALLEL W-CGANS ON
THE CIFAR100 DATASET.

on the CIFAR100 dataset is presented on the right side of
Figure [f] by reporting the runtime of the slowest process. Also
in this case, the independence of the generator-discriminator
pairs allows the code to scale with the number of processors
that take care of separate data classes. The average GPU
utilization is 93.8% with a standard deviation of 0.7%, and
the memory utilization is 7,839 MiB.

IV. CONCLUSIONS AND FUTURE DEVELOPMENTS

We used the Wasserstein metric to stabilize the parallel
training of CGANSs, thereby maintaining scalability while
avoiding both cycling and mode collapse. Numerical results
have been presented using CIFAR10 and CIFAR100, two
benchmark image dataset with images of the same resolution
but different number of classes and different number of image
data per class. The fact that CIFAR100 has fewer image data
per class makes the GANs training more difficult than for
CIFAR10, but the use of the Wasserstein metric stabilizes the
parallel training of W-CGANs, which leads to better results as
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Fig. 5. Fake images generated by parallel W-CGANSs trained on CIFAR100.

Fig. 4. Fake images generated by parallel DC-CGANs trained on the

CIFARI100 dataset.
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it is validated by higher IS score, lower FID score, and better
quality images than what previously obtained with a parallel
training of DC-CGANSs [7]. Weak scaling plots reporting
the wall-clock time of the slowest process show that the
stabilization obtained with W-CGANs does not compromise
the scalability of the approach.

Future work will extend this study to more complex but also
more accurate neural network architectures, such as auxiliary
classifier GANs (AC-GANSs) [22f], residual neural networks
(ResNet) [23]], and self-attention generative adversarial neural
networks (SAGANS) [24], We will also introduce regular com-
munications between the model replicas to allow distributed
training in situations where interpolating between data from
different classes is useful.
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