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1 Introduction

Many states have aggressive energy efficiency goals. Given that space heating and cooling
account for over 40% of residential primary energy consumption (DOE/EIA 2018) and many
residential buildings have relatively poor thermal performance, insulation and air sealing retrofits
of existing homes can make major contributions to reaching these goals.

In the United States, utility energy efficiency programs subsidize and deliver a large portion of
the retrofits implemented each year. These programs face two daunting challenges. First, due to
their past success, many programs have growing energy savings goals. For example, in
Massachusetts the gas savings goal increased from 1.12% of sales for 2013-2015 to 1.24% in
2016-2018 (Mass DPU 2016). Second, they need to deliver these energy-saving retrofits cost-
effectively—i.e., the discounted value of the energy saved by a retrofit over its lifetime must
exceed its first cost.

Realizable retrofit opportunities vary appreciably among homes. For example, the U.S.
Department of Energy (DOE)/U.S. Energy Information Administration (EIA) Residential Energy
Consumption Survey (DOE/EIA 2009) and Massachusetts Residential Appliance Saturation
Survey (Opinion Dynamics Corporation 2009) indicate that about 20% to 25% of Massachusetts
homes have significant insulation and/or heating system retrofit opportunities. Assuming typical
savings of approximately 10% to 30% from basic insulation and air sealing retrofits indicates an
energy savings potential on the order of 4% of total space heating and cooling energy
consumption.

Delivery of insulation, air sealing, and heating system retrofits follows a multistep process that is
often costly and challenging to scale. Customer acquisition occurs primarily through energy bill
mailers, mass media and online advertising, and customer-initiated home energy assessment
(HEA) requests that lack information about home-specific energy savings opportunities,
expected energy savings, and cost-effectiveness. Once a customer requests an on-site HEA
(which is free for ratepayers in some states, such as Massachusetts), the HEA must be scheduled
and take place. Currently, an HEA involves a home visit by an energy service professional who
conducts an extensive survey and a critical analysis of the household’s conditions to identify and
characterize energy savings opportunities (S3C 2019, BPI 2012). These assessments can be
inconvenient to many homeowners, expensive (approximately $250-$500) for the program and
are of variable accuracy. After the HEA, the homeowner must then decide whether to implement
the recommended energy conservation measures (ECMs), and a majority do not. For example, in
the nation’s top-ranked residential energy efficiency programs by ACEEE (Massachusetts), only
about 35% of HEAs ultimately result in major retrofits (Klint 2018). In other programs, the
conversion rates can be significantly lower, e.g., typical rates in Minnesota are 7%—15% (Mark
et al. 2016). This low closure rate increases the effective cost of program delivery. Finally,
customers rarely get feedback on realized savings from ECMs beyond energy bills, while utility
energy efficiency programs do not learn of potential large-scale field problems with ECMs until
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after costly evaluation, measurement, and verification (EM&V) studies, years after ECM
implementation.

In some cases (Blasnik 2018), utility energy efficiency programs select candidate retrofit homes
by identifying homes with high space heating energy use intensity (EUI, in kBtu/ft*) based on
gas bills and the conditioned floor space. Using HEA data provided by our utility partners (see
Section 2), we calculated the EUI and compared it with objective metrics indicating insulation
retrofit (overall building envelope R-value) and air sealing (ACHso) opportunities. Figure 1
shows the results: no noticeable correlations between EUI and the objective retrofit metrics.
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Figure 1. Energy use intensity versus physical parameters characterizing retrofit opportunity

The results shown were calculated for CT vendor #3 homes (see Table 2). Blower-door tests were performed for 29 homes.

In sum, the current approach makes it challenging to cost-effectively deliver the numerous
retrofit opportunities that do exist; for example, around 1% of households in Massachusetts

implement insulation; air sealing; or heating, ventilating, and air-conditioning (HVAC) retrofits
each year.

Energy efficiency programs would benefit significantly from tools that improve each step of the
retrofit delivery process, and emerging data sources provide the opportunity to develop such
tools. Specifically, communicating thermostats (CTs) provide insights into heating system
operations and building thermal response that, in turn, reflect building physical parameters
corresponding to retrofit opportunities, i.e., R-value, air leakage, and heating system efficiency.
CTs account for a significant portion of thermostat unit sales, and one market research firm
projects that approximately 16.6% of U.S. homes with broadband service will have at least one
CT by the end of 2021 (Barbour 2021). Moreover, many utilities provide energy efficiency
incentives for purchasing CTs and, as a condition for providing the incentive, some obtain access
to the CT data.

Therefore, there is an opportunity to significantly improve energy efficiency program
effectiveness by using CT data combined with additional data available to utilities. What is
necessary for this opportunity to materialize is a set of validated and scalable algorithms that
automatically analyze CT data to accurately characterize home retrofit opportunities and predict
expected retrofit energy savings.
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In this project, Fraunhofer USA teamed with Eversource and National Grid to develop
algorithms that analyze CT data combined with gas consumption data and basic home
characteristics (floorspace, number of stories, and gas bills) available to utilities. The algorithms
use these data to remotely and accurately identify the aforementioned energy efficiency
opportunities to reduce residential space heating energy consumption for each individual home,
as well as to estimate the home-specific energy savings potential. The team expects that using the
algorithms in energy efficiency programs to provide targeted, customized, and actionable
outreach to customers that are likely to have target retrofit opportunities will be significantly
more compelling to customers than generic messages. In particular, the expected ultimate project
outcomes are:

¢ Increasing the number of HEAs requested in homes with the target retrofit opportunities;

¢ Increasing the number of HEAs that result in implementation, thus, increasing the
number of target retrofit measures implemented; and

e Ensuring that the retrofits deliver the expected savings (remote quality control).
The quantitative, measurable project objectives were to:

1. Identify the approximately 20% homes (per Opinion Dynamics Corporation 2009,
DOE/EIA 2009) that would most benefit from at least one of the target ECMs to reduce
space heating energy consumption: insulation and air sealing.

2. Predict the household-specific energy savings of the target ECMs within £25% as
compared to either the predicted energy savings from the energy audits, adjusted as
appropriate for realization rates, or the actual energy savings obtained from implemented
ECMs.

3. Double the participation in on-site energy audits through partner utility programs for the
target households identified by the tool.

This report is organized as follows. Section 2 describes the data sets we obtained along with the
associated data issues and challenges. Section 3 explains the physics-based algorithmic
methodology that evolved from a simple inverse problem to a more elaborate approach that is
successfully applied to homes with a single CT. This approach is extended further to incorporate
homes with two CTs in Section 4. In Section 5, we develop and partially validate our approach to
estimate prospective savings from ECM implementation. To measure the effect of the developed
algorithms on HEA requests and implementations, we designed and conducted a randomized
controlled trial (RCT) that is discussed in Section 6. In Section 7, we consider three immediate
use cases extending the scope of this project: (1) analysis of cooling season data, (2) evaluation,
measurement, and verification (EM&V) of ECM performance through comparison of pre- and
post-ECM implementation CT data, and (3) application of the algorithms to homes heated with
delivered fuels (i.e., evaluating algorithm effectiveness without gas bills). In the final section, we
draw overall project conclusions and provide recommendations for further work.
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In addition, a companion Best Practices Guide provides recommendations for effectively
integrating the CT algorithms with energy efficiency programs (Roth and Zeifman 2020).

2 Experimental Data

We used anonymized interval CT and HEA home characteristics data from the Eversource and
National Grid Home Energy Services program. The Home Energy Services program is the
residential Mass Save program that delivers free home energy assessments, heavily subsidized
CT installations, insulation and air sealing retrofits, and incentives for high-efficiency HVAC,
water heating, and appliance retrofits (Home Energy Services 2018). To receive a CT rebate,
households must sign a data waiver that grants the utilities access to the CT data.

Each data set for a home includes three pieces of information anonymized by the utility:
e CT data collected by the CT vendor (one of three) over a heating season, in CSV format

e HEA report in Excel spreadsheet format, performed by the HEA vendor (same vendor for
all homes)

e Monthly utility gas bills in Excel spreadsheet format, overlapping with the CT data in
time (number of bills varies from 3 to 24 per home depending on availability).

The CT data characteristics! differ among vendors. For example, vendor #1 records all data
fields every 5 minutes, whereas vendors #2 and #3 record all data fields as soon as there is a
change in at least one of the fields. Table 1 describes some of the data fields in detail. Additional
data fields that were not used in this work (e.g., indoor humidity) are not shown. Vendor #1 also
has a data field for “stage,” to report what furnace stage(s) are running, although that field often
remained unpopulated (i.e., for single-stage device).

Table 1. CT Data Fields Reported by Vendor

CT Vendor/Data Outdoor
. HVAC Status | Room Temp Wind Speed Time Stamp
Field Temp
Average over
Average over .
. . 1-h interval
Duration of Average over | 1-h interval
« L w o o (from nearest
on” time over | 5-min interval, | (from nearest :
Vendor #1 o R weather Every 5 min
5-min interval, | 0.1°F weather .
. . . o station), 1
1-s resolution | resolution station), 0.1°F
: km/h
resolution ,
resolution
nclear if Aver ver
“On” or “off,” ;Jv:raeaed 1F | 1 heir?t%?v(;le Reported for
Vendor #2 reported only 9eq, N/a every change
when an resolution, (from nearest in anv data
y reported only | weather y

! Note that due to a long chain of communications, not all our inquiries were answered by the CT/HEA vendors. The

process of data collection and transferring took almost two years to complete.
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data field when any station), 1°F field, 1-s
changes data field resolution resolution
changes
Unclear if Average over
“On” or “off,” averaged, 1°F . 9 Reported for
. 1-h interval
reported only | resolution, every change
(from nearest .
Vendor #3 when any reported only N/a in any data
. weather .
data field when any . o field, 1-s
) station), 1°F :
changes data field . resolution
resolution
changes

To be useful for this project, combined data for each home must include at least one month of
CT data collected during a heating season along with coincident gas bills and the HEA data.

Because of this completeness requirement, we could only use some of the obtained CT data sets.

Table 2 lists the numbers of complete home data sets we received. In total, we obtained complete
data sets for about 450 Massachusetts homes.

Table 2. Numbers of Homes With Complete Data Sets

CT Vendor ::lg:ace and I;:_rsnace and 2 Boiler and 1 CT g;)_:er and 2
Vendor #1 17 10 4 2

Vendor #2, National Grid | 84 42 24 15

Vendor #3, Eversource 79 69 28 83

Total 180 121 56 100

2.1 Data Challenges

Similar to other researchers (Siemann 2013), we noticed several problems with CT data. The
most frequent problem is missing or unreported HVAC runtime. Unlike indoor or ambient
temperature, missing runtime cannot be interpolated. Moreover, algorithmic identification of
missing runtime can be a daunting task; for example, rising indoor temperature may or may not
be indicative of missing runtime (it could indicate a supplemental heating system). Another
problem is an apparent time lag of up to 10 minutes between the HVAC status and change in
indoor temperature reported; such a lag seems excessive for furnace-heated homes. The outdoor
temperature data were mostly missing for vendors #2 and #3, in those cases we replaced it with
the temperature observed at the closest weather station (same for wind). Finally, the 1°F
resolution of temperature data from vendors #2 and #3 is too coarse to be used for a conventional
grey-box model identification technique (see Section 3).

HEA reports (also known as audit results) comprise numerous data fields; however, not all of
them were populated in the anonymized digital files we received. The populated fields included
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basic home sizing information (ceiling height, conditioned floor space, number of floors, total
volume, attic area, wall area), overall R-values for walls and attic, U-factor for windows,
infiltration rate in CFMsy, and basic HVAC information (heating system type, atmospheric or
condensing heating system, fuel type, heating- and distribution-system efficiencies, and heating
system capacity). The unpopulated fields in some HEA reports included, e.g., window area, and
floor space.

We obtained a description of HEA procedure underlying these reports and also analyzed the
HEA data and compared them to the corresponding interval data and gas bills. These analyzes
suggest different levels of reliability for the audit results. In particular, we are confident in home
size information and in overall R-values for walls and attics/roofs and in U-values for windows.
In contrast, heating system capacity is an estimated parameter that is not consistently accurate,
because the discrepancy between the audit value and the value calculated from gas bills/runtime
information can differ by a factor of up to 10. The infiltration rate is also estimated based on a
qualitative on-site assessment, making it highly unreliable as well (e.g., blower-door test results
that we obtained for some audited homes varied by a factor of up to four from the audit values).

3 Algorithm Methodology

3.1 Literature Survey

Prior to this project, we reviewed the state-of-the-art for remote HEA approaches using interval
(e.g., CT) data (Zeifman and Roth 2016). Although there are currently no widely accepted
methods capable of characterizing the insulation, air sealing, and/or heating system retrofit
opportunities for homes at scale, the potential approaches should be based on predictive models
connecting the data inputs with retrofit-characterization outputs (Gaasch et al. 2014). Major
retrofit opportunities can be characterized by physical home parameters such as the overall
envelope R-value, ACHso, and HVAC efficiency, and models capable of predicting these
parameters can be loosely divided into white-box, grey-box, and black-box categories (Afram
and Janabi-Sharifi 2015; Berthou et al. 2014).

White-box models are very detailed and accurate physics-based simulation tools, e.g.,
EnergyPlus™. Because these models typically require hundreds of parameters to describe a
single building, both setting up the model and estimation of its parameters from experimental
data (i.e., calibration) to characterize the retrofit opportunities are time-consuming and,
sometimes, ill-posed tasks, making the white-box models difficult to scale.?

In this application, black-box models rely on large training data sets and machine learning
techniques to estimate building physical parameters and/or classify buildings by their retrofit
opportunities (e.g., Pathak et al. 2019). Because these models do not have a physical basis, their
predictive ability is limited and restricted to homes whose characteristics are represented by

2 We are aware of efforts to “autotune” EnergyPlus (see New et al. 2012), but this technology is still at early stage.
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those in the training data set. Thanks to their simplicity, these models can scale fairly easily, but
only if appropriate and large training data sets exist.

Grey-box models use relatively coarse-grained physical models (typically, lumped models) with
just a few parameters. Although these models seem to combine the advantages of the other two
model categories (i.e., the predictive ability of physics-based white-box models and the
scalability of the black-box models), they are inherently coarse; consequently, the estimated
building parameters may not precisely match the actual physical building parameters.

We concluded that grey-box models are most suitable for remote HEAs, as they combine the
physics-based predictive ability of white-box models and the scalability of black-box models.

A first-order model is the simplest grey-box model, and, unsurprisingly, several research groups
(Goldman 2014; Newsham et al. 2017; Chong and George 2018) proposed a retrofit-
characterizing measure based on a first-order grey-box model. This measure is related to cooling
gradient (i.e., temperature slope during thermostat setback periods) and its dependence on the
ambient temperature.

The first-order grey-box model implies a single lumped heat balance equation for a home, e.g.,

dar,
Mtgz Quvac + qine + A, U(T, — T,) (1)

ext

where variables 7 and 7, are indoor (room) and outdoor temperatures, 4, is overall area of the
external surfaces like walls, windows, roof/attic, foundation (i.e., building envelope), U is
integrated envelope heat loss characteristic due to conductive and infiltrative processes
(Newsham et al. 2017), M; is thermal mass characteristic (Newsham et al. 2017), Qyyac 18
HVAC heat supply, and ginvext are additional internal (e.g., from appliances and people) and
external (e.g., solar) heat gains.

When the heating system does not run for extended periods of time, such as during thermostat
setbacks, Onvac = 0 and Eq. (1) has a simple exponential decay function as a closed-form
solution for indoor temperature 7, if the additional heat gains are neglected (Chong and George
2018) and if the integral heat loss characteristic U is constant. The “time constant” of this
solution (i.e., inverse of the decay rate) is proposed by Chong and George (2018) to serve as
ultimate measure of “the leakiness of a building.” Although this measure seems enticing for
HEA, Newsham et al. (2017) are cautious in their analysis, suggesting that the differences in the
cooling rates between different buildings, as well as the variability of the cooling rates of the
same building, could be attributed to the differences in envelope insulation, air leakage rate,
envelope area, and/or thermal mass.

First-order grey-box models are known to yield relatively poor accuracy in predicting building
thermal response, whereas second- and higher-order models usually offer satisfactory accuracy
(Mejri et al. 2011). Moreover, the meaning of some physical parameters of the first-order model
is unclear and may be misleading (e.g., the “thermal mass characteristic” M in Eq. (1) lumps
together the heat capacitances of building envelope and those of the internal space). Lastly,
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although in principle the air leakage heat loss can be separated from the heat conductance loss by
introducing an additional air leakage heat loss term in Eq. (1), incorporating the nonlinear stack
effect for air leakage (see next section) will make the differential equation nonlinear, thus
invalidating the simple exponential solution along with its “time constant.”

Accordingly, we decided to use a second-order grey-box model as a basis for development of
remote HEA methods.

3.2 Model Development

Our grey-box model incorporates characteristics of building insulation and airtightness as well as
the building thermal mass by using two capacitances (indoor space and lumped envelope) and
three thermal resistances (two identical resistances for external and internal surfaces of the
lumped envelope and one for convection induced by air infiltration). The lumped envelope is a
single value representing a building’s entire envelope, including opaque walls, windows,
roof/attic, and foundation. Note that in our earlier work (Zeifman and Roth 2016), we did not
split the external wall into two resistances, which led to a nonphysical factor of two in matching
the estimated and HEA-based R-values. The proposed balance equations are:

Cr% = Quvac + qQine + ﬁ:x (Tw — T3) + Qiny Q)
CdeL:, = (Aw/(Rw/2)) X (T, = Ty) + Aw/(Rw/2))(Ta — Tw)+ Gext (3)

where variables T, T, T, are, respectively, indoor, lumped envelope, and outdoor temperatures,
R\, and 4,, are overall R-value and area of the lumped envelope, C,, is overall thermal
capacitance of the exterior surfaces, C, is overall heat capacitance of the internal space, Qyyac 1S
HVAC heat supply, g;,: 1s internal heat gains/losses affecting directly T, q..¢ represents
radiative (foremost solar) or rain/sleet/snow-related heat transfer between the outside of the
building enclosure and the outdoor environment, and q;,,f is heat loss due to air infiltration. The
latter factor accounts for, on average, about 25-30% of U.S. single-family space-heating loads in
heating-dominated climate zones (Huang et al. 1999). Among these variables, only 7 and
HVAC on/off status (embedded in Qnyac) are directly sensed by a CT.

A conventional way to calibrate the model, i.e., to estimate the model parameters, is to discretize
the Egs. (2) and (3) and minimize the difference between the observed and modeled state
variable, 7(t) (Lin et al. 2012; Bacher and Madsen 2011; Siemann 2013; Harish and Kumar
2016). This inverse problem can be ill-posed in the sense that small variations of the observed
variable lead to large changes of the parameter estimates. To alleviate this problem, we use the
derived closed-form solution that does not require the discretization step (Zeifman and Roth
2016). In a more recent work, we applied this method to CT data sets from several homes and
compared the estimated overall R-values with qualitative self-assessments of the home insulation
levels (Zeifman, Roth, and Urban 2017). Although that comparison showed good
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correspondence between the estimated and HEA data, several limitations make it difficult to
scale-up this initial approach:

1. Nighttime: To reduce the effect of non-HVAC heat gains/losses that are difficult to
model, we restricted the CT data to nighttime only. This restriction, however, can lead to
an overfitting problem (Lin et al. 2012) because of the lack of system excitation during a
given night. Combining numerous nighttime data segments together could potentially
mitigate this problem, yet the number of parameters to be identified (e.g., initial lumped
wall temperature for each nighttime segment) grows proportionally to the number of
nights, making the problem computationally intractable.

2. Zone solution: Egs. (2)-(3) are applicable to a single thermal zone in a residential
building, but even a single-thermostat home does not necessarily comprise a single
thermal zone. Accordingly, the second-order grey-box model, Egs. (2)-(3), can be too
coarse to describe the thermal response of actual homes.

3. Nonlinear air leakage: While the wind-driven component of the air infiltration
phenomenon is linear with (T: — Ta), meaning its incorporation still allows for the closed-
form solution of Egs. (2)-(3), the stack effect varies nonlinearly with (T: — T,) (Younes
2012). As a result, no closed-form solution can be derived for a second-order grey-box
model that incorporates both wind-driven and stack components of air infiltration.

4. On/off heating: Originally, we modeled the HVAC heat supply Quvac as a two-state
variable that has a fixed value whenever the HVAC is called on, and is zero otherwise.
This model is appropriate for a single-stage furnace, and in principle it can be extended to
accommodate a multi-stage furnace. However, it is unclear if the on-off or discrete
heating model also works for boilers, especially for condensing boilers that can modulate
extensively. In addition, the timing of heat delivery can be delayed for boilers with more
massive (e.g., cast-iron) radiators and for steam-based systems.

Due to the air leakage nonlinearity limitation, we used a commercial software package, the
MATLAB Grey-box toolbox (Ljung 2017), that is specifically designed for implementation and
identification of arbitrary grey-box models. Overcoming other challenges is explained in the next
section.

3.3 Restricted Grey-Box Model With Infiltration and the “Static” Approach

Accurate physics-based modeling of air infiltration requires addressing both wind and stack
effects (see previous section), which can lead to cumbersome mathematical terms with numerous
fitting parameters (Walker and Wilson 1990). On the other hand, given the coarseness of the
second-order grey-box model and limited experimental data available to us (e.g., no local home-
specific weather data available), empirical relationships can be as accurate but more practical for
implementation. Accordingly, in this work we use Walker’s (2017) empirical model with just
two fitting parameters:
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Qinf = _paircp,air(61W2'6 + CZITa - Tr|1'3)0'5(Tr - Ta) (4)

where the first two terms designate air density and air heat capacitance, respectively, W the wind
speed, and Ci and C; are fitting parameters.

To address the zone challenge of the initial approach (see previous section), we extended the
conventional grey-box model by restricting its search space. The main assumption is that Quvac
is evenly distributed over the interior floor space of the residential single-family building and
that zone temperature dynamics follow those of the “average” indoor temperature. We think this
assumption mainly applies to homes controlled by a single thermostat and heated with furnaces,
but can also correspond to boiler-heated homes with a single thermostat. The basic modeling
idea then is that the experimental indoor temperature curve is no longer considered to be the
“best” solution to which a grey-box model’s solution is conventionally fitted for parameter
identification (Lazrak and Zeifman 2017). Rather, the parameters of Egs. (2)-(4) are estimated by
fitting the model prediction to an unknown yet “best” second-order solution, i.e., a hypothetical
curve that may differ from the individual experimental ones. Although such a curve is unknown,
we can assess some parameters that define this curve using overall approximated correlations.
Such correlations can, in turn, yield confidence intervals for these parameters that we propose to
use to restrict the search space in the conventional grey-box model identification.

How do we obtain those correlations? First, let us integrate Egs. (2) and (3) over a relatively long
period of time 7, so that the initial and final values of indoor (and wall) temperatures are
approximately the same:

Aw(Tr—Tg)T

0= QZ ton + (@ + O-SQext)T - Ry

+ quT (5)

where the bar designates averaging over time and Q is the HVAC heat supply at state “on” (zero
heat supply in the “off” state). It is easy to see that this “static” Eq. (5) is an energy conservation
equation and also is the well-known PRISM model (Fels 1986). The statistical confidence
interval for the slope in this linear regression can be used to restrict the search space for R,, Q.

Figure 2 shows an example of a correlation between the “on” time and indoor-outdoor
temperature difference, predicted by Eq. (5), for a home. It can be seen in the figure that better
correlations (scatter-wise) occur for 1, ranging from 24 hours to several days.

10



Development and Validation of Algorithms That Analyze Communicating Thermostat Data to Identify Enclosure
Retrofit Opportunities

] 7 = 6 hours (nighttime only)
[ I I I

x x
» xx X "y
x v 3 x x
05 X% 2% x"*‘ xx"é ’g"‘x > x .
x x % xx® ’i"“ x’g X ’g‘ P o *
"‘ % % had ”’?"x" :“"x * ¥
0 % XX o 5o BB .y
0 5 10 15 20 25 30
© 7 TN
g 1 T
iy »
(= " -
505 x PR LR ) -
2 o 2 one 2 x,‘xxxae”?
<)
B x x";&‘ é ’a‘!"‘%
& gb—=x o % I I I |
w 0 5 10 15 20 25 30
] 7 I
T T
x xx x
05 - i 3 Sl -
x'%kx x
x"’%*xx x&‘g’%":
x
oL * | | | |
0 5 10 15 20 25 30

Figure 2. Correlations predicted by Eq. (5) and calculated from CT data for a furnace-heated home

We can also add a second, “dynamic” correlation by considering dependence of the room
temperature gradient on ambient temperature. Unlike the cooling gradient discussed earlier (see
section 3.1), this one is a heating gradient. Many U.S. residential heating systems, particularly
furnaces, are sized to enable quick temperature recovery, meaning they have significantly more
capacity than design loads (Brand and Rose 2012), so that the heating curves are often much
more linear in time than the cooling curves. Accordingly, Eq. (2) can be approximated by a
difference equation over the “on” portion of heating cycle

ATy _ Q | Gint | Gext _ _Aw _ dinf
o cr+ . + 2. " RaC, (T, — T, + AT,,) + . (6)

where AT: is the room temperature gain during the “on” portion of the heating cycle and ATy is
the difference between the actual lumped wall temperature and the steady-state lumped wall
temperature, obtained from Eq. 3. The latter variable (A7Tv) is a manifestation of building
envelope’s thermal mass that cannot be explained by the first-order model, Eq. (1).

Figure 3 shows experimental correlations of type Eq. (6), calculated for the same home used for
Fig. 1. The significant scatter, observable in the figure, forms a characteristic parallelogram
structure. Because the scatter does not go to zero during nighttime, we attribute it, at least in part,
to the difference between the lumped wall temperature and the “equilibrium” lumped wall
temperature (i.e., the thermal mass effect ATy) in Eq. (6).

11
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Figure 3. Correlations predicted by Eq. (6) and calculated from CT data for a furnace-heated home

To build each plot, we used a moving time window and included in each time window all incidences of furnace at state
“on,” each point represents the heating rate over one incidence; Tr-Ta is averaged over each time window.

In principle, if the overall heat capacitance of the internal space C, were available or could be
accurately estimated for a home, the slopes of the two correlations, i.e., 4./(RwQ) for Eq. (5) and
Aw/(RwCy) for Eq. (6), would uniquely define the R-value (R,) and HVAC heat supply (Q) for the
case of negligible air leakage. Similarly, in case of the non-negligible air leakage, analogous
estimations would be possible by nonlinear curve fitting using Eq. (4). Whereas Figure 2
suggests relatively narrow confidence interval for Eq. (5)’s slope, Figure 3 suggests that the
confidence interval for Eq. (6)’s slope is rather large; yet further processing by MATLAB
toolbox would yield reasonably accurate estimates for the home physical parameters.

However, because C, includes the heat capacitance of the internal air as well as the furniture,
carpets and other household contents and internal surfaces and structure,’ its calculation is not
straightforward. Although some semi-empirical formulas are available in the literature (e.g.,
Berthou 2013), our experimental results do not support them (Zeifman, Lazrak, and Roth 2018).

Accordingly, in this work, we limited the correlations to Eq. (5). We found, however, that having
only one correlation, Eq. (5), available was not helpful for the proposed restricted grey-box
model that used nighttime data only: The restricted grey-box model usually yielded parameter
estimates that were very close to the starting parameter values sampled from the restricted
parameter space and fluctuated drastically from night to night. The standard remedy to this

3 Some authors refer to C: as “internal thermal mass” (Lee and Hong 2017).
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overfitting problem is to extend the time to larger periods, such as to several weeks to get the
system sufficient excitation (e.g., Lin et al. 2012). Given that such extension (see above) implies
accurate modeling of external and internal heat gains and that, among the experimental homes,
there are relatively few equipped with “high-resolution” CTs (i.e., from vendor #1, see Table 1,
Table 2), we decided not to pursue this approach.

For actual home HVAC systems, the range of efficiencies is relatively small. Hallinan et al.
(2011) suggest the efficiencies range from 70% (worst case) to 95% (best case) for residential
furnaces and boilers. Therefore, as a practical alternative, we assumed the same HVAC
efficiency of 80%?* for all experimental homes, which, coupled with an air infiltration estimation
procedure, permits direct estimation of the overall R-value using an estimate for Q (from the fuel
bills and HVAC runtime) and the value of slope from the correlation, Eq. (5). The air infiltration
estimation procedure is based on an analysis of salient CT data points and will be discussed in
the next section.

Therefore, unlike the conventional grey-box model calibration methods that estimate model
parameters using a dynamic time series of state variables, e.g., 7 (Lin et al. 2012, Bacher and
Madsen 2011), the proposed method is static. The method is suitable for homes equipped with a
single thermostat and a furnace. To extend this method to boiler-based HVAC systems, we note
that boiler systems are two-stage systems (Peeters et al. 2018). That is, water is heated to a target
temperature (controlled by an aquastat) by a burner and then is pumped to the emitters (radiators
or convectors) when a thermostat calls for heat. This two-stage process implies two additional
heat balance equations, one for heating water with a boiler and one for the radiator heat
exchange. Fortunately, under simplifying assumptions, integration of these four equations—
similar to integration of Egs. (2) and (3)—yields an equation similar to Eq. (5).

The main simplifying assumption is that for a boiler with fixed Quvac, the time “on” as reported
by a CT roughly equals a constant fraction, y, of the burner on time .> Because Q Y. t,y, is the
only term with time “on” in Eq. (5), and because we calculate Q using the gas bills and also time
“on,” y will cancel out in this term, and we can use the reported by CT time “on” as a proxy for
the burner time “on” in Eq. (5). Violations of the simplifying assumptions would result in
nonlinearity in the time “on”—temperature difference correlations, Eq. (5). Likewise, CT data
from a properly configured modulating boiler (usually a condensing boiler) would also have a
significant nonlinearity in these correlations, with a higher ratio of time “on” at warmer outdoor
temperatures due to modulation of water circulation temperatures as a function of Ta.

Figure 4 shows an example of correlations, Eq. (5) for a boiler-heated home. The experimental
correlations in this figure do not practically differ from those of a furnace-heated home (see

4 In practice, estimated HVAC efficiencies reported in audits ranged from 78% to 82% for 67% of homes in this
study. These values exclude distribution efficiency.
5 This reflects that boilers are often oversized relative to peak loads to facilitate recover from temperature setbacks.
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Figure 2). We did not observe significant nonlinearities in such correlations for other boiler-
heated homes in this project, except those caused by missing data.
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Figure 4. Correlations, Eq. (5) calculated by CT data for a boiler-heated home

3.4 Air Leakage Characterization

Our approach uses approximations and integrations to estimate the two air leakage parameters C|
and > in Eq. (4) and then to calculate the ACHso for a home. The key idea is to compare HVAC
runtimes for time windows with essentially different wind speeds but similar otherwise (e.g., in
terms of time of the day, inside/outside temperatures).

Suppose we use two different time windows of same duration T and with same average
temperatures (7; and 73), same internal heat gains (usually this is approximately true if the time
of the day is the same), but different wind speeds W1 and W>. Assume W> = 0 and W to be close
to the maximum wind speed value over the heating season. From Egs. (4) and (5), we get

Ztonl_z ton2 (C1W12'6+62|Ta_Tr|1'3)0.5 (Tr_Ta) (C1sz'6+C2|Ta_Tr|1'3)0.5(Tr_Ta)
- = 2 - 2 (7)
Walker (2017) indicated that, typically, wind-based and stack effect-based infiltration have
similar energy impacts over the course of the heating season. Therefore, because the maximum
wind speed is much higher than the average wind speed, C; W > C,|T, — T,|** and Eq. (7)
takes the following approximate form:

Ytoni—Xtonz _ (Clw:LZ'G)O.S(Tr_Ta) W, 2.6
Lt (O 1-(22) ®)
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We can then derive the parameter Ci from Eq. (8):

_ 2
Cl ~ (Ztonl ZtonZ)Q] 1 (9)

T(Tr—Tg) le_s(l_(x_i)z,e,)Z

In this way, wind-based infiltration is fully characterized. For the stack effect, we can assume the
approximate equality, which is expressed by

C1(W28) = BCo[ (T, — T3] (10)

where the bar designates averaging over entire heating season and f3 is a fitting parameter of the
order of unity.

In practice, we estimate the parameter C; for a home using all available pairs of the similar time
windows with high/low wind speed in a home’s CT data set.® Once Ci is estimated, we use the
overall daily correlations, Eq. (5), and a set of “possible” values of = {0.5, 1.0, and 2.0} to
calculate the corresponding set of values of parameter C> and then to estimate the value of R,
and the goodness-of-fit (e.g., the sum of errors squared) by least-square curve fitting to Eq. (5).
We then select the set {C2, R} with the best fit as our estimate for a given home. Lastly, we
assume that the internal and external heat gains are not correlated with the indoor-outdoor
temperature difference 7,— T, thus these quantities can be considered to be random noise for the
curve fitting.

Once the estimates of the parameters Ci and C> are available, the “natural” air leakage flow rate

Vnaturar €an be calculated by

. {C W26)+C. (Tr_Ta)l.S }0.5
Vhaturar = 1 J+col ] (1T)

PairCp,air

where pair and ¢ are density and heat capacitance of air. Finally, a conversion factor F' ranging
from 10 to 25 for U.S. homes (Krigger and Dorsi 2004) can be used to obtain ACHjso:

ACHgo = F 2227l 36 (12)

where V is the home volume and 3600 is the number of seconds in hour.

3.5 Results for Homes With One CT
3.5.1 Overall R-Value

We had 87 homes with acceptable quality CT data (i.e., with no or minimal missing data) with a
single thermostat and furnace/boiler as well as available audit results and gas bills, of which 13
homes were from vendor #1, 41 from vendor #2, and 26 from vendor #3 (7 homes were excluded
from consideration as outliers’). To get appropriate values for Ay and Ry, we complemented the
HEA data with estimates for the heat-loss characteristics of the foundation and the window-to-

¢ If more than five such pairs are available, we can also test statistical significance of C;.
" Homes with questionable reported ratios of surface area to conditioned floor space accounted for most outliers.
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wall area ratio. For the floor R-value, we used a value of 9 (°F-h-ft*/Btu) that corresponds to a
typical value of 7 (Hallinan 2011), taking into account the lower floor-ground temperature
difference, and we assumed the window area equaled 15% of the wall area.

Figure 5 and Figure 6 show a comparison between the overall R-value calculated by our method
and the HEA R-value. We do not use a correlation coefficient to measure the goodness-of-fit as
proposed by Goldman et al. (2018) for two reasons. First, some values from the HEAs are
estimates that have varying degrees of uncertainty. Second, our ultimate goal is to identify homes
with significant retrofit opportunities (i.e., classification) versus a precise estimate of R-value or
ACHs5o. It can be seen that, generally, our method accurately separates homes with poor
insulation (R-values <8 in imperial units) from homes with adequate insulation (R-values > 8).
Quantitatively, the classification accuracy for these two classes is 88% overall (70 out of 80
classified correctly). The method tends to overpredict higher R-values; our initial assessment is
that this overprediction is due to challenges identifying missing runtime data,® which we found is
more challenging to detect for vendors #2 and #3. Given the sample sizes, there is no indication
that the classification accuracy depends on the CT vendor.
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Figure 5. Estimated and HEA-based (“ground truth”) overall R-values for homes with single CT and either gas
furnace or boiler

R-values are given in imperial units ( °F-h-ft2/Btu)

8 Unaccounted runtime results in lower calculated heat supply from the heating system, making it appear that the
building envelope has a higher R-value to maintain the indoor temperature set point.
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Figure 6. Estimated and HEA-based (“ground truth”) overall R-values for homes with single CT and either gas
furnace or boiler, by CT vendor

R-values are given in imperial units ( °F-h-ft2/Btu)

3.5.2 Air Leakage

The results of our air leakage prediction for 16 homes with blower-door test results available are
shown in Figure 7 and Figure 8. To estimate ACHso, we used the conversion factor F of 14.8 in
Eq. (12) for a two-story home located in Massachusetts (Krigger and Dorsi 2004). Although the
discrepancy between the predicted and measured value can reach up to ~40%, we can effectively
separate the homes with relatively low ACHso from the leaky homes (with ACHso >15). To the
best of our knowledge, this is the first report of a successful ACHso prediction based on CT data,
limited home characteristics available to utilities, and weather station data only.
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Figure 7. Estimated and HEA-based ACHso values for 16 single-CT homes with blower-door test results
available
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Figure 8. Estimated and HEA-based ACHso values for 16 single-CT homes with blower-door test results

3.5.3 Runtime

available

Accurately predicting runtime is important for estimation and verification of energy savings (see
Section 5). Because our model is fitted to daily runtime data by minimizing the errors over the
entire season, theoretically the difference between actual and predicted runtime over the entire
season should approach zero. This is because when the sum of squared errors is minimized, the
algebraic sum of errors (its derivative) tends to zero. In our case, the seasonal total error is de
minimus but not exactly zero, mainly due to the numeric precision of MATLAB software (of the

order of 1071%).

It is still useful to look into daily runtime prediction errors as those essentially indicate the level
of scatter in the correlation plots (see, e.g., Figure 2). Figure 9 shows an example of such average
daily errors calculated over the entire heating season for the single-CT homes with furnaces.
Although there are few homes with relatively large errors (primarily, these are homes with low
furnace runtime and correspondingly high overall R-values), the average error among all these

homes is 17% (absolute value).
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Figure 9. Averaged daily runtime prediction errors (absolute values shown) over the entire heating system for
25 homes with a single CT and furnace

Data for vendor #2 is shown. Average prediction error among all homes is 17%.

3.5.4 Comparison With State of the Art

For the sake of comparison, we also calculated the conventional “time constant” (Chong and
George 2018) values for homes with significant nighttime thermostat setbacks. Because of the
coarse resolution of temperature data from vendors #2 and #3, we used data from vendor #1 for
single-CT homes with a furnace (see Table 1). For these calculations, we did not need gas bill
data; therefore, we were able to process data for more homes (40) than reported in Table 2 (17).
Figure 10 shows the average calculated decay rate (i.e., inverse “time constant”) for each home
versus the HEA-based R-value.
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Figure 10. Calculated average decay rate for single-CT homes with furnace from vendor #1, versus their
overall R-value

Chong and George (2018) suggest that the decay rate of 0.0167 h-1 corresponds to a thermally
“tight” home, 0.025 corresponds to an average home, and 0.05 corresponds to a thermally
“leaky” home. Whereas the homes with higher HEA-based R-value (> 8) may have significant
air leakage and thus do not necessarily exhibit good thermal performance, the homes with low R-
value (i.e., <8) certainly should exhibit below-average thermal performance. However, Figure 8
indicates that 9 out of 16 homes with low R-value (i.e., 56%) have decay rates below 0.025
which, according to Chong and George (2018), corresponds to above-average thermal
performance. This observed inability of the “time constant” to serve as a reliable indicator of
home thermal performance is consistent with our previous observation that the time constant
depends on both thermal resistance and capacitance, and that effective thermal capacitance can

vary appreciably among homes (see our discussion on first-order grey-box models in Section
3.1).

4 Homes With Two CTs

Homes with two CTs have more model uncertainties than one-CT homes. Although it is natural
to assume that homes with two CTs have two major thermal zones (one CT per zone), the zone
characteristics are usually not explicitly available in the CT/home data. Ideally, we would want
the following information for modeling homes with two CTs:

e Zone/CT location and geometry (e.g., each per floor)
o What CT corresponds to the upper/lower floor?
o What is the zone external area?

e Heating system capacity per zone.
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Because this information is not available, we decided to implement a whole-building equivalent
approach for modeling the homes with two CTs. In this approach, we assume that the home is
heated by an equivalent gas-fired system whose equivalent power and runtime can be calculated
using the actual data. This approach overcomes the problem of matching the zone-specific
estimates of R-value/ACHso with the whole-home HEA-based values as well as the potential
need to model interzone heat transfer. At the same time, the whole-home approach cannot isolate
a retrofit opportunity to a specific zone.

Homes with two CTs can have either a single heating system (furnace or boiler) or two
independent heating system (usually two furnaces or two boilers); in practice, we did not have
that information available. Figure 11 shows how the equivalent power and runtime is proposed to
be calculated in either case. For a single furnace, we assume that the full device’s power is
exercised if either CT calls for “on.” Therefore, the equivalent power is the same as the device
power (assumed to be constant), whereas the equivalent runtime is the union of the individual CT
runtimes. For two separate devices (two furnaces or a boiler modeled as serving two separate
zones), we assume that the devices have (generally different) powers qi and q2, and that the
equivalent power is either qi, q2 or qi+q2 depending on the “on” status as reported by the two
CTs.

t RT1

Status
on/off e

-From CT data

Equiv. | aQ=q->»
Power ) Assumption 1:
e Single furnace (boiler)

Equiv. Q= aia2 .
= ; ann 2
Power alq T S Assumption 2 ‘
" Two furnaces (boilers)

Figure 11. Calculation of equivalent whole-building power and runtime under two alternative assumptions
q = per/system, Q = per/home

To make this approach practical, we tested its sensitivity to a variety of potential heating
configurations. In particular, we calculated the equivalent power and runtime by making
empirical assumptions about a home heating system and tested the sensitivity of the end results
(i.e., overall R-value and ACHso) to these assumptions. Low sensitivity would imply high
robustness of the proposed whole-building method, whereas high sensitivity would require
modification of the approach.

To assess the sensitivity of the results to these assumptions, we used various ratios between q
and q2 (ranging from 50:50 to 30:70 to 70:30) as well as those between the areas A and A (also
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ranging from 50:50 to 30:70 to 70:30) and calculated, for each combination of qi, q2, A1 and Aa,
the overall building parameters (R-value and ACHs) for all the two-CT homes with complete
quality data sets. We found that the estimated overall building parameters only fluctuated within
+5% for 90+% of the homes, under the two assumptions and the aforementioned ranges.

Therefore, for homes with two CTs we implemented the single-device model that requires fewer
underlying assumptions. In this model, we assume that the equivalent runtime is the union of
zone runtimes (Assumption 1) and that the equivalent room temperature is the arithmetic average
of the two zonal temperatures. Our reference (Zeifman, Lazrak, and Roth 2020b) provides
additional theoretical framework to justify the above assumptions.

4.1 Results for Homes With Two CTs

We introduced additional heuristic data processing rules to address specific data issues we
encountered. We found that chunks of missing runtime data often show up as outliers in the
runtime-temperature delta correlations. Therefore, we removed such outliers using a statistical
technique, “patched” these now missing data points with their estimates using regressions
developed from the other, valid data applied to weather data for the outlier periods, and
recalculated the heating power from gas bills using the updated runtime.

For homes with reported integer number of floors, we implemented consistency checks to correct
potential audit-reported geometrical values. For homes with a fractional number of floors, e.g.,
2.5 floors, we always used the audit-reported geometrical values because consistency checks can
be more difficult for such homes. Finally, we observed several homes with unusual gas bills
(e.g., homes with very high summer gas bills) and excluded those high bills in the gas baseline
usage calculations. Some other homes had highly variable winter gas bills, even though the CT
runtime and outside temperature did not show any anomalies. For these homes, we excluded
periods with unusually low bills.

Figure 12 compares the HEA data and estimated overall R-value for 74 homes with two CTs and
complete sets of CT interval data (i.e., data sets with missing data repaired or with no missing
data). Using a threshold of R-value = 8 to separate homes with a significant insulation retrofit
opportunity from those with no insulation opportunity, we obtain 87% for the overall
classification accuracy. These results are comparable to those we obtained for homes with one
CT (see Section 3.5.1).
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Figure 12. R-values estimated from CT data versus HEA data for homes with two CTs

Overall results for all homes with complete data sets

Figure 13 plots the ACHso values for the model versus the HEA data calculated from the blower-
door tests. Unfortunately, there were only eight homes with available HEA data ACHso and
complete sets of quality data, and none were leaky according to our threshold of ACHsp > 15.
Yet, all these homes were correctly classified as homes with no air sealing opportunity. Note that
our method appears to systematically underestimate ACHso, which is consistent with Hales
(2014). For a more stringent threshold of 7 ACHso, the classification accuracy is 6/8 = 75%.

Although this technically meets the project objectives (see Section 1), we acknowledge that this
finding has high uncertainty due to the very small sample size.
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Figure 13. ACHso values calculated from CT data versus blower-door test results for eight homes with two CTs
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Finally, for homes with two CTs, we calculated the runtime prediction error over the season.
Following our discussion in Section 3.5.3, the calculated overall runtime errors are small because
of the way we perform our estimations.

RT estimation error in %, all homes with two CTs 50 RT estimation error in %, all homes with two CTs
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Figure 14. Runtime prediction errors over entire heating season for all homes with two CTs (boiler or furnace)

Left - all homes, right - outliers excluded

5 Energy Saving Predictions

The project’s objective related to energy saving predictions (see Section 1) indicates that we can
use either the predicted energy savings from the energy audits, or the actual energy savings
obtained from implemented ECMs as a comparison value. Because we identified only a few
homes that had implemented significant ECMs during the data collection period (see also
Section 7.2), we used the HEA energy saving predictions as the comparison value.

HEA companies use proprietary software for energy saving prediction, and we reviewed a
proprietary document describing the energy saving prediction algorithms for an energy audit
company (Harley 2011). This document suggests that the state of the art uses a PRISM-like
equation (Fels 1986, Hallinan et al. 2011) to calculate energy savings based on area-weighted
pre-retrofit values of component R-values and average CFM along with their post-retrofit
projections. However, this document did not disclose a methodology for prediction post-retrofit
building characteristics.

Accordingly, we analyzed the data and verbose descriptions of energy audits and ECM
implementations, part of the anonymized data sets transferred to us by our utility partners, to
model post-retrofit building physical parameters (i.e., overall R-value and ACHs).

5.1 Overall Post-Retrofit R-Value

We calculate the overall building R-value using the building geometry (external wall area,
attic/roof area, window-wall area ratio) and the R-values for building major components
(external walls, attic, basement/foundation and windows). Because the building geometry does
not change in retrofits, we need to characterize the post-retrofit R-values for external walls and
for attic (i.e., corresponding to the retrofits we consider in this project) to calculate the overall
post-retrofit R-value.
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5.1.1 External Walls’ Post-Retrofit R-Value

The R-value of wall cavities filled with blown-in cellulose can vary due to differences in wall
cavity thickness, exterior cladding properties, etc. Thus, we took two complementary approaches
to estimate and model the post-retrofit R-value of walls that are “drilled and filled.” First, we
used building physics to estimate a typical wall R-values using area-weighted parallel heat
transfer paths through wood framing and a 3.5-inch wall cavity filled with cellulose. Assuming a
25% framing factor (Lstiburek 2010) and a cellulose insulation R-value of 3.5 (Fisette 2005)
yields a whole-wall R-value of around 11.9. Second, we reviewed the whole-wall R-values
estimated for audited homes to understand how the audit software assessed the wall R-value of
walls with cavity insulation. We considered all the homes with audit information available that
did not have a wall-insulation retrofit implemented (i.e., these homes do not appear in the
measures file). We found that of approximately 800 homes with external wall R-value greater
than 6, more than 50% had the R-value in the range between 11 and 12 and only 10% had an R-
value higher than 12. Based on these two approaches, we decided to use the midpoint, R-value of
11.5, as a practically achievable post-retrofit whole-wall R-value.

5.1.2 Attic Post-Retrofit R-Value

For the attic retrofits, there is less uncertainty in converting the verbose ECM description into R-
value as compared to the wall retrofits. Accordingly, we calculated the post-retrofit R-value
following energy audit standards (Energy Assessment Standards 2012) and the retrofit verbose
descriptions for approximately 350 homes with significant (i.e., more than 25% R-value
increase) attic retrofits. Table 3 shows the distribution of post-retrofit attic R-values in these
homes. Although a majority (60%+) of retrofits achieve around R-40, the overall distribution is
very broad. Hence, we believe an assumption of a single post-retrofit R-value of 40 is not
adequate for all homes.

Table 3. Distribution of Post-Retrofit Attic R-Values as Reported in ~350 HEAs

Post-
retrofit
attic R-
value

<10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

Fraction
of homes, | 3 4 7 5 10 7 35 27 4
%

As a working alternative, we calculated the difference between the post- and pre-retrofit attic R-
value. We found an average difference of 15.6, a median of 14.8, and the three modes of a multi-
modal distribution of 6.6, 15.3, and 22.0. Based on this, we use the average increase in R-value
(15.6) corresponding to the statistical expectation to model the post-retrofit attic R-value.
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5.1.3 Overall Post-Retrofit R-Value Prediction

With the developed models for post-retrofit wall and attic R-values, we can calculate the post-
retrofit overall R-value as would be predicted for homes in HEAs. However, the prediction of
the post-retrofit overall R-value for the proposed method, which is conditional on the estimated
pre-retrofit R-value, is not straightforward. Although our R-value prediction is generally in line
with the R-value based on the HEA data for binary classification of homes, there are notable
discrepancies between our estimates and the HEA-based data (see Figure 5 and Figure 12).
These discrepancies could be attributed to the assumptions underlying the HEA calculation (e.g.,
the assumed values of window-to-wall ratio and basement R-value) and/or to errors in CT data,
gas bills and audit results, variability in HVAC system efficiency (particularly when considering
duct losses), as well as to the coarseness of the underlying physics-based model.

Therefore, we need to calculate post-retrofit R-value in a way that minimizes the expected errors
from the HEA-based values. To this end, we developed the following mapping procedure:

1. Divide the range of the overall pre-retrofit whole-home R-values for homes worthy of
insulation upgrade (R < 8) into four intervals: R<5; 5<R<6; 6<R<7; and 7<R<8.

2. For each interval 7, {i =1, 2, 3, 4} select homes with the estimated from CT data (pre-
retrofit) R-value falling within the interval. For each selected home j from interval i,
calculate the post-retrofit overall R-value Rjj Gt post assuming the wall post-retrofit R-value
of 11.5 and the attic’s R-value increase of 15.6. Because of the complex nonlinear
relationship between the estimated and R-values based on the HEA data, the obtained
values cannot be used directly to predict the estimated post-retrofit R-values.

3. Instead, for each interval i, find the post-retrofit value X; for the estimated R-value that
minimizes the difference between

Rj;i
-5 (13)
and
Rij
21(1 B Rij,GJT,GZost) (14)

4. The physical meaning of each summand is a relative change of insulation heat loss in a
building. Build a table mapping each interval onto the average R-value increase AR; = X; —
R; i» where bar designates the average over j value.

We built the mapping table using 34 homes with estimated R-values lower than 8 (with one or
two CTs). Table 4 lists the details of the mapping table for R-value prediction. To calculate the
post-retrofit prediction for an arbitrary pre-retrofit R-value, we need to find the proper interval
and the corresponding AR. The post retrofit prediction equals the sum of R and AR. Using the
proposed mapping methodology, we can extend this table for higher R-values should the need
arise.
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Table 4. Prediction of Estimated Post-Retrofit Overall R-Value Increase

!Estimated R-value, pre-retrofit Post-retrofit AR for estimated
interval

R<5 24

5<R<6 25

6<R<7 2.2

7<R<8 2.1

5.2 Post-Retrofit ACHso

Unlike the overall R-value, ACHs is directly measured in a blower-door test.” Accordingly, we
can directly project post-retrofit ACHso based on the measured change in ACHso from actual air
sealing projects. However, we need to reduce the scatter in the HEA data to make meaningful
predictions. An analysis of the blower-door test results suggests that the reduction in air leakage
(i.e., A ACHso) can be modeled as a linear function of the pre-retrofit ACHso value. Figure 15
illustrates the analysis with experimental data on 85 homes with blower-door test results
available. The following stepwise linear fit can be used to model the data:

12 T T T T T

y=0.26"x - 0.73, x <20
10 - y=6.3,x>20

% data, ACH 50 <20
8 O data, ACH 507 20

linear fit

A ACH50
o
T

0 5 10 15 20 25 30
ACH50, pre-retrofit in blower-door test

Figure 15. Experimental data on pre/post-retrofit ACHso as measured in blower-door tests

0.26 X ACHsy — 0.73,if ACHs, < 20

AACHso = 6.3,if ACHgy > 20 (15)

Eq. (15) can be used to predict the expected reduction air leakage for homes. With this model,
we mapped the estimated ACHs to that predicted by Eq. (15) AACHso for the 24 homes for

 However, Hales (2014) suggests that the blower-door test systematically overestimates ACHsy relative to tracer-
gas tests.
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which we have both estimated and HEA-based infiltration rates (ACHso) available (see Figure 7
and Figure 13). Figure 16 shows the results.
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Figure 16. Predictions of AACHso modeled by Eq. (3) versus estimated ACHso for 24 homes that have both
estimated and blower-door ACH50 available

The final equation for prediction of AACHso given the estimated ACHso value is

AACHsy = 0.18 X ACHs, + 0.6 (16)

We use this equation to predict the post-retrofit parameter AACHso values. Ultimately, we use
this combined with the change in whole-home R-value (calculated using Table 4) to assess the
combined energy impact of the two potential measures.

5.3 Energy Saving Calculations

Because our modeling approach can be considered as an extended version of PRISM (Fels 1986,
Hallinan et al. 2011), we can apply the same methodology to calculate predicted savings for both
the HEA-based values and our proposed method. In particular, for a given home, we can
calculate the change in runtime caused by either a higher overall R-value or lower air leakage
over the entire heating season. By using separate sets of HEA-based pre/post values and those
estimated, we obtain runtime reductions for the HEA prediction and for the proposed method.
We can also predict relative (i.e., %) savings by normalizing the runtime reduction over the
overall season by the pre-retrofit runtime for a home.

We used this methodology to calculate HEA-based energy savings and those for the proposed
method. For insulation savings, we calculated the savings for 34 homes with insulation retrofit
opportunities (i.e., R <8). Figure 17 shows a comparison between the HEA prediction and our
predicted savings. Note that the average energy saving for such homes is substantial, of the order
of 30%. Out of 34 predictions, 29 (85%) are within £25% from the HEA values, which suggests
that we have exceeded the Project Objective #2 (see Section 1).
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Figure 17. Estimated and HEA-based (GT) predictions for percent energy savings

The results are calculated for homes with one/two CTs, complete sets of quality data and insulation retrofit opportunity.
Out of 34 homes, 29 have estimated predictions within +25% of HEA predictions.

For the air sealing opportunities, we have 24 homes for which we have both ACHso estimates
and HEA data (i.e., blower-door tests). Out of these, we have only four homes with ACHso >15,
i.e., homes with significant retrofit opportunities. To increase the sample size and in accordance
with the classification results discussed earlier, we consider homes with blower-door test results
ACHS50 exceeding 7,'% i.e., 15 homes.

Figure 18 shows the results for these 15 homes. Even though the air sealing retrofits yield less
savings than the insulation retrofits (see Figure 17), the savings are still significant. The
predictions are within £25% for 11 homes, i.e., for 73%. That said, this finding has high
uncertainty due to the very small sample size.

19 Looking at the pre-retrofit ACHs blower-door test values, we could not identify a clear value (or even range)
when air sealing is recommended (see Figure 15). We believe this likely reflects that air sealing recommendations
are based on qualitative assessments of the expected benefit and ease of accessing potential leakage paths for air
sealing.
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Figure 18. Estimated and HEA-based (GT) predictions for percent energy savings from air sealing

The results are calculated for homes with one/two CTs, complete sets of quality data and measured in blower-door tests
ACHso >7. Out of 15 of homes, 11 have estimated predictions within £25% of HEA-based predictions

6 Randomized Controlled Trial

Successful development of algorithms to conduct remote HEA/predict energy savings provides
an opportunity to test whether customized retrofit recommendations and savings potentials for
individual homes ultimately can:

1. Significantly increase the uptake rate of on-site HEAs, and

2. Significantly increase the fraction of HEAs resulting in ECM implementation.

6.1 RCT Design

We designed and conducted a randomized controlled trial (RCT) to answer these two research
questions. In an RCT, households meeting the test criteria are randomly assigned to the treatment
and control groups. The criteria for homes to qualify for the treatment and control groups in the
RCT are:

e Located in Eversource or National Grid’s (also known as the program administrators) gas
service territory in Massachusetts

¢ Qas is the primary space-heating fuel
e Detached single-family home
e Customer has received a rebate from Mass Save for a CT

e The program administrator has access to customer CT data for at least half of one heating
season

e The program administrator has access to customer gas billing data for at least one year
coincident with the period of the CT data
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e Customer has not had a Mass Save HEA.

Later in the project, our utility partners found that the last criterion was violated for a majority of
customers in some groups (see Section 6.1.1 for details).

In the RCT, the treatment group receives targeted outreach informed by the algorithms. That is,
Fraunhofer applied the algorithms to the CT data from the treatment group customers to identify
homes that are likely to have an insulation (attic or wall) or air sealing opportunity. For these
homes, the algorithms identified the expected retrofit opportunity(ies) and calculated their
expected post-retrofit energy savings (by updating the physical parameters in the algorithms to
reflect the retrofit targets), and Fraunhofer provided those data to the program administrators. In
turn, the program administrators incorporated the customer-specific offerings and energy savings
into customer outreach and sent them to the appropriate treatment group customers.

Based on the data sets we received from our utility partners, we designed one treatment and four
control groups. The control groups serve distinct purposes. Control groups 1 and 1A comprise
customers who took a CT incentive and for whom we have CT data that are taken from the same
population as the treatment group. Group 1 includes customers with low CT data quality that
precluded identification retrofit opportunities. That said, we expect them to have the same rate of
retrofit opportunities as the population of customers that we analyzed with acceptable CT data
quality, i.e., control group 1A and the treatment group combined. In contrast, control group 1A
comprises customers for whom the algorithms found no retrofit opportunities. Because both
control groups will receive generic outreach, this should reveal if the customized feedback has a
significant impact on HEA and/or retrofit uptake for people purchasing and requesting a rebate
for a CT. This should enable us to quantify the impact of the customized outreach.

Control group 2 represents customers who received an incentive for installing a CT from another
manufacturer, foremost Nest, that did not provide CT data to the PAs. Consequently, it will
provide insight into if the frequency of customer outreach affects enrollment. Finally, we surmise
that customers who install a CT and take an incentive may differ meaningfully from the large
majority of customers who do not have a CT installed. Thus, control group 3 compares
participation relative to customers who did not take a CT incentive. Because any outreach has the
potential to increase program participation, the first control group will also receive generic Mass
Save marketing outreach whenever the treatment group receives customized outreach.
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Table 5 summarizes the RCT design. We calculated the statistical test power given the expected
participation rates of 2%—-3% and 10% and implementation rates of 30% and 60% for the control
and treatment groups, respectively. We concluded that these characteristics exceed those
commonly acceptable in experimental design (typically, test power of 0.8 at significance level of
0.1).
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Table 5. Randomized Controlled Trial Design

o Supplemental Sample Size, N

Group Type Description Ou':rlzzach? (actupal)

1. Took CT inceniive, | (00NC 99000 e

have CT data — Low T 902

. same as treatment
CT data quality
group

1A. Took CT incentive
Control Groups — Algorithm Identified | None 212

NO retrofit opportunity

2. Took CT incentive,

other CT type None 1,000

.3' Dldlnot take CT None 1,000

incentive
Treatment Group 1. Took CT incentive, Receive customized 216

have CT data

outreach four times
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Table 5 shows a fraction of homes with high-quality CT data that is similar to that in the
previous data sets in this project. Initially, we received CT data from vendors #1 and #2 (see
Table 1), along with gas bills and publicly available home information (conditioned area and
number of floors) for 1,332 homes. Of those, 430 homes or 32% had good-quality CT data. At
the same time, Table 2 suggests that for algorithm development, we had 457 homes with one/two
CTs with complete sets of data overall. Of these, we were able to process 87 homes with one CT
(see Section 3.5.1) and 74 homes with two CTs (see Section 4.1), i.e., 161 homes or 35% overall.
We also had to extend Table 4 to incorporate higher estimated overall R-values (up to 11) to
boost the treatment group size; as expected, those homes with the higher estimated R-value
commanded relatively small saving percentage that nonetheless often exceeded our targeted
value of $50 per season.

6.1.1 The Repeat Customer Problem

Initially, we identified 216 customers for the treatment group ($50+ projected savings) and
provided their anonymized customer IDs along with their projected seasonal savings (in therms
and dollars) for insulation and air sealing opportunities to National Grid and Eversource.

However, subsequent communications with National Grid in June 2019 found that:

e A significant number of customers (up to 75%) had a previous home energy assessment
(as long as the program administrator data goes back in time), and

e 49 out of the 216 customers initially selected for the treatment group and two customers
of control group 1A had air sealing/insulation measures installed (note: the depth of those
measures was not disclosed).

Consequently, eliminating customers with any prior home energy assessment from the RCT
would shrink the treatment group and control groups 1 and 1A approximately fourfold, rendering
these groups too small for a statistically meaningful inference. Accordingly, we decided to not
remove such homes from participation, but have their (anonymized) IDs available for future
study.

On the other hand, prior ECM implementation does preclude selecting customers for the other
control groups. Table 6 lists the updated group sizes. For control groups 1 and 1A, we only
received information on prior HEAs from National Grid.

Table 6. Updated RCT Design

. Number of customers .
Group Type N, ergmal RCT that had HEA in the Number of qualifying
design customers (N)
past
Treatment Group o 0
(opportunity found) 216 163 (75%) 53 (25%)
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Control Group 1A,
National Grid part (no 130 53 (41%) 77 (59%)
opportunity found)

Control Group 1,
National Grid part (poor | 604 325 (54%) 279 (46%)
quality CT data)

Control Group 2

1 0,
(another CT vendor) 1000 0 999" (100%)

Control Group 3 (no CT

. . 1000 0 999 (100%)
incentive)

Another potential problem that our utility partners have discovered was that some of the homes
were multifamily. The majority of such multifamily homes were detected during the initial
screening and disqualified from RCT, yet some homes could be identified as multifamily only by
a manual search using their physical address.

Note that the fraction of homes with previous HEAs is highest in the treatment group (75%),
lowest in control group 1A (41%), and at a midpoint in control group 1 (54%). Given the group
sizes, these differences are statistically significant. We believe that these differences can be
attributed to the way we selected the homes with retrofit opportunities: Homes with the identified
retrofit opportunities are likelier to have requested HEAs in the past than the homes with no
found retrofit opportunity.

6.2 RCT Results

The printed materials were sent to the treatment group and to control group 1 as follows:
e Istround: Sent on July 26
¢ 2nd round: Sent on week of September 27
¢ 3rd round: Sent on week of November 4
e 4th round: Sent on December 6.

For the treatment group, the results for the qualified customers (N = 53, see Table 6) are as
follows. Five homes had requested an HEA as of June 30, 2020—on August 29, September 14,
September 24, September 30, and January 15. Two of these homes also had insulation and air
sealing measures installed a month and three months after the HEA (HEA on September 30,
ECMs installed on November 1 for the first home, HEA on September 24, retrofits implemented
on January 2 for the second home). The savings predicted by our algorithms for these homes
ranged from 11%—-22%; interestingly, the homes with the highest predicted savings among these

"' We do not know why the numbers of customers in control groups 2 and 3 were 999 and not 1,000.
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homes (21% and 22%) were the homes that decided to implement ECMs. No customer who had
had an HEA within the past six years has requested an HEA.

For control group 1, which received four waves of generic mailers, the results were somewhat
similar in terms of timing. For the pool of qualified customers (N = 279, see Table 6), 11 homes
requested HEAs on the following dates: October 18, October 26, November 16, November 22,
November 26, December 9, December 11, December 12, January 11, February 11, and February
26. One of these homes also had insulation and air sealing retrofits implemented (HEA on
October 18, retrofits implemented on January 3).

That said, nine unqualified homes (i.e., those that requested HEAs in the past) also requested
HEAs on the following dates: August 16, October 2, October 25, November 26, December 23,
January 22, February 19, April 4, and April 18, and the homes that requested an HEA on October
2, December 23, and February 7, then installed ECMs (both insulation and air sealing) on
December 12, February 27, and March 20, respectively. We are not clear why a significant
number of homes that requested an HEA (9 out of 20) were the homes that already had an HEA
in the past in control group 1. Our utility partner suggests that potentially, some homes could
have changed an owner recently and/or were from a multifamily building.

For control group 1A (N =77, see Table 6), one home requested an HEA on July 31 and then
installed insulation and air sealing ECMs on October 29.

For control group 2 (N = 999), 28 homes requested HEAs, while 10 homes had implemented
insulation and air sealing ECMs as of June 30, 2020. Notably, the time lag between the HEA and
ECM was as long as five months for some homes.

Finally, for control group 3 (N =999), 24 homes requested HEAs, and three homes had
implemented insulation or air sealing ECMs as of June 30, 2020.

These results are summarized in Table 7. For control group 1, the numbers in parentheses show
the results assuming that the nine homes with prior HEAs had new owners and thus were
qualified to participate. Crucially, the treatment group has an HEA rate approximately two
to five times greater than the control group that received generic mailers, supporting the
hypothesis that targeted, customized outreach can realize significant increases in energy
efficiency program participation.

Table 7. RCT Results

Number of Number of HEA.
) HEA Rate: # Conversion
Group Type N homes with homes that
HEAs installed ECMs | NCASN *lo Rate:
HEASs/ECMs
Treatment Group 53 5 2 9+4% 2 outof5
279 1outof11/4
+ o, + 0,
Control Group 1 (604) 11 (20) 1(4) 4+1% (31£0.5%) out of 20
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Control Group 1A 77 1 1 1£1% 1 out of 1

o,
Control Group 2 999 28 10 2.8£0.5% 36% (;g)out of
Control Group 3 999 24 3 2.420.5% 3of24

Generally, the RCT results follow our expectations. Control group 1A (no opportunity found, no
messaging) was the poorest performing group, closely followed by control groups 3 (no CT
incentive, no messaging) and 2 (CT incentive, no messaging). Control group 1 (CT incentive,
generic messaging) performed better than those. Finally, the treatment group shows the highest
HEA request rate (about six time higher than the no-messaging background, meaning control
groups 1A, 2, and 3, and three times higher than control group 1). Given the time lag between an
HEA and ECM installation, we expect additional ECM installs in all RCT groups over the next
several months.

7 Use Cases

In this section, we consider three use cases that are potential extensions of the proposed technical
approach, yet are somewhat beyond the scope of the original project.

7.1 Cooling Season Considerations

The technical approach developed is applicable to CT data collected from individual homes over
the heating season. Discussions with other utilities revealed appreciable interest in using CT data
collected over the cooling season, potentially combined with electric interval data. This would
significantly enlarge the pool of candidate homes with retrofit opportunities.

The grey-box models, Egs. (2)-(5) that provide a foundation of our approach, were derived for
the heating season. In principle, they could be extended to a cooling season provided that the
following two factors are incorporated:

e Air conditioner (AC) performance curve
e Moisture transport.

In addition, we expect that solar heat gains will play a larger role in AC loads than during the
space heating season.

Unlike a fuel-burning heating system modeled by just two values (Q at state “on” and 0
otherwise) in Egs. (2)-(5), the cooling supply of an AC system is not constant at state “on”;
instead, the corresponding performance curve (e.g., Cutler et al. 2013) that models the
dependence of AC cooling capacity and power as a function of outdoor and indoor temperatures
will need to be incorporated in the grey-box equations. Latent heat removal, i.e.,
dehumidification, necessitates additional equations for moisture transport (Yang et al. 2018) that
further complicate derivation of daily correlations of the type of Eq. (5).
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Although extension of our method to a cooling season is not straightforward, the way we
estimate the wind-driven air leakage—i.e., the coefficient C; in Eq. (9)—remains valid in the
cooling season'? because it compares system runtimes over similar time windows with high
versus low wind, and a proper matching of the time window pairs cancels the unknown latent
heat and also solar heat gains from the difference. If interval electricity consumption data for
home’s AC system were available, we could then estimate the value of coefficient Cy and
compare this estimate to its heating-season counterpart. The equality of the two estimates would
imply potential applicability of our method to the cooling season data.

Because electric interval data are not available to us in this project, we cannot directly compare
the cooling- and heating-based C; estimates. Nonetheless, we can calculate the ratio between the
estimates of Qneat in the heating season to the average value of Qcool in the cooling season by
using Eq. (9). Assuming that the average value of Qcoor is of the order of a nominal (i.e.,
nameplate) cooling capacity of the home AC system, we estimate that the calculated Qneat/Qcool
ratio in a Massachusetts climate should be in the range of 1 to 3.!?

The CT data we obtained from vendor #3 included data from a central AC system for some
homes. In all, we identified 71 homes with good-quality CT data for both heating and cooling
seasons, of which 52 had cooling data from a single zone (i.e., a single CT in the cooling season,
whose ID may or may not be the same as those in the heating season). We modified our air-
leakage algorithms for the cooling season and then applied them, together with their heating-
season counterparts, to the data from these 71 homes.

Figure 19 shows the results. As expected, the ratio is always greater than unity, but many ratios
are appreciably larger than anticipated. To a significant extent, this may reflect the relatively
short cooling season duration and modest summertime outdoor temperatures in Massachusetts.
This results in fewer days with appreciable cooling, making it challenging to find well-matched
periods of time and decreasing the number of data points in regressions (compromising
regression quality).

More work and data, specifically interval electricity consumption data, are needed to fully
explore the algorithmic capabilities during the cooling season.

12 Assuming that wind predominantly comes from similar directions during the cooling and heating seasons.
13 This is based on a 2,000 ft*> home with a 50 to 150 kBtu space-heating system and assuming 500 ft*/ton of cooling
(=4 tons * 12,000 Btu/ton = 48 kBtu).
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Figure 19. Estimated heating to cooling capacity ratio for homes with both heating and cooling data available

Left - all homes with heating and cooling data (71), right - only homes with one cooling zone and heating data (52)

7.2 EM&V for Retrofits

It is well known that conventional methodology for evaluation, measurement, and verification
(EM&V) of post-retrofit savings requires several years of post-retrofit fuel bills. In addition,
significant uncertainty remains whether household maintain the same level of thermal comfort
post-retrofit—in other words, increasing thermostat setpoint reduces the potential savings.

Our approach may provide a quicker and more reliable opportunity for EM&V if sufficient CT
data are available pre- and post- ECM implementation. This, in turn, depends on the data scatter
in the daily correlation plots (see, for example, Figure 2!%). As a rough estimate,'> we can use the
results from linear regression theory for the standard deviation of the slope and then compare the
difference in slope pre/post-retrofit with this standard deviation. The standard deviation of the
slope is inversely proportional to the square root of data point number (i.e., the number of days
with CT runtime data in our case) so that the minimum number of days with CT data required to
statistically discern pre/post data and estimate savings can be calculated.

In addition, because ECM implementation should not change the thermal mass of a home, the
conventional first-order lumped resistance-capacitance “cooling curve” approach (see Figure 10
and corresponding text) can be used to check if the decay rate has changed post-ECM
implementation. However, because of the coarseness of the temperature data from vendors #2
and #3 (see Table 1; temperatures reported in 1°F increments), the calculated decay rates can be
too coarse for a meaningful comparison.

14 Note that the scatter in Figure 2 can be attributed in part to wind-driven air leakage.
15 Because the infiltration model in Eq. (4) incorporates the nonlinear stack effect, the overall dependence of the
runtime on temperature difference is slightly nonlinear.
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In our data sets, we identified 17 homes with ECMs implemented during the data collection
process; of those, six had data at least two weeks both before and after ECM implementation.
Two examples of these homes are detailed below.

7.2.1 Example 1

The first example is a home heated by an atmospheric (i.e., non-condensing) furnace. The home
was built in 1989, and the HEA values for wall R-value is 8.1 and for attic R-value is 12. The
following ECMs were installed:

e Air sealing, door stripping
e No wall insulation

e Attic: (1) attic floor open blow cellulose 57, (2) Propavent 2’ or 4°, (3) attic stair cover
thermal barrier with carpentry.

Figure 20 and Figure 21 show the computed correlations for the CT data obtained by the home’s
two thermostats. Whereas Figure 20 suggests no noticeable pre-post difference for the
correlations computed by the “downstairs” CT, dramatic difference is evident for both types of
correlations in Figure 21. This is in line with the performed retrofits that are mainly upgrading
the attic.
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Figure 20. Correlations for pre/post ECM implementation for a home from vendor #3, downstairs CT

Left - runtime correlations, Eq. (5), right - cooling decay rates over thermostat setbacks
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Figure 21. Correlations for pre/post ECM implementation for a home from vendor #3, upstairs CT

Left - runtime correlations, Eq. (5), right - cooling decay rates over thermostat setbacks

Quantitatively, we calculated the pre-post slopes of the regression lines using the whole-home
equivalent approach (see Section 4), as well as their standard deviations. The pre-retrofit slope
value is 0.0151 with a standard deviation of 0.0012. The post-retrofit value is 0.0120 with a
standard deviation of 0.0008. The savings can be roughly estimated as (0.0151 — 0.0120)/.0151 =
20.5%. The difference in slopes is 0.0031 and its standard deviation is 0.0014, i.e., the slope
difference is about 2.2c. This difference is statistically significant at a significance level of 0.014
for a normal distribution. Encouragingly, this change in the second-floor thermal performance is
consistent with the major upgrade in attic insulation, i.e., adding ~R-18 of insulation to an R-12
attic.

7.2.2 Example 2

The second example is a home heated by a condensing furnace. The home was built in 2000, and
the HEA values for wall R-value is 11.4 and for attic R-value is 17.8. The following ECMs were
installed on or about February 21, 2017:

e Air sealing, door stripping
e No wall insulation

e Attic: (1) Propavent 2’ or 4°, (2) attic stair cover thermal barrier with carpentry, (3) attic
floor open blow cellulose 4”.

Figure 22 shows the computed correlations for the CT data obtained by the home’s thermostat.
Although the installation date is more than a month later than that in the first example, there are
relatively few pre-ECM data points because the CT was connected on February 2, 2017—Iess
than three weeks prior to ECM implementation. Yet, some pre/post difference is visible in the
runtime correlations. The calculated decay rates are not very meaningful, mainly because the
temperature data from vendor #2 are too coarse (see Table 1).
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Figure 22. Correlations for pre/post ECM implementation for a home from vendor #2

Left - runtime correlations from Eq. (5), right - cooling decay rates over thermostat setbacks

Quantitatively, the calculated pre-retrofit slope value is 0.0118 with a standard deviation of
0.0025. The post-retrofit value is 0.0089 with a standard deviation of 0.0011. The savings can be
roughly estimated as (0.0118 — 0.0089)/.0118 = 24.6%. The difference in slopes is 0.0029 and its
standard deviation is 0.0027, so the slope difference is about 1.1c. This difference, though close
to the slope difference in the previous example (0.0031) is not statistically significant because
the standard deviation of the pre-retrofit slope is too large due to relatively few data points. Our
calculations suggest that increasing the number of good-quality pre-retrofit data points by a

factor of about two would make the slope difference statistically significant at significance level
of 0.08.

These examples are promising, yet large pre-post data samples and additional work are required
to establish an EM&V method on the basis of the proposed approach.

7.3 Cases Without Fuel Bills

The requirement to have gas bills available can limit the applicability of the project’s results
because (1) a CT reward program may not be controlled by a gas utility, and (2) many homes,
especially in the Northeast, are heated by delivered fuels, i.e., heating oil or propane.

Gas bills enable us to estimate the heat supply Q in Egs. (2)-(5); this means that without bills, we
need an alternate approach to estimate Q. All other things being equal, Q should scale
approximately linearly with the home’s conditioned area. Indeed, the estimated Q values
reported in the HEAs show this dependence. Such a correlation implies a relatively narrow
distribution of heat supply for a given conditioned area in a home which could ultimately result
in a more definitive answer to the question of whether a given home with no gas bills is a good
candidate for insulation and/or air sealing retrofit.

Suppose the probability density function of Q for a given home is known. Our approach so far
uses a single value or a point estimate of Q to estimate the most important physical parameters
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characterizing retrofit opportunities, the overall home R-value and ACHso. Both parameters have
a functional relationship with Q: the R-value is inversely proportional to Q (see Eq. (5)) and
ACHs5 is linearly proportional to Q (see Egs. (9)-(12)). Thus, it is possible to derive a confidence
interval for the estimated R-value or estimate the probability that the R-value is less than the
threshold value (assumed to be 8 in our work). In this way, we could potentially overcome the
need for fuel bills. Additional sources of uncertainty (e.g., those related to home measurements
and model simplifications) can be accounted for as well, although our previous analysis related
to the modeling of a home with two CTs shows very small variability related to these factors (see
Section 4).

The statistical distribution of Q for a home can be characterized using a sample of similar homes
with known Q values. As an example, we calculated values of Q for 628 homes from vendor #1,
part of the RCT data set (see Section 6.1). With the limited information provided to us, we can
only characterize “similarity” of homes by their floor space and the number of floors. Figure 23
shows the calculated values of Q for two-story homes.
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Figure 23. Calculated heat supply, Q, for a sample of two-story homes

The RCT data set from vendor #1 was used. Results for 230 homes are shown.

Suppose now we have a two-story home with an unknown heat supply from the same population,
and its conditioned area is 2,000 ft*. Ideally, to characterize the statistical distribution of this
home’s heat supply, we would down-select homes with the same conditioned area from our
sample. Because the sample is not large, we allow an arbitrary tolerance of £300 ft* for a home
to be “similar.” A histogram of the calculated heat supply for such homes is shown in Figure 24.
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Figure 24. Distribution of calculated heat supply for a sample of two-story homes with conditioned area of

about 2,000 ft2

The histogram is built from homes used in Figure 23 that have conditioned area of 2,000+300 ft2 (101 in total).

It is seen in the figure that the distribution mode (i.e., the most frequent value) is about 100
kBTU/h. Suppose we used this value as a point estimate of Q and derived, using our approach
and available CT data, the corresponding estimates for the overall R-value of 7.5 and ACHso of
17.2 for this home. Using the empirical distribution (plotted in Figure 24), we can obtain the
distribution of R-values and ACHjso corresponding to these two estimates.

These distributions (which can be considered to be statistical distributions of actually estimated
values with the value of Q being known), are shown in Figure 25. As expected, Figure 25
suggests that there is a wide range of possible “actual” parameter estimates. Quantitatively, we
can estimate the probability that this home is a candidate for insulation retrofit, meaning that the
“actual” R-value <8. This probability equals the number of R-values <8 (58) divided by the total
sample size (101), i.e., 57.4%. Analogously, the probability that the home is an air sealing
candidate equals the number of ACHso >10 (85) divided by the total sample size (101), i.e.,
84.1%. Whether these probabilities are high enough to justify approaching this home with a
retrofit offer would depend on the program design and could be decided, e.g., by calculating the
chance that the expected savings exceed a threshold or by comparing the saving expectation with
HEA cost. Such calculations could be performed along the lines of the proposed approach.

In practice, actual (i.e., nameplate) installed furnace and boiler capacities come in discrete
capacities and depend on several factors, foremost contractor system sizing decisions.
Consequently, using distributions of actual Q values derived from field data (e.g., from
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completed retrofit projects) as a function of relevant variables (e.g., vintage)'® would likely yield
more accurate distributions.
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Figure 25. Distributions of potential values of R-values and ACHso for a home with unknown heat supply

The distributions are obtained for a two-story home with 2,000 conditioned area and point estimates of 7.5 for R-value and
17.2 for ACHso.

8 Conclusions

In this work, we successfully developed and validated a set of scalable algorithms that
automatically analyze CT data to accurately characterize home retrofit opportunities and predict
expected energy savings for homes with one or two CTs. Unlike other research groups, we use
home energy assessment reports as the source of comparison and verification and a “static” (i.e.,
averaged over time) approach for estimation of physical home parameters that characterize the
retrofit opportunity. Importantly, our physics-based approach is based on first principles, so it
does not require “training” that would limit its applicability.

The results for the building envelope R-values and for air leakage characteristic ACHso suggest
that we can accurately identify low-performing homes that are prime candidates for insulation
and air sealing retrofits, achieving classification accuracies of 89% and 96% for insulation and
air sealing retrofits, respectively. Among scalable and computationally efficient approaches, ours
can uniquely separate conduction heat losses from infiltration losses. Initially, we developed our
algorithms for homes with a single CT and then subsequently successfully extended the approach
to homes with two CTs. Thus, our method is generally applicable to homes using gas-fired
furnaces and boilers controlled by CTs located in heating-dominant climates. We have not,
however, evaluated the effectiveness of the algorithms for combi-systems, i.e., boilers that meet
both space and water heating loads. Neither we were able to quantitatively characterize the
heating system efficiency of a home.

That said, we found several challenges related to the quality of CT data and precision of on-site
home energy assessments. In particular, obtaining high-quality CT data proved to be a major

16 We presume that the Q estimates reported from the HEAs reflect algorithms based on these kinds of underlying
data.
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challenge, with two of the three vendors providing lower resolution data that negatively impacted
algorithm effectiveness, particularly for EM&V. In addition, missing CT runtime data also
appears to be a significant challenge. Consequently, utilities and energy efficiency programs
need to carefully consider what data fields and resolution/precision they expect CT providers to
report when developing CT procurement specifications to take advantage of emerging use cases
such as remote home energy assessments.

Ultimately, the targeted and customized outreach enabled by the algorithms has the potential to
increase the energy savings and cost-effectiveness of energy efficiency programs in multiple
ways. First, we expect this will appreciably increase the number of HEAs requested by homes
with significant (10%+ savings) insulation and air sealing opportunities, as well as the number of
insulation and air sealing projects completed. Not only does this increase the quantify of savings
realized, it also increases the cost-effectiveness of the HEAs because the savings per HEA
increase. Second, the information provided by the algorithms can be used to focus the HEAs and,
therefore, decrease their cost. Third, the algorithms can also be used by the programs to perform
automated home-specific post-retrofit EM&V of retrofits performed by comparing actual post-
retrofit thermal performance with expected performance. This will reduce program quality
control and evaluation costs and should increase the ratio of actual to expected energy savings.

To better understand how targeted, customized outreach affects HEA and ECM uptake, we
conducted an RCT field pilot with our utility partners. The RCT results suggest that personal
messaging leads to a significant increase in the HEA uptake rate. Because of a time lag of up to a
year between an HEA and ECM implementation in a home, it is too early to conclude whether
the ECM realization rate also increased for such homes. Potential future work could involve
gathering precise pre-retrofit field data measurements (insulation levels, air infiltration, and other
characteristics) to further refine/validate the algorithm.
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