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1 Introduction 
Many states have aggressive energy efficiency goals. Given that space heating and cooling 

account for over 40% of residential primary energy consumption (DOE/EIA 2018) and many 

residential buildings have relatively poor thermal performance, insulation and air sealing retrofits 

of existing homes can make major contributions to reaching these goals.   

In the United States, utility energy efficiency programs subsidize and deliver a large portion of 

the retrofits implemented each year. These programs face two daunting challenges. First, due to 

their past success, many programs have growing energy savings goals. For example, in 

Massachusetts the gas savings goal increased from 1.12% of sales for 2013–2015 to 1.24% in 

2016–2018 (Mass DPU 2016). Second, they need to deliver these energy-saving retrofits cost-

effectively—i.e., the discounted value of the energy saved by a retrofit over its lifetime must 

exceed its first cost.   

Realizable retrofit opportunities vary appreciably among homes. For example, the U.S. 

Department of Energy (DOE)/U.S. Energy Information Administration (EIA) Residential Energy 

Consumption Survey (DOE/EIA 2009) and Massachusetts Residential Appliance Saturation 

Survey (Opinion Dynamics Corporation 2009) indicate that about 20% to 25% of Massachusetts 

homes have significant insulation and/or heating system retrofit opportunities. Assuming typical 

savings of approximately 10% to 30% from basic insulation and air sealing retrofits indicates an 

energy savings potential on the order of 4% of total space heating and cooling energy 

consumption.   

Delivery of insulation, air sealing, and heating system retrofits follows a multistep process that is 

often costly and challenging to scale. Customer acquisition occurs primarily through energy bill 

mailers, mass media and online advertising, and customer-initiated home energy assessment 

(HEA) requests that lack information about home-specific energy savings opportunities, 

expected energy savings, and cost-effectiveness. Once a customer requests an on-site HEA 

(which is free for ratepayers in some states, such as Massachusetts), the HEA must be scheduled 

and take place. Currently, an HEA involves a home visit by an energy service professional who 

conducts an extensive survey and a critical analysis of the household’s conditions to identify and 

characterize energy savings opportunities (S3C 2019, BPI 2012). These assessments can be 

inconvenient to many homeowners, expensive (approximately $250–$500) for the program and 

are of variable accuracy. After the HEA, the homeowner must then decide whether to implement 

the recommended energy conservation measures (ECMs), and a majority do not. For example, in 

the nation’s top-ranked residential energy efficiency programs by ACEEE (Massachusetts), only 

about 35% of HEAs ultimately result in major retrofits (Klint 2018). In other programs, the 

conversion rates can be significantly lower, e.g., typical rates in Minnesota are 7%–15% (Mark 

et al. 2016). This low closure rate increases the effective cost of program delivery. Finally, 

customers rarely get feedback on realized savings from ECMs beyond energy bills, while utility 

energy efficiency programs do not learn of potential large-scale field problems with ECMs until 
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after costly evaluation, measurement, and verification (EM&V) studies, years after ECM 

implementation. 

In some cases (Blasnik 2018), utility energy efficiency programs select candidate retrofit homes 

by identifying homes with high space heating energy use intensity (EUI, in kBtu/ft2) based on 

gas bills and the conditioned floor space. Using HEA data provided by our utility partners (see 

Section 2), we calculated the EUI and compared it with objective metrics indicating insulation 

retrofit (overall building envelope R-value) and air sealing (ACH50) opportunities. Figure 1 

shows the results: no noticeable correlations between EUI and the objective retrofit metrics. 

Figure 1. Energy use intensity versus physical parameters characterizing retrofit opportunity 

The results shown were calculated for CT vendor #3 homes (see Table 2). Blower-door tests were performed for 29 homes. 

In sum, the current approach makes it challenging to cost-effectively deliver the numerous 

retrofit opportunities that do exist; for example, around 1% of households in Massachusetts 

implement insulation; air sealing; or heating, ventilating, and air-conditioning (HVAC) retrofits 

each year.  

Energy efficiency programs would benefit significantly from tools that improve each step of the 

retrofit delivery process, and emerging data sources provide the opportunity to develop such 

tools. Specifically, communicating thermostats (CTs) provide insights into heating system 

operations and building thermal response that, in turn, reflect building physical parameters 

corresponding to retrofit opportunities, i.e., R-value, air leakage, and heating system efficiency. 

CTs account for a significant portion of thermostat unit sales, and one market research firm 

projects that approximately 16.6% of U.S. homes with broadband service will have at least one 

CT by the end of 2021 (Barbour 2021). Moreover, many utilities provide energy efficiency 

incentives for purchasing CTs and, as a condition for providing the incentive, some obtain access 

to the CT data.  

Therefore, there is an opportunity to significantly improve energy efficiency program 

effectiveness by using CT data combined with additional data available to utilities. What is 

necessary for this opportunity to materialize is a set of validated and scalable algorithms that 

automatically analyze CT data to accurately characterize home retrofit opportunities and predict 

expected retrofit energy savings. 
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In this project, Fraunhofer USA teamed with Eversource and National Grid to develop 

algorithms that analyze CT data combined with gas consumption data and basic home 

characteristics (floorspace, number of stories, and gas bills) available to utilities. The algorithms 

use these data to remotely and accurately identify the aforementioned energy efficiency 

opportunities to reduce residential space heating energy consumption for each individual home, 

as well as to estimate the home-specific energy savings potential. The team expects that using the 

algorithms in energy efficiency programs to provide targeted, customized, and actionable 

outreach to customers that are likely to have target retrofit opportunities will be significantly 

more compelling to customers than generic messages. In particular, the expected ultimate project 

outcomes are:  

 Increasing the number of HEAs requested in homes with the target retrofit opportunities;  

 Increasing the number of HEAs that result in implementation, thus, increasing the 

number of target retrofit measures implemented; and  

 Ensuring that the retrofits deliver the expected savings (remote quality control). 

The quantitative, measurable project objectives were to: 

1. Identify the approximately 20% homes (per Opinion Dynamics Corporation 2009, 

DOE/EIA 2009) that would most benefit from at least one of the target ECMs to reduce 

space heating energy consumption: insulation and air sealing.   

2. Predict the household-specific energy savings of the target ECMs within ±25% as 

compared to either the predicted energy savings from the energy audits, adjusted as 

appropriate for realization rates, or the actual energy savings obtained from implemented 

ECMs.     

3. Double the participation in on-site energy audits through partner utility programs for the 

target households identified by the tool. 

This report is organized as follows. Section 2 describes the data sets we obtained along with the 

associated data issues and challenges. Section 3 explains the physics-based algorithmic 

methodology that evolved from a simple inverse problem to a more elaborate approach that is 

successfully applied to homes with a single CT. This approach is extended further to incorporate 

homes with two CTs in Section 4. In Section 5, we develop and partially validate our approach to 

estimate prospective savings from ECM implementation. To measure the effect of the developed 

algorithms on HEA requests and implementations, we designed and conducted a randomized 

controlled trial (RCT) that is discussed in Section 6. In Section 7, we consider three immediate 

use cases extending the scope of this project: (1) analysis of cooling season data, (2) evaluation, 

measurement, and verification (EM&V) of ECM performance through comparison of pre- and 

post-ECM implementation CT data, and (3) application of the algorithms to homes heated with 

delivered fuels (i.e., evaluating algorithm effectiveness without gas bills). In the final section, we 

draw overall project conclusions and provide recommendations for further work. 



Development and Validation of Algorithms That Analyze Communicating Thermostat Data to Identify Enclosure 

Retrofit Opportunities 

4 

In addition, a companion Best Practices Guide provides recommendations for effectively 

integrating the CT algorithms with energy efficiency programs (Roth and Zeifman 2020).  

2 Experimental Data 
We used anonymized interval CT and HEA home characteristics data from the Eversource and 

National Grid Home Energy Services program. The Home Energy Services program is the 

residential Mass Save program that delivers free home energy assessments, heavily subsidized 

CT installations, insulation and air sealing retrofits, and incentives for high-efficiency HVAC, 

water heating, and appliance retrofits (Home Energy Services 2018). To receive a CT rebate, 

households must sign a data waiver that grants the utilities access to the CT data.   

Each data set for a home includes three pieces of information anonymized by the utility: 

 CT data collected by the CT vendor (one of three) over a heating season, in CSV format 

 HEA report in Excel spreadsheet format, performed by the HEA vendor (same vendor for 

all homes) 

 Monthly utility gas bills in Excel spreadsheet format, overlapping with the CT data in 

time (number of bills varies from 3 to 24 per home depending on availability). 

The CT data characteristics1 differ among vendors. For example, vendor #1 records all data 

fields every 5 minutes, whereas vendors #2 and #3 record all data fields as soon as there is a 

change in at least one of the fields. Table 1 describes some of the data fields in detail. Additional 

data fields that were not used in this work (e.g., indoor humidity) are not shown. Vendor #1 also 

has a data field for “stage,” to report what furnace stage(s) are running, although that field often 

remained unpopulated (i.e., for single-stage device).  

Table 1. CT Data Fields Reported by Vendor 

CT Vendor/Data 

Field 
HVAC Status Room Temp 

Outdoor 

Temp 
Wind Speed Time Stamp 

Vendor #1 

Duration of 

“on” time over 

5-min interval, 

1-s resolution 

Average over 

5-min interval, 

0.1°F 

resolution 

Average over 

1-h interval 

(from nearest 

weather 

station), 0.1°F 

resolution 

Average over 

1-h interval 

(from nearest 

weather 

station), 1 

km/h 

resolution 

Every 5 min 

Vendor #2 
“On” or “off,” 

reported only 

when any 

Unclear if 

averaged, 1°F 

resolution, 

reported only 

Average over 

1-h interval 

(from nearest 

weather 

N/a 
Reported for 

every change 

in any data 

                                                 
1 Note that due to a long chain of communications, not all our inquiries were answered by the CT/HEA vendors. The 
process of data collection and transferring took almost two years to complete. 
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data field 

changes 

when any 

data field 

changes 

station), 1°F 

resolution 

field, 1-s 

resolution 

Vendor #3 

“On” or “off,” 

reported only 

when any 

data field 

changes 

Unclear if 

averaged, 1°F 

resolution, 

reported only 

when any 

data field 

changes 

Average over 

1-h interval 

(from nearest 

weather 

station), 1°F 

resolution 

N/a 

Reported for 

every change 

in any data 

field, 1-s 

resolution 

 

To be useful for this project, combined data for each home must include at least one month of 

CT data collected during a heating season along with coincident gas bills and the HEA data. 

Because of this completeness requirement, we could only use some of the obtained CT data sets.  

Table 2 lists the numbers of complete home data sets we received. In total, we obtained complete 

data sets for about 450 Massachusetts homes. 

Table 2. Numbers of Homes With Complete Data Sets 

CT Vendor  
Furnace and 

1 CT 

Furnace and 2 

CTs 
Boiler and 1 CT 

Boiler and 2 

CTs 

Vendor #1 17 10 4 2 

Vendor #2, National Grid 84 42 24 15 

Vendor #3, Eversource 79 69 28 83 

Total 180 121 56 100 

 

2.1 Data Challenges 

Similar to other researchers (Siemann 2013), we noticed several problems with CT data. The 

most frequent problem is missing or unreported HVAC runtime. Unlike indoor or ambient 

temperature, missing runtime cannot be interpolated. Moreover, algorithmic identification of 

missing runtime can be a daunting task; for example, rising indoor temperature may or may not 

be indicative of missing runtime (it could indicate a supplemental heating system). Another 

problem is an apparent time lag of up to 10 minutes between the HVAC status and change in 

indoor temperature reported; such a lag seems excessive for furnace-heated homes. The outdoor 

temperature data were mostly missing for vendors #2 and #3, in those cases we replaced it with 

the temperature observed at the closest weather station (same for wind). Finally, the 1°F 

resolution of temperature data from vendors #2 and #3 is too coarse to be used for a conventional 

grey-box model identification technique (see Section 3). 

HEA reports (also known as audit results) comprise numerous data fields; however, not all of 

them were populated in the anonymized digital files we received. The populated fields included 
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basic home sizing information (ceiling height, conditioned floor space, number of floors, total 

volume, attic area, wall area), overall R-values for walls and attic, U-factor for windows, 

infiltration rate in CFM50, and basic HVAC information (heating system type, atmospheric or 

condensing heating system, fuel type, heating- and distribution-system efficiencies, and heating 

system capacity). The unpopulated fields in some HEA reports included, e.g., window area, and 

floor space. 

We obtained a description of HEA procedure underlying these reports and also analyzed the 

HEA data and compared them to the corresponding interval data and gas bills. These analyzes 

suggest different levels of reliability for the audit results. In particular, we are confident in home 

size information and in overall R-values for walls and attics/roofs and in U-values for windows. 

In contrast, heating system capacity is an estimated parameter that is not consistently accurate, 

because the discrepancy between the audit value and the value calculated from gas bills/runtime 

information can differ by a factor of up to 10. The infiltration rate is also estimated based on a 

qualitative on-site assessment, making it highly unreliable as well (e.g., blower-door test results 

that we obtained for some audited homes varied by a factor of up to four from the audit values). 

3 Algorithm Methodology 

3.1 Literature Survey 

Prior to this project, we reviewed the state-of-the-art for remote HEA approaches using interval 

(e.g., CT) data (Zeifman and Roth 2016). Although there are currently no widely accepted 

methods capable of characterizing the insulation, air sealing, and/or heating system retrofit 

opportunities for homes at scale, the potential approaches should be based on predictive models 

connecting the data inputs with retrofit-characterization outputs (Gaasch et al. 2014). Major 

retrofit opportunities can be characterized by physical home parameters such as the overall 

envelope R-value, ACH50, and HVAC efficiency, and models capable of predicting these 

parameters can be loosely divided into white-box, grey-box, and black-box categories (Afram 

and Janabi-Sharifi 2015; Berthou et al. 2014).  

White-box models are very detailed and accurate physics-based simulation tools, e.g., 

EnergyPlus™. Because these models typically require hundreds of parameters to describe a 

single building, both setting up the model and estimation of its parameters from experimental 

data (i.e., calibration) to characterize the retrofit opportunities are time-consuming and, 

sometimes, ill-posed tasks, making the white-box models difficult to scale.2  

In this application, black-box models rely on large training data sets and machine learning 

techniques to estimate building physical parameters and/or classify buildings by their retrofit 

opportunities (e.g., Pathak et al. 2019). Because these models do not have a physical basis, their 

predictive ability is limited and restricted to homes whose characteristics are represented by 

                                                 
2 We are aware of efforts to “autotune” EnergyPlus (see New et al. 2012), but this technology is still at early stage. 
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those in the training data set. Thanks to their simplicity, these models can scale fairly easily, but 

only if appropriate and large training data sets exist. 

Grey-box models use relatively coarse-grained physical models (typically, lumped models) with 

just a few parameters. Although these models seem to combine the advantages of the other two 

model categories (i.e., the predictive ability of physics-based white-box models and the 

scalability of the black-box models), they are inherently coarse; consequently, the estimated 

building parameters may not precisely match the actual physical building parameters. 

We concluded that grey-box models are most suitable for remote HEAs, as they combine the 

physics-based predictive ability of white-box models and the scalability of black-box models. 

A first-order model is the simplest grey-box model, and, unsurprisingly, several research groups 

(Goldman 2014; Newsham et al. 2017; Chong and George 2018) proposed a retrofit-

characterizing measure based on a first-order grey-box model. This measure is related to cooling 

gradient (i.e., temperature slope during thermostat setback periods) and its dependence on the 

ambient temperature. 

The first-order grey-box model implies a single lumped heat balance equation for a home, e.g.,   

��
���

��
= ����� + ����

���

+ ���(�� − ��)    (1) 

where variables Tr and Ta are indoor (room) and outdoor temperatures, Aw is overall area of the 

external surfaces like walls, windows, roof/attic, foundation (i.e., building envelope), U is 

integrated envelope heat loss characteristic due to conductive and infiltrative processes 

(Newsham et al. 2017), Mt is thermal mass characteristic (Newsham et al. 2017), ����� is 

HVAC heat supply, and qint/ext are additional internal (e.g., from appliances and people) and 

external (e.g., solar) heat gains. 

When the heating system does not run for extended periods of time, such as during thermostat 

setbacks, QHVAC = 0 and Eq. (1) has a simple exponential decay function as a closed-form 

solution for indoor temperature Tr, if the additional heat gains are neglected (Chong and George 

2018) and if the integral heat loss characteristic U is constant. The “time constant” of this 

solution (i.e., inverse of the decay rate) is proposed by Chong and George (2018) to serve as 

ultimate measure of “the leakiness of a building.” Although this measure seems enticing for 

HEA, Newsham et al. (2017) are cautious in their analysis, suggesting that the differences in the 

cooling rates between different buildings, as well as the variability of the cooling rates of the 

same building, could be attributed to the differences in envelope insulation, air leakage rate, 

envelope area, and/or thermal mass. 

First-order grey-box models are known to yield relatively poor accuracy in predicting building 

thermal response, whereas second- and higher-order models usually offer satisfactory accuracy 

(Mejri et al. 2011). Moreover, the meaning of some physical parameters of the first-order model 

is unclear and may be misleading (e.g., the “thermal mass characteristic” Mt in Eq. (1) lumps 

together the heat capacitances of building envelope and those of the internal space). Lastly, 
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although in principle the air leakage heat loss can be separated from the heat conductance loss by 

introducing an additional air leakage heat loss term in Eq. (1), incorporating the nonlinear stack 

effect for air leakage (see next section) will make the differential equation nonlinear, thus 

invalidating the simple exponential solution along with its “time constant.” 

Accordingly, we decided to use a second-order grey-box model as a basis for development of 

remote HEA methods.  

3.2 Model Development 

Our grey-box model incorporates characteristics of building insulation and airtightness as well as 

the building thermal mass by using two capacitances (indoor space and lumped envelope) and 

three thermal resistances (two identical resistances for external and internal surfaces of the 

lumped envelope and one for convection induced by air infiltration). The lumped envelope is a 

single value representing a building’s entire envelope, including opaque walls, windows, 

roof/attic, and foundation. Note that in our earlier work (Zeifman and Roth 2016), we did not 

split the external wall into two resistances, which led to a nonphysical factor of two in matching 

the estimated and HEA-based R-values. The proposed balance equations are: 

��
���

��
= ����� + ���� +

��
��

�

(�� − ��) + ����   (2) 

��
���

��
= (��/(��/2)) × (�� − ��) + ��/(��/2))(�� − ��)+ ����  (3) 

where variables ��, ��, �� are, respectively, indoor, lumped envelope, and outdoor temperatures, 

Rw and Aw are overall R-value and area of the lumped envelope, Cw is overall thermal 

capacitance of the exterior surfaces, Cr is overall heat capacitance of the internal space, ����� is 

HVAC heat supply, ���� is internal heat gains/losses affecting directly ��,  ���� represents 

radiative (foremost solar) or rain/sleet/snow-related heat transfer between the outside of the 

building enclosure and the outdoor environment, and ���� is heat loss due to air infiltration. The 

latter factor accounts for, on average, about 25–30% of U.S. single-family space-heating loads in 

heating-dominated climate zones (Huang et al. 1999). Among these variables, only Tr and 

HVAC on/off status (embedded in QHVAC) are directly sensed by a CT. 

A conventional way to calibrate the model, i.e., to estimate the model parameters, is to discretize 

the Eqs. (2) and (3) and minimize the difference between the observed and modeled state 

variable, Tr(t) (Lin et al. 2012; Bacher and Madsen 2011; Siemann 2013; Harish and Kumar 

2016). This inverse problem can be ill-posed in the sense that small variations of the observed 

variable lead to large changes of the parameter estimates. To alleviate this problem, we use the 

derived closed-form solution that does not require the discretization step (Zeifman and Roth 

2016). In a more recent work, we applied this method to CT data sets from several homes and 

compared the estimated overall R-values with qualitative self-assessments of the home insulation 

levels (Zeifman, Roth, and Urban 2017). Although that comparison showed good 
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correspondence between the estimated and HEA data, several limitations make it difficult to 

scale-up this initial approach: 

1. Nighttime: To reduce the effect of non-HVAC heat gains/losses that are difficult to 

model, we restricted the CT data to nighttime only. This restriction, however, can lead to 

an overfitting problem (Lin et al. 2012) because of the lack of system excitation during a 

given night. Combining numerous nighttime data segments together could potentially 

mitigate this problem, yet the number of parameters to be identified (e.g., initial lumped 

wall temperature for each nighttime segment) grows proportionally to the number of 

nights, making the problem computationally intractable. 

2. Zone solution: Eqs. (2)-(3) are applicable to a single thermal zone in a residential 

building, but even a single-thermostat home does not necessarily comprise a single 

thermal zone. Accordingly, the second-order grey-box model, Eqs. (2)-(3), can be too 

coarse to describe the thermal response of actual homes.  

3. Nonlinear air leakage: While the wind-driven component of the air infiltration 

phenomenon is linear with (Tr – Ta), meaning its incorporation still allows for the closed-

form solution of Eqs. (2)-(3), the stack effect varies nonlinearly with (Tr – Ta) (Younes 

2012). As a result, no closed-form solution can be derived for a second-order grey-box 

model that incorporates both wind-driven and stack components of air infiltration. 

4. On/off heating: Originally, we modeled the HVAC heat supply QHVAC as a two-state 

variable that has a fixed value whenever the HVAC is called on, and is zero otherwise. 

This model is appropriate for a single-stage furnace, and in principle it can be extended to 

accommodate a multi-stage furnace. However, it is unclear if the on-off or discrete 

heating model also works for boilers, especially for condensing boilers that can modulate 

extensively. In addition, the timing of heat delivery can be delayed for boilers with more 

massive (e.g., cast-iron) radiators and for steam-based systems. 

Due to the air leakage nonlinearity limitation, we used a commercial software package, the 

MATLAB Grey-box toolbox (Ljung 2017), that is specifically designed for implementation and 

identification of arbitrary grey-box models. Overcoming other challenges is explained in the next 

section. 

3.3 Restricted Grey-Box Model With Infiltration and the “Static” Approach 

Accurate physics-based modeling of air infiltration requires addressing both wind and stack 

effects (see previous section), which can lead to cumbersome mathematical terms with numerous 

fitting parameters (Walker and Wilson 1990). On the other hand, given the coarseness of the 

second-order grey-box model and limited experimental data available to us (e.g., no local home-

specific weather data available), empirical relationships can be as accurate but more practical for 

implementation. Accordingly, in this work we use Walker’s (2017) empirical model with just 

two fitting parameters: 
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���� =  −������,���(����.� + ��|�� − ��|�.�)�.�(�� − ��)  (4) 

where the first two terms designate air density and air heat capacitance, respectively, W the wind 

speed, and C1 and C2 are fitting parameters. 

To address the zone challenge of the initial approach (see previous section), we extended the 

conventional grey-box model by restricting its search space. The main assumption is that QHVAC 

is evenly distributed over the interior floor space of the residential single-family building and 

that zone temperature dynamics follow those of the “average” indoor temperature. We think this 

assumption mainly applies to homes controlled by a single thermostat and heated with furnaces, 

but can also correspond to boiler-heated homes with a single thermostat. The basic modeling 

idea then is that the experimental indoor temperature curve is no longer considered to be the 

“best” solution to which a grey-box model’s solution is conventionally fitted for parameter 

identification (Lazrak and Zeifman 2017). Rather, the parameters of Eqs. (2)-(4) are estimated by 

fitting the model prediction to an unknown yet “best” second-order solution, i.e., a hypothetical 

curve that may differ from the individual experimental ones. Although such a curve is unknown, 

we can assess some parameters that define this curve using overall approximated correlations. 

Such correlations can, in turn, yield confidence intervals for these parameters that we propose to 

use to restrict the search space in the conventional grey-box model identification. 

How do we obtain those correlations? First, let us integrate Eqs. (2) and (3) over a relatively long 

period of time , so that the initial and final values of indoor (and wall) temperatures are 

approximately the same: 

0 = �� ∑ ��� + ���������� + 0.5����
����������� −

��(�����������)�

��
+ ����������    (5) 

where the bar designates averaging over time and Q is the HVAC heat supply at state “on” (zero 

heat supply in the “off” state). It is easy to see that this “static” Eq. (5) is an energy conservation 

equation and also is the well-known PRISM model (Fels 1986). The statistical confidence 

interval for the slope in this linear regression can be used to restrict the search space for ����. 

Figure 2 shows an example of a correlation between the “on” time and indoor-outdoor 

temperature difference, predicted by Eq. (5), for a home. It can be seen in the figure that better 

correlations (scatter-wise) occur for ranging from 24 hours to several days. 
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Figure 2. Correlations predicted by Eq. (5) and calculated from CT data for a furnace-heated home 

We can also add a second, “dynamic” correlation by considering dependence of the room 

temperature gradient on ambient temperature. Unlike the cooling gradient discussed earlier (see 

section 3.1), this one is a heating gradient. Many U.S. residential heating systems, particularly 

furnaces, are sized to enable quick temperature recovery, meaning they have significantly more 

capacity than design loads (Brand and Rose 2012), so that the heating curves are often much 

more linear in time than the cooling curves. Accordingly, Eq. (2) can be approximated by a 

difference equation over the “on” portion of heating cycle 

∆��

���
≈

�

��
+

����

��
+

����

���
−

��

����
(�� − �� + ∆��) +

����

��
   (6) 

where Tr is the room temperature gain during the “on” portion of the heating cycle and Tw is 

the difference between the actual lumped wall temperature and the steady-state lumped wall 

temperature, obtained from Eq. 3. The latter variable (Tw) is a manifestation of building 

envelope’s thermal mass that cannot be explained by the first-order model, Eq. (1).  

Figure 3 shows experimental correlations of type Eq. (6), calculated for the same home used for 

Fig. 1. The significant scatter, observable in the figure, forms a characteristic parallelogram 

structure. Because the scatter does not go to zero during nighttime, we attribute it, at least in part, 

to the difference between the lumped wall temperature and the “equilibrium” lumped wall 

temperature (i.e., the thermal mass effect Tw) in Eq. (6). 
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Figure 3. Correlations predicted by Eq. (6) and calculated from CT data for a furnace-heated home 

To build each plot, we used a moving time window and included in each time window all incidences of furnace at state 

“on,” each point represents the heating rate over one incidence; Tr-Ta is averaged over each time window.   

In principle, if the overall heat capacitance of the internal space Cr were available or could be 

accurately estimated for a home, the slopes of the two correlations, i.e., Aw/(RwQ) for Eq. (5) and 

Aw/(RwCr) for Eq. (6), would uniquely define the R-value (Rw) and HVAC heat supply (Q) for the 

case of negligible air leakage. Similarly, in case of the non-negligible air leakage, analogous 

estimations would be possible by nonlinear curve fitting using Eq. (4). Whereas Figure 2 

suggests relatively narrow confidence interval for Eq. (5)’s slope, Figure 3 suggests that the 

confidence interval for Eq. (6)’s slope is rather large; yet further processing by MATLAB 

toolbox would yield reasonably accurate estimates for the home physical parameters. 

However, because Cr includes the heat capacitance of the internal air as well as the furniture, 

carpets and other household contents and internal surfaces and structure,3 its calculation is not 

straightforward. Although some semi-empirical formulas are available in the literature (e.g., 

Berthou 2013), our experimental results do not support them (Zeifman, Lazrak, and Roth 2018).  

Accordingly, in this work, we limited the correlations to Eq. (5). We found, however, that having 

only one correlation, Eq. (5), available was not helpful for the proposed restricted grey-box 

model that used nighttime data only: The restricted grey-box model usually yielded parameter 

estimates that were very close to the starting parameter values sampled from the restricted 

parameter space and fluctuated drastically from night to night. The standard remedy to this 

                                                 
3 Some authors refer to Cr as “internal thermal mass” (Lee and Hong 2017). 
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overfitting problem is to extend the time to larger periods, such as to several weeks to get the 

system sufficient excitation (e.g., Lin et al. 2012). Given that such extension (see above) implies 

accurate modeling of external and internal heat gains and that, among the experimental homes, 

there are relatively few equipped with “high-resolution” CTs (i.e., from vendor #1, see Table 1, 

Table 2), we decided not to pursue this approach.  

For actual home HVAC systems, the range of efficiencies is relatively small. Hallinan et al. 

(2011) suggest the efficiencies range from 70% (worst case) to 95% (best case) for residential 

furnaces and boilers. Therefore, as a practical alternative, we assumed the same HVAC 

efficiency of 80%4 for all experimental homes, which, coupled with an air infiltration estimation 

procedure, permits direct estimation of the overall R-value using an estimate for �� (from the fuel 

bills and HVAC runtime) and the value of slope from the correlation, Eq. (5). The air infiltration 

estimation procedure is based on an analysis of salient CT data points and will be discussed in 

the next section. 

Therefore, unlike the conventional grey-box model calibration methods that estimate model 

parameters using a dynamic time series of state variables, e.g., Tr (Lin et al. 2012, Bacher and 

Madsen 2011), the proposed method is static. The method is suitable for homes equipped with a 

single thermostat and a furnace. To extend this method to boiler-based HVAC systems, we note 

that boiler systems are two-stage systems (Peeters et al. 2018). That is, water is heated to a target 

temperature (controlled by an aquastat) by a burner and then is pumped to the emitters (radiators 

or convectors) when a thermostat calls for heat. This two-stage process implies two additional 

heat balance equations, one for heating water with a boiler and one for the radiator heat 

exchange. Fortunately, under simplifying assumptions, integration of these four equations—

similar to integration of Eqs. (2) and (3)—yields an equation similar to Eq. (5).  

The main simplifying assumption is that for a boiler with fixed QHVAC, the time “on” as reported 

by a CT roughly equals a constant fraction,  of the burner on time .5 Because �� ∑ ��� is the 

only term with time “on” in Eq. (5), and because we calculate �� using the gas bills and also time 

“on,”  will cancel out in this term, and we can use the reported by CT time “on” as a proxy for 

the burner time “on” in Eq. (5). Violations of the simplifying assumptions would result in 

nonlinearity in the time “on”—temperature difference correlations, Eq. (5). Likewise, CT data 

from a properly configured modulating boiler (usually a condensing boiler) would also have a 

significant nonlinearity in these correlations, with a higher ratio of time “on” at warmer outdoor 

temperatures due to modulation of water circulation temperatures as a function of Ta. 

Figure 4 shows an example of correlations, Eq. (5) for a boiler-heated home. The experimental 

correlations in this figure do not practically differ from those of a furnace-heated home (see 

                                                 
4 In practice, estimated HVAC efficiencies reported in audits ranged from 78% to 82% for 67% of homes in this 
study. These values exclude distribution efficiency. 
5 This reflects that boilers are often oversized relative to peak loads to facilitate recover from temperature setbacks. 
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Figure 2). We did not observe significant nonlinearities in such correlations for other boiler-

heated homes in this project, except those caused by missing data. 

 

Figure 4. Correlations, Eq. (5) calculated by CT data for a boiler-heated home 

3.4 Air Leakage Characterization 

Our approach uses approximations and integrations to estimate the two air leakage parameters C1 

and C2 in Eq. (4) and then to calculate the ACH50 for a home. The key idea is to compare HVAC 

runtimes for time windows with essentially different wind speeds but similar otherwise (e.g., in 

terms of time of the day, inside/outside temperatures). 

Suppose we use two different time windows of same duration  and with same average 

temperatures (Tr and Ta), same internal heat gains (usually this is approximately true if the time 

of the day is the same), but different wind speeds W1 and W2. Assume W2 ≈ 0 and W1 to be close 

to the maximum wind speed value over the heating season. From Eqs. (4) and (5), we get 

∑ �����∑ ����

�
=

�����
�.����|�����|�.��

�.�
(�����)

�
−

�����
�.����|�����|�.��

�.�
(�����)

�
  (7) 

Walker (2017) indicated that, typically, wind-based and stack effect-based infiltration have 

similar energy impacts over the course of the heating season. Therefore, because the maximum 

wind speed is much higher than the average wind speed, ����
�.� ≫ ��|�� − ��|�.� and Eq. (7) 

takes the following approximate form: 

∑ �����∑ ����

�
≈

�����
�.��

�.�
(�����)

�
�1 − �
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��
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We can then derive the parameter C1 from Eq. (8): 

�� ≈ �
(∑ �����∑ ����)�

�(�����)
�

� �

��
�.�����

��
��

�
�.�

�
�    (9) 

In this way, wind-based infiltration is fully characterized. For the stack effect, we can assume the 

approximate equality, which is expressed by 

�����.�������� = ����(�� − ��)�.�����������������    (10) 

where the bar designates averaging over entire heating season and  is a fitting parameter of the 

order of unity.  

In practice, we estimate the parameter C1 for a home using all available pairs of the similar time 

windows with high/low wind speed in a home’s CT data set.6 Once C1 is estimated, we use the 

overall daily correlations, Eq. (5), and a set of “possible” values of  = {0.5, 1.0, and 2.0} to 

calculate the corresponding set of values of parameter C2 and then to estimate the value of Rw 

and the goodness-of-fit (e.g., the sum of errors squared) by least-square curve fitting to Eq. (5). 

We then select the set {C2, R} with the best fit as our estimate for a given home. Lastly, we 

assume that the internal and external heat gains are not correlated with the indoor-outdoor 

temperature difference Tr – Ta, thus these quantities can be considered to be random noise for the 

curve fitting.  

Once the estimates of the parameters C1 and C2 are available, the “natural” air leakage flow rate 

�̇������� can be calculated by  

�̇������� =
{�����.�������������(�����)�.�����������������}�.�

������,���
      (11) 

where air and cp are density and heat capacitance of air. Finally, a conversion factor F ranging 

from 10 to 25 for U.S. homes (Krigger and Dorsi 2004) can be used to obtain ACH50: 

����� = �
�̇�������

�
3600       (12) 

where V is the home volume and 3600 is the number of seconds in hour. 

3.5 Results for Homes With One CT 
3.5.1 Overall R-Value 

We had 87 homes with acceptable quality CT data (i.e., with no or minimal missing data) with a 

single thermostat and furnace/boiler as well as available audit results and gas bills, of which 13 

homes were from vendor #1, 41 from vendor #2, and 26 from vendor #3 (7 homes were excluded 

from consideration as outliers7). To get appropriate values for Aw and Rw, we complemented the 

HEA data with estimates for the heat-loss characteristics of the foundation and the window-to-

                                                 
6 If more than five such pairs are available, we can also test statistical significance of C1. 
7 Homes with questionable reported ratios of surface area to conditioned floor space accounted for most outliers.  
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wall area ratio. For the floor R-value, we used a value of 9 (°F·h·ft2/Btu) that corresponds to a 

typical value of 7 (Hallinan 2011), taking into account the lower floor-ground temperature 

difference, and we assumed the window area equaled 15% of the wall area.  

Figure 5 and Figure 6 show a comparison between the overall R-value calculated by our method 

and the HEA R-value. We do not use a correlation coefficient to measure the goodness-of-fit as 

proposed by Goldman et al. (2018) for two reasons. First, some values from the HEAs are 

estimates that have varying degrees of uncertainty. Second, our ultimate goal is to identify homes 

with significant retrofit opportunities (i.e., classification) versus a precise estimate of R-value or 

ACH50. It can be seen that, generally, our method accurately separates homes with poor 

insulation (R-values <8 in imperial units) from homes with adequate insulation (R-values ≥ 8). 

Quantitatively, the classification accuracy for these two classes is 88% overall (70 out of 80 

classified correctly). The method tends to overpredict higher R-values; our initial assessment is 

that this overprediction is due to challenges identifying missing runtime data,8 which we found is 

more challenging to detect for vendors #2 and #3. Given the sample sizes, there is no indication 

that the classification accuracy depends on the CT vendor. 

 

Figure 5. Estimated and HEA-based (“ground truth”) overall R-values for homes with single CT and either gas 
furnace or boiler 

R-values are given in imperial units (°F·h·ft2/Btu) 

 

                                                 
8 Unaccounted runtime results in lower calculated heat supply from the heating system, making it appear that the 
building envelope has a higher R-value to maintain the indoor temperature set point. 
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Figure 6. Estimated and HEA-based (“ground truth”) overall R-values for homes with single CT and either gas 
furnace or boiler, by CT vendor 

R-values are given in imperial units (°F·h·ft2/Btu) 

3.5.2 Air Leakage 

The results of our air leakage prediction for 16 homes with blower-door test results available are 

shown in Figure 7 and Figure 8. To estimate ACH50, we used the conversion factor F of 14.8 in 

Eq. (12) for a two-story home located in Massachusetts (Krigger and Dorsi 2004). Although the 

discrepancy between the predicted and measured value can reach up to ~40%, we can effectively 

separate the homes with relatively low ACH50 from the leaky homes (with ACH50 >15). To the 

best of our knowledge, this is the first report of a successful ACH50 prediction based on CT data, 

limited home characteristics available to utilities, and weather station data only. 

 

Figure 7. Estimated and HEA-based ACH50 values for 16 single-CT homes with blower-door test results 
available 
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Figure 8. Estimated and HEA-based ACH50 values for 16 single-CT homes with blower-door test results 
available 

3.5.3 Runtime 

Accurately predicting runtime is important for estimation and verification of energy savings (see 

Section 5). Because our model is fitted to daily runtime data by minimizing the errors over the 

entire season, theoretically the difference between actual and predicted runtime over the entire 

season should approach zero. This is because when the sum of squared errors is minimized, the 

algebraic sum of errors (its derivative) tends to zero. In our case, the seasonal total error is de 

minimus but not exactly zero, mainly due to the numeric precision of MATLAB software (of the 

order of 10-15). 

It is still useful to look into daily runtime prediction errors as those essentially indicate the level 

of scatter in the correlation plots (see, e.g., Figure 2). Figure 9 shows an example of such average 

daily errors calculated over the entire heating season for the single-CT homes with furnaces. 

Although there are few homes with relatively large errors (primarily, these are homes with low 

furnace runtime and correspondingly high overall R-values), the average error among all these 

homes is 17% (absolute value). 
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Figure 9. Averaged daily runtime prediction errors (absolute values shown) over the entire heating system for 
25 homes with a single CT and furnace 

Data for vendor #2 is shown. Average prediction error among all homes is 17%. 

3.5.4 Comparison With State of the Art 

For the sake of comparison, we also calculated the conventional “time constant” (Chong and 

George 2018) values for homes with significant nighttime thermostat setbacks. Because of the 

coarse resolution of temperature data from vendors #2 and #3, we used data from vendor #1 for 

single-CT homes with a furnace (see Table 1). For these calculations, we did not need gas bill 

data; therefore, we were able to process data for more homes (40) than reported in Table 2 (17). 

Figure 10 shows the average calculated decay rate (i.e., inverse “time constant”) for each home 

versus the HEA-based R-value.  
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Figure 10. Calculated average decay rate for single-CT homes with furnace from vendor #1, versus their 
overall R-value 

Chong and George (2018) suggest that the decay rate of 0.0167 h-1 corresponds to a thermally 

“tight” home, 0.025 corresponds to an average home, and 0.05 corresponds to a thermally 

“leaky” home. Whereas the homes with higher HEA-based R-value (≥ 8) may have significant 

air leakage and thus do not necessarily exhibit good thermal performance, the homes with low R-

value (i.e., <8) certainly should exhibit below-average thermal performance. However, Figure 8 

indicates that 9 out of 16 homes with low R-value (i.e., 56%) have decay rates below 0.025 

which, according to Chong and George (2018), corresponds to above-average thermal 

performance. This observed inability of the “time constant” to serve as a reliable indicator of 

home thermal performance is consistent with our previous observation that the time constant 

depends on both thermal resistance and capacitance, and that effective thermal capacitance can 

vary appreciably among homes (see our discussion on first-order grey-box models in Section 

3.1). 

4 Homes With Two CTs 
Homes with two CTs have more model uncertainties than one-CT homes. Although it is natural 

to assume that homes with two CTs have two major thermal zones (one CT per zone), the zone 

characteristics are usually not explicitly available in the CT/home data. Ideally, we would want 

the following information for modeling homes with two CTs: 

 Zone/CT location and geometry (e.g., each per floor) 

o What CT corresponds to the upper/lower floor? 

o What is the zone external area? 

 Heating system capacity per zone.   
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Because this information is not available, we decided to implement a whole-building equivalent 

approach for modeling the homes with two CTs. In this approach, we assume that the home is 

heated by an equivalent gas-fired system whose equivalent power and runtime can be calculated 

using the actual data. This approach overcomes the problem of matching the zone-specific 

estimates of R-value/ACH50 with the whole-home HEA-based values as well as the potential 

need to model interzone heat transfer. At the same time, the whole-home approach cannot isolate 

a retrofit opportunity to a specific zone.  

Homes with two CTs can have either a single heating system (furnace or boiler) or two 

independent heating system (usually two furnaces or two boilers); in practice, we did not have 

that information available. Figure 11 shows how the equivalent power and runtime is proposed to 

be calculated in either case. For a single furnace, we assume that the full device’s power is 

exercised if either CT calls for “on.” Therefore, the equivalent power is the same as the device 

power (assumed to be constant), whereas the equivalent runtime is the union of the individual CT 

runtimes. For two separate devices (two furnaces or a boiler modeled as serving two separate 

zones), we assume that the devices have (generally different) powers q1 and q2, and that the 

equivalent power is either q1, q2 or q1+q2 depending on the “on” status as reported by the two 

CTs. 

 

Figure 11. Calculation of equivalent whole-building power and runtime under two alternative assumptions 

q = per/system, Q = per/home 

To make this approach practical, we tested its sensitivity to a variety of potential heating 

configurations. In particular, we calculated the equivalent power and runtime by making 

empirical assumptions about a home heating system and tested the sensitivity of the end results 

(i.e., overall R-value and ACH50) to these assumptions. Low sensitivity would imply high 

robustness of the proposed whole-building method, whereas high sensitivity would require 

modification of the approach. 

To assess the sensitivity of the results to these assumptions, we used various ratios between q1 

and q2 (ranging from 50:50 to 30:70 to 70:30) as well as those between the areas A1 and A2 (also 
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ranging from 50:50 to 30:70 to 70:30) and calculated, for each combination of q1, q2, A1 and A2, 

the overall building parameters (R-value and ACH50) for all the two-CT homes with complete 

quality data sets. We found that the estimated overall building parameters only fluctuated within 

±5% for 90+% of the homes, under the two assumptions and the aforementioned ranges.  

Therefore, for homes with two CTs we implemented the single-device model that requires fewer 

underlying assumptions. In this model, we assume that the equivalent runtime is the union of 

zone runtimes (Assumption 1) and that the equivalent room temperature is the arithmetic average 

of the two zonal temperatures. Our reference (Zeifman, Lazrak, and Roth 2020b) provides 

additional theoretical framework to justify the above assumptions. 

4.1 Results for Homes With Two CTs 

We introduced additional heuristic data processing rules to address specific data issues we 

encountered. We found that chunks of missing runtime data often show up as outliers in the 

runtime-temperature delta correlations. Therefore, we removed such outliers using a statistical 

technique, “patched” these now missing data points with their estimates using regressions 

developed from the other, valid data applied to weather data for the outlier periods, and 

recalculated the heating power from gas bills using the updated runtime.  

For homes with reported integer number of floors, we implemented consistency checks to correct 

potential audit-reported geometrical values. For homes with a fractional number of floors, e.g., 

2.5 floors, we always used the audit-reported geometrical values because consistency checks can 

be more difficult for such homes. Finally, we observed several homes with unusual gas bills 

(e.g., homes with very high summer gas bills) and excluded those high bills in the gas baseline 

usage calculations. Some other homes had highly variable winter gas bills, even though the CT 

runtime and outside temperature did not show any anomalies. For these homes, we excluded 

periods with unusually low bills. 

Figure 12 compares the HEA data and estimated overall R-value for 74 homes with two CTs and 

complete sets of CT interval data (i.e., data sets with missing data repaired or with no missing 

data). Using a threshold of R-value = 8 to separate homes with a significant insulation retrofit 

opportunity from those with no insulation opportunity, we obtain 87% for the overall 

classification accuracy. These results are comparable to those we obtained for homes with one 

CT (see Section 3.5.1). 
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Figure 12. R-values estimated from CT data versus HEA data for homes with two CTs 

Overall results for all homes with complete data sets 

Figure 13 plots the ACH50 values for the model versus the HEA data calculated from the blower-

door tests. Unfortunately, there were only eight homes with available HEA data ACH50 and 

complete sets of quality data, and none were leaky according to our threshold of ACH50 ≥ 15. 

Yet, all these homes were correctly classified as homes with no air sealing opportunity. Note that 

our method appears to systematically underestimate ACH50, which is consistent with Hales 

(2014). For a more stringent threshold of 7 ACH50, the classification accuracy is 6/8 = 75%. 

Although this technically meets the project objectives (see Section 1), we acknowledge that this 

finding has high uncertainty due to the very small sample size. 

 

Figure 13. ACH50 values calculated from CT data versus blower-door test results for eight homes with two CTs 
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Finally, for homes with two CTs, we calculated the runtime prediction error over the season. 

Following our discussion in Section 3.5.3, the calculated overall runtime errors are small because 

of the way we perform our estimations.  

Figure 14. Runtime prediction errors over entire heating season for all homes with two CTs (boiler or furnace) 

Left – all homes, right – outliers excluded 

5 Energy Saving Predictions 
The project’s objective related to energy saving predictions (see Section 1) indicates that we can 

use either the predicted energy savings from the energy audits, or the actual energy savings 

obtained from implemented ECMs as a comparison value. Because we identified only a few 

homes that had implemented significant ECMs during the data collection period (see also 

Section 7.2), we used the HEA energy saving predictions as the comparison value.  

HEA companies use proprietary software for energy saving prediction, and we reviewed a 

proprietary document describing the energy saving prediction algorithms for an energy audit 

company (Harley 2011). This document suggests that the state of the art uses a PRISM-like 

equation (Fels 1986, Hallinan et al. 2011) to calculate energy savings based on area-weighted 

pre-retrofit values of component R-values and average CFM along with their post-retrofit 

projections. However, this document did not disclose a methodology for prediction post-retrofit 

building characteristics.  

Accordingly, we analyzed the data and verbose descriptions of energy audits and ECM 

implementations, part of the anonymized data sets transferred to us by our utility partners, to 

model post-retrofit building physical parameters (i.e., overall R-value and ACH50).  

5.1 Overall Post-Retrofit R-Value 

We calculate the overall building R-value using the building geometry (external wall area, 

attic/roof area, window-wall area ratio) and the R-values for building major components 

(external walls, attic, basement/foundation and windows). Because the building geometry does 

not change in retrofits, we need to characterize the post-retrofit R-values for external walls and 

for attic (i.e., corresponding to the retrofits we consider in this project) to calculate the overall 

post-retrofit R-value. 
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5.1.1 External Walls’ Post-Retrofit R-Value 

The R-value of wall cavities filled with blown-in cellulose can vary due to differences in wall 

cavity thickness, exterior cladding properties, etc. Thus, we took two complementary approaches 

to estimate and model the post-retrofit R-value of walls that are “drilled and filled.” First, we 

used building physics to estimate a typical wall R-values using area-weighted parallel heat 

transfer paths through wood framing and a 3.5-inch wall cavity filled with cellulose. Assuming a 

25% framing factor (Lstiburek 2010) and a cellulose insulation R-value of 3.5 (Fisette 2005) 

yields a whole-wall R-value of around 11.9. Second, we reviewed the whole-wall R-values 

estimated for audited homes to understand how the audit software assessed the wall R-value of 

walls with cavity insulation. We considered all the homes with audit information available that 

did not have a wall-insulation retrofit implemented (i.e., these homes do not appear in the 

measures file). We found that of approximately 800 homes with external wall R-value greater 

than 6, more than 50% had the R-value in the range between 11 and 12 and only 10% had an R-

value higher than 12. Based on these two approaches, we decided to use the midpoint, R-value of 

11.5, as a practically achievable post-retrofit whole-wall R-value. 

5.1.2 Attic Post-Retrofit R-Value 

For the attic retrofits, there is less uncertainty in converting the verbose ECM description into R-

value as compared to the wall retrofits. Accordingly, we calculated the post-retrofit R-value 

following energy audit standards (Energy Assessment Standards 2012) and the retrofit verbose 

descriptions for approximately 350 homes with significant (i.e., more than 25% R-value 

increase) attic retrofits. Table 3 shows the distribution of post-retrofit attic R-values in these 

homes. Although a majority (60%+) of retrofits achieve around R-40, the overall distribution is 

very broad. Hence, we believe an assumption of a single post-retrofit R-value of 40 is not 

adequate for all homes. 

Table 3. Distribution of Post-Retrofit Attic R-Values as Reported in ~350 HEAs 

Post-

retrofit 

attic R-

value 

<10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 

Fraction 

of homes, 

% 

3 4 7 5 10 7 35 27 4 

 

As a working alternative, we calculated the difference between the post- and pre-retrofit attic R-

value. We found an average difference of 15.6, a median of 14.8, and the three modes of a multi-

modal distribution of 6.6, 15.3, and 22.0. Based on this, we use the average increase in R-value 

(15.6) corresponding to the statistical expectation to model the post-retrofit attic R-value. 
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5.1.3 Overall Post-Retrofit R-Value Prediction 

With the developed models for post-retrofit wall and attic R-values, we can calculate the post-

retrofit overall R-value as would be predicted for homes in HEAs. However, the prediction of 

the post-retrofit overall R-value for the proposed method, which is conditional on the estimated 

pre-retrofit R-value, is not straightforward. Although our R-value prediction is generally in line 

with the R-value based on the HEA data for binary classification of homes, there are notable 

discrepancies between our estimates and the HEA-based data (see Figure 5 and Figure 12). 

These discrepancies could be attributed to the assumptions underlying the HEA calculation (e.g., 

the assumed values of window-to-wall ratio and basement R-value) and/or to errors in CT data, 

gas bills and audit results, variability in HVAC system efficiency (particularly when considering 

duct losses), as well as to the coarseness of the underlying physics-based model.  

Therefore, we need to calculate post-retrofit R-value in a way that minimizes the expected errors 

from the HEA-based values. To this end, we developed the following mapping procedure: 

1. Divide the range of the overall pre-retrofit whole-home R-values for homes worthy of 

insulation upgrade (R ≤ 8) into four intervals: R<5; 5≤R<6; 6≤R<7; and 7≤R≤8. 

2. For each interval i, {i = 1, 2, 3, 4} select homes with the estimated from CT data (pre-

retrofit) R-value falling within the interval. For each selected home j from interval i, 

calculate the post-retrofit overall R-value Rij_GT_Post assuming the wall post-retrofit R-value 

of 11.5 and the attic’s R-value increase of 15.6. Because of the complex nonlinear 

relationship between the estimated and R-values based on the HEA data, the obtained 

values cannot be used directly to predict the estimated post-retrofit R-values. 

3. Instead, for each interval i, find the post-retrofit value Xi for the estimated R-value that 

minimizes the difference between  

∑ (1 −
���

��
)�           (13) 

and 

∑ (1 −
���_��

���_��_����
)�        (14) 

4. The physical meaning of each summand is a relative change of insulation heat loss in a 

building. Build a table mapping each interval onto the average R-value increase Ri = Xi – 

����, where bar designates the average over j value. 

We built the mapping table using 34 homes with estimated R-values lower than 8 (with one or 

two CTs). Table 4 lists the details of the mapping table for R-value prediction. To calculate the 

post-retrofit prediction for an arbitrary pre-retrofit R-value, we need to find the proper interval 

and the corresponding R. The post retrofit prediction equals the sum of R and R. Using the 

proposed mapping methodology, we can extend this table for higher R-values should the need 

arise.  
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Table 4. Prediction of Estimated Post-Retrofit Overall R-Value Increase 

Estimated R-value, pre-retrofit 

interval 
Post-retrofit R for estimated 

R<5 2.4 

5≤R<6 2.5 

6≤R<7 2.2 

7≤R≤8 2.1 

 

5.2 Post-Retrofit ACH50 

Unlike the overall R-value, ACH50 is directly measured in a blower-door test.9 Accordingly, we 

can directly project post-retrofit ACH50 based on the measured change in ACH50 from actual air 

sealing projects. However, we need to reduce the scatter in the HEA data to make meaningful 

predictions. An analysis of the blower-door test results suggests that the reduction in air leakage 

(i.e.,  ACH50) can be modeled as a linear function of the pre-retrofit ACH50 value. Figure 15 

illustrates the analysis with experimental data on 85 homes with blower-door test results 

available. The following stepwise linear fit can be used to model the data: 

 

Figure 15. Experimental data on pre/post-retrofit ACH50 as measured in blower-door tests 

∆����� =
0.26 × ����� − 0.73, ������� < 20

6.3, �� ����� ≥ 20
   (15) 

Eq. (15) can be used to predict the expected reduction air leakage for homes. With this model, 

we mapped the estimated ACH50 to that predicted by Eq. (15) ACH50 for the 24 homes for 

                                                 
9 However, Hales (2014) suggests that the blower-door test systematically overestimates ACH50 relative to tracer-
gas tests. 
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which we have both estimated and HEA-based infiltration rates (ACH50) available (see Figure 7 

and Figure 13). Figure 16 shows the results.  

 

Figure 16. Predictions of ACH50 modeled by Eq. (3) versus estimated ACH50 for 24 homes that have both 
estimated and blower-door ACH50 available 

The final equation for prediction of ACH50 given the estimated ACH50 value is  

∆����� = 0.18 × ����� + 0.6     (16) 

We use this equation to predict the post-retrofit parameter ACH50 values. Ultimately, we use 

this combined with the change in whole-home R-value (calculated using Table 4) to assess the 

combined energy impact of the two potential measures. 

5.3 Energy Saving Calculations 

Because our modeling approach can be considered as an extended version of PRISM (Fels 1986, 

Hallinan et al. 2011), we can apply the same methodology to calculate predicted savings for both 

the HEA-based values and our proposed method. In particular, for a given home, we can 

calculate the change in runtime caused by either a higher overall R-value or lower air leakage 

over the entire heating season. By using separate sets of HEA-based pre/post values and those 

estimated, we obtain runtime reductions for the HEA prediction and for the proposed method. 

We can also predict relative (i.e., %) savings by normalizing the runtime reduction over the 

overall season by the pre-retrofit runtime for a home. 

We used this methodology to calculate HEA-based energy savings and those for the proposed 

method. For insulation savings, we calculated the savings for 34 homes with insulation retrofit 

opportunities (i.e., R <8). Figure 17 shows a comparison between the HEA prediction and our 

predicted savings. Note that the average energy saving for such homes is substantial, of the order 

of 30%. Out of 34 predictions, 29 (85%) are within ±25% from the HEA values, which suggests 

that we have exceeded the Project Objective #2 (see Section 1). 
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Figure 17. Estimated and HEA-based (GT) predictions for percent energy savings 

The results are calculated for homes with one/two CTs, complete sets of quality data and insulation retrofit opportunity. 

Out of 34 homes, 29 have estimated predictions within ±25% of HEA predictions. 

For the air sealing opportunities, we have 24 homes for which we have both ACH50 estimates 

and HEA data (i.e., blower-door tests). Out of these, we have only four homes with ACH50 >15, 

i.e., homes with significant retrofit opportunities. To increase the sample size and in accordance 

with the classification results discussed earlier, we consider homes with blower-door test results 

ACH50 exceeding 7,10 i.e., 15 homes.  

Figure 18 shows the results for these 15 homes. Even though the air sealing retrofits yield less 

savings than the insulation retrofits (see Figure 17), the savings are still significant. The 

predictions are within ±25% for 11 homes, i.e., for 73%. That said, this finding has high 

uncertainty due to the very small sample size.   

                                                 
10 Looking at the pre-retrofit ACH50 blower-door test values, we could not identify a clear value (or even range) 
when air sealing is recommended (see Figure 15). We believe this likely reflects that air sealing recommendations 
are based on qualitative assessments of the expected benefit and ease of accessing potential leakage paths for air 
sealing. 
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Figure 18. Estimated and HEA-based (GT) predictions for percent energy savings from air sealing  

The results are calculated for homes with one/two CTs, complete sets of quality data and measured in blower-door tests 

ACH50 >7. Out of 15 of homes, 11 have estimated predictions within ±25% of HEA-based predictions 

6 Randomized Controlled Trial 
Successful development of algorithms to conduct remote HEA/predict energy savings provides 

an opportunity to test whether customized retrofit recommendations and savings potentials for 

individual homes ultimately can:  

1. Significantly increase the uptake rate of on-site HEAs, and  

2. Significantly increase the fraction of HEAs resulting in ECM implementation. 

6.1 RCT Design 

We designed and conducted a randomized controlled trial (RCT) to answer these two research 

questions. In an RCT, households meeting the test criteria are randomly assigned to the treatment 

and control groups. The criteria for homes to qualify for the treatment and control groups in the 

RCT are: 

 Located in Eversource or National Grid’s (also known as the program administrators) gas 

service territory in Massachusetts  

 Gas is the primary space-heating fuel 

 Detached single-family home 

 Customer has received a rebate from Mass Save for a CT 

 The program administrator has access to customer CT data for at least half of one heating 

season 

 The program administrator has access to customer gas billing data for at least one year 

coincident with the period of the CT data  
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 Customer has not had a Mass Save HEA. 

Later in the project, our utility partners found that the last criterion was violated for a majority of 

customers in some groups (see Section 6.1.1 for details). 

In the RCT, the treatment group receives targeted outreach informed by the algorithms. That is, 

Fraunhofer applied the algorithms to the CT data from the treatment group customers to identify 

homes that are likely to have an insulation (attic or wall) or air sealing opportunity. For these 

homes, the algorithms identified the expected retrofit opportunity(ies) and calculated their 

expected post-retrofit energy savings (by updating the physical parameters in the algorithms to 

reflect the retrofit targets), and Fraunhofer provided those data to the program administrators. In 

turn, the program administrators incorporated the customer-specific offerings and energy savings 

into customer outreach and sent them to the appropriate treatment group customers.  

Based on the data sets we received from our utility partners, we designed one treatment and four 

control groups. The control groups serve distinct purposes. Control groups 1 and 1A comprise 

customers who took a CT incentive and for whom we have CT data that are taken from the same 

population as the treatment group. Group 1 includes customers with low CT data quality that 

precluded identification retrofit opportunities. That said, we expect them to have the same rate of 

retrofit opportunities as the population of customers that we analyzed with acceptable CT data 

quality, i.e., control group 1A and the treatment group combined. In contrast, control group 1A 

comprises customers for whom the algorithms found no retrofit opportunities. Because both 

control groups will receive generic outreach, this should reveal if the customized feedback has a 

significant impact on HEA and/or retrofit uptake for people purchasing and requesting a rebate 

for a CT. This should enable us to quantify the impact of the customized outreach.  

Control group 2 represents customers who received an incentive for installing a CT from another 

manufacturer, foremost Nest, that did not provide CT data to the PAs. Consequently, it will 

provide insight into if the frequency of customer outreach affects enrollment. Finally, we surmise 

that customers who install a CT and take an incentive may differ meaningfully from the large 

majority of customers who do not have a CT installed. Thus, control group 3 compares 

participation relative to customers who did not take a CT incentive. Because any outreach has the 

potential to increase program participation, the first control group will also receive generic Mass 

Save marketing outreach whenever the treatment group receives customized outreach. 
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Table 5 summarizes the RCT design. We calculated the statistical test power given the expected 

participation rates of 2%–3% and 10% and implementation rates of 30% and 60% for the control 

and treatment groups, respectively. We concluded that these characteristics exceed those 

commonly acceptable in experimental design (typically, test power of 0.8 at significance level of 

0.1). 
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Table 5. Randomized Controlled Trial Design 

Group Type Description 
Supplemental 

Outreach? 

Sample Size, N 

(actual) 

Control Groups 

1. Took CT incentive, 

have CT data – Low 

CT data quality 

Receive generic 

outreach four times, i.e., 

same as treatment 

group 

902 

1A. Took CT incentive 

– Algorithm Identified 

NO retrofit opportunity 

None 212 

2. Took CT incentive, 

other CT type 
None 1,000 

3. Did not take CT 

incentive 
None 1,000 

Treatment Group 
1. Took CT incentive, 

have CT data 

Receive customized 

outreach four times 
216 
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Table 5 shows a fraction of homes with high-quality CT data that is similar to that in the 

previous data sets in this project. Initially, we received CT data from vendors #1 and #2 (see 

Table 1), along with gas bills and publicly available home information (conditioned area and 

number of floors) for 1,332 homes. Of those, 430 homes or 32% had good-quality CT data. At 

the same time, Table 2 suggests that for algorithm development, we had 457 homes with one/two 

CTs with complete sets of data overall. Of these, we were able to process 87 homes with one CT 

(see Section 3.5.1) and 74 homes with two CTs (see Section 4.1), i.e., 161 homes or 35% overall. 

We also had to extend Table 4 to incorporate higher estimated overall R-values (up to 11) to 

boost the treatment group size; as expected, those homes with the higher estimated R-value 

commanded relatively small saving percentage that nonetheless often exceeded our targeted 

value of $50 per season. 

6.1.1 The Repeat Customer Problem 

Initially, we identified 216 customers for the treatment group ($50+ projected savings) and 

provided their anonymized customer IDs along with their projected seasonal savings (in therms 

and dollars) for insulation and air sealing opportunities to National Grid and Eversource. 

However, subsequent communications with National Grid in June 2019 found that: 

 A significant number of customers (up to 75%) had a previous home energy assessment 

(as long as the program administrator data goes back in time), and 

 49 out of the 216 customers initially selected for the treatment group and two customers 

of control group 1A had air sealing/insulation measures installed (note: the depth of those 

measures was not disclosed).  

Consequently, eliminating customers with any prior home energy assessment from the RCT 

would shrink the treatment group and control groups 1 and 1A approximately fourfold, rendering 

these groups too small for a statistically meaningful inference. Accordingly, we decided to not 

remove such homes from participation, but have their (anonymized) IDs available for future 

study.  

On the other hand, prior ECM implementation does preclude selecting customers for the other 

control groups. Table 6 lists the updated group sizes. For control groups 1 and 1A, we only 

received information on prior HEAs from National Grid.  

Table 6. Updated RCT Design 

Group Type 
N, Original RCT 

design 

Number of customers 

that had HEA in the 

past 

Number of qualifying 

customers (N) 

Treatment Group 

(opportunity found) 
216 163 (75%) 53 (25%) 
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Control Group 1A, 

National Grid part (no 

opportunity found) 

130 53 (41%) 77 (59%) 

Control Group 1, 

National Grid part (poor 

quality CT data) 

604 325 (54%) 279 (46%) 

Control Group 2 

(another CT vendor) 
1000 0 99911 (100%) 

Control Group 3 (no CT 

incentive) 
1000 0 999 (100%) 

 

Another potential problem that our utility partners have discovered was that some of the homes 

were multifamily. The majority of such multifamily homes were detected during the initial 

screening and disqualified from RCT, yet some homes could be identified as multifamily only by 

a manual search using their physical address. 

Note that the fraction of homes with previous HEAs is highest in the treatment group (75%), 

lowest in control group 1A (41%), and at a midpoint in control group 1 (54%). Given the group 

sizes, these differences are statistically significant. We believe that these differences can be 

attributed to the way we selected the homes with retrofit opportunities: Homes with the identified 

retrofit opportunities are likelier to have requested HEAs in the past than the homes with no 

found retrofit opportunity. 

6.2 RCT Results 

The printed materials were sent to the treatment group and to control group 1 as follows: 

 1st round: Sent on July 26 

 2nd round: Sent on week of September 27 

 3rd round: Sent on week of November 4 

 4th round: Sent on December 6. 

For the treatment group, the results for the qualified customers (N = 53, see Table 6) are as 

follows. Five homes had requested an HEA as of June 30, 2020—on August 29, September 14, 

September 24, September 30, and January 15. Two of these homes also had insulation and air 

sealing measures installed a month and three months after the HEA (HEA on September 30, 

ECMs installed on November 1 for the first home, HEA on September 24, retrofits implemented 

on January 2 for the second home). The savings predicted by our algorithms for these homes 

ranged from 11%–22%; interestingly, the homes with the highest predicted savings among these 

                                                 
11 We do not know why the numbers of customers in control groups 2 and 3 were 999 and not 1,000. 
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homes (21% and 22%) were the homes that decided to implement ECMs. No customer who had 

had an HEA within the past six years has requested an HEA. 

For control group 1, which received four waves of generic mailers, the results were somewhat 

similar in terms of timing. For the pool of qualified customers (N = 279, see Table 6), 11 homes 

requested HEAs on the following dates: October 18, October 26, November 16, November 22, 

November 26, December 9, December 11, December 12, January 11, February 11, and February 

26. One of these homes also had insulation and air sealing retrofits implemented (HEA on 

October 18, retrofits implemented on January 3).   

That said, nine unqualified homes (i.e., those that requested HEAs in the past) also requested 

HEAs on the following dates: August 16, October 2, October 25, November 26, December 23, 

January 22, February 19, April 4, and April 18, and the homes that requested an HEA on October 

2, December 23, and February 7, then installed ECMs (both insulation and air sealing) on 

December 12, February 27, and March 20, respectively. We are not clear why a significant 

number of homes that requested an HEA (9 out of 20) were the homes that already had an HEA 

in the past in control group 1. Our utility partner suggests that potentially, some homes could 

have changed an owner recently and/or were from a multifamily building.  

For control group 1A (N = 77, see Table 6), one home requested an HEA on July 31 and then 

installed insulation and air sealing ECMs on October 29. 

For control group 2 (N = 999), 28 homes requested HEAs, while 10 homes had implemented 

insulation and air sealing ECMs as of June 30, 2020. Notably, the time lag between the HEA and 

ECM was as long as five months for some homes. 

Finally, for control group 3 (N = 999), 24 homes requested HEAs, and three homes had 

implemented insulation or air sealing ECMs as of June 30, 2020.  

These results are summarized in Table 7. For control group 1, the numbers in parentheses show 

the results assuming that the nine homes with prior HEAs had new owners and thus were 

qualified to participate. Crucially, the treatment group has an HEA rate approximately two 

to five times greater than the control group that received generic mailers, supporting the 

hypothesis that targeted, customized outreach can realize significant increases in energy 

efficiency program participation. 

Table 7. RCT Results 

Group Type N 

Number of 

homes with 

HEAs 

Number of 

homes that 

installed ECMs 

HEA Rate: # 

HEAs/N, ±1 

HEA 

Conversion 

Rate: 

HEAs/ECMs 

Treatment Group  53 5 2 9±4% 2 out of 5 

Control Group 1 
279 

(604) 
11 (20) 1(4) 4±1% (3±0.5%) 

1 out of 11 / 4 

out of 20 
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Control Group 1A 77 1 1 1±1% 1 out of 1 

Control Group 2 999 28 10 2.8±0.5% 
36% (10 out of 

28) 

Control Group 3  999 24 3 2.4±0.5% 3 of 24 

 

Generally, the RCT results follow our expectations. Control group 1A (no opportunity found, no 

messaging) was the poorest performing group, closely followed by control groups 3 (no CT 

incentive, no messaging) and 2 (CT incentive, no messaging). Control group 1 (CT incentive, 

generic messaging) performed better than those. Finally, the treatment group shows the highest 

HEA request rate (about six time higher than the no-messaging background, meaning control 

groups 1A, 2, and 3, and three times higher than control group 1). Given the time lag between an 

HEA and ECM installation, we expect additional ECM installs in all RCT groups over the next 

several months. 

7 Use Cases 
In this section, we consider three use cases that are potential extensions of the proposed technical 

approach, yet are somewhat beyond the scope of the original project. 

7.1 Cooling Season Considerations 

The technical approach developed is applicable to CT data collected from individual homes over 

the heating season. Discussions with other utilities revealed appreciable interest in using CT data 

collected over the cooling season, potentially combined with electric interval data. This would 

significantly enlarge the pool of candidate homes with retrofit opportunities. 

The grey-box models, Eqs. (2)-(5) that provide a foundation of our approach, were derived for 

the heating season. In principle, they could be extended to a cooling season provided that the 

following two factors are incorporated: 

 Air conditioner (AC) performance curve 

 Moisture transport. 

In addition, we expect that solar heat gains will play a larger role in AC loads than during the 

space heating season. 

Unlike a fuel-burning heating system modeled by just two values (Q at state “on” and 0 

otherwise) in Eqs. (2)-(5), the cooling supply of an AC system is not constant at state “on”; 

instead, the corresponding performance curve (e.g., Cutler et al. 2013) that models the 

dependence of AC cooling capacity and power as a function of outdoor and indoor temperatures 

will need to be incorporated in the grey-box equations. Latent heat removal, i.e., 

dehumidification, necessitates additional equations for moisture transport (Yang et al. 2018) that 

further complicate derivation of daily correlations of the type of Eq. (5).  
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Although extension of our method to a cooling season is not straightforward, the way we 

estimate the wind-driven air leakage—i.e., the coefficient C1 in Eq. (9)—remains valid in the 

cooling season12 because it compares system runtimes over similar time windows with high 

versus low wind, and a proper matching of the time window pairs cancels the unknown latent 

heat and also solar heat gains from the difference. If interval electricity consumption data for 

home’s AC system were available, we could then estimate the value of coefficient C1 and 

compare this estimate to its heating-season counterpart. The equality of the two estimates would 

imply potential applicability of our method to the cooling season data. 

Because electric interval data are not available to us in this project, we cannot directly compare 

the cooling- and heating-based C1 estimates. Nonetheless, we can calculate the ratio between the 

estimates of Qheat in the heating season to the average value of Qcool in the cooling season by 

using Eq. (9). Assuming that the average value of Qcool is of the order of a nominal (i.e., 

nameplate) cooling capacity of the home AC system, we estimate that the calculated Qheat/Qcool 

ratio in a Massachusetts climate should be in the range of 1 to 3.13 

The CT data we obtained from vendor #3 included data from a central AC system for some 

homes. In all, we identified 71 homes with good-quality CT data for both heating and cooling 

seasons, of which 52 had cooling data from a single zone (i.e., a single CT in the cooling season, 

whose ID may or may not be the same as those in the heating season). We modified our air-

leakage algorithms for the cooling season and then applied them, together with their heating-

season counterparts, to the data from these 71 homes.   

Figure 19 shows the results. As expected, the ratio is always greater than unity, but many ratios 

are appreciably larger than anticipated. To a significant extent, this may reflect the relatively 

short cooling season duration and modest summertime outdoor temperatures in Massachusetts. 

This results in fewer days with appreciable cooling, making it challenging to find well-matched 

periods of time and decreasing the number of data points in regressions (compromising 

regression quality).  

More work and data, specifically interval electricity consumption data, are needed to fully 

explore the algorithmic capabilities during the cooling season. 

                                                 
12 Assuming that wind predominantly comes from similar directions during the cooling and heating seasons. 
13 This is based on a 2,000 ft2 home with a 50 to 150 kBtu space-heating system and assuming 500 ft2/ton of cooling 
(= 4 tons * 12,000 Btu/ton = 48 kBtu). 
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Figure 19. Estimated heating to cooling capacity ratio for homes with both heating and cooling data available 

Left – all homes with heating and cooling data (71), right – only homes with one cooling zone and heating data (52) 

7.2 EM&V for Retrofits  

It is well known that conventional methodology for evaluation, measurement, and verification 

(EM&V) of post-retrofit savings requires several years of post-retrofit fuel bills. In addition, 

significant uncertainty remains whether household maintain the same level of thermal comfort 

post-retrofit—in other words, increasing thermostat setpoint reduces the potential savings.  

Our approach may provide a quicker and more reliable opportunity for EM&V if sufficient CT 

data are available pre- and post- ECM implementation. This, in turn, depends on the data scatter 

in the daily correlation plots (see, for example, Figure 214). As a rough estimate,15 we can use the 

results from linear regression theory for the standard deviation of the slope and then compare the 

difference in slope pre/post-retrofit with this standard deviation. The standard deviation of the 

slope is inversely proportional to the square root of data point number (i.e., the number of days 

with CT runtime data in our case) so that the minimum number of days with CT data required to 

statistically discern pre/post data and estimate savings can be calculated.  

In addition, because ECM implementation should not change the thermal mass of a home, the 

conventional first-order lumped resistance-capacitance “cooling curve” approach (see Figure 10 

and corresponding text) can be used to check if the decay rate has changed post-ECM 

implementation. However, because of the coarseness of the temperature data from vendors #2 

and #3 (see Table 1; temperatures reported in 1oF increments), the calculated decay rates can be 

too coarse for a meaningful comparison. 

                                                 
14 Note that the scatter in Figure 2 can be attributed in part to wind-driven air leakage. 
15 Because the infiltration model in Eq. (4) incorporates the nonlinear stack effect, the overall dependence of the 
runtime on temperature difference is slightly nonlinear. 
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In our data sets, we identified 17 homes with ECMs implemented during the data collection 

process; of those, six had data at least two weeks both before and after ECM implementation. 

Two examples of these homes are detailed below. 

7.2.1 Example 1 

The first example is a home heated by an atmospheric (i.e., non-condensing) furnace. The home 

was built in 1989, and the HEA values for wall R-value is 8.1 and for attic R-value is 12. The 

following ECMs were installed:   

 Air sealing, door stripping 

 No wall insulation 

 Attic: (1) attic floor open blow cellulose 5”, (2) Propavent 2’ or 4’, (3) attic stair cover 

thermal barrier with carpentry. 

Figure 20 and Figure 21 show the computed correlations for the CT data obtained by the home’s 

two thermostats. Whereas Figure 20 suggests no noticeable pre-post difference for the 

correlations computed by the “downstairs” CT, dramatic difference is evident for both types of 

correlations in Figure 21. This is in line with the performed retrofits that are mainly upgrading 

the attic. 

Figure 20. Correlations for pre/post ECM implementation for a home from vendor #3, downstairs CT 

Left – runtime correlations, Eq. (5), right – cooling decay rates over thermostat setbacks 
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Figure 21. Correlations for pre/post ECM implementation for a home from vendor #3, upstairs CT 

Left – runtime correlations, Eq. (5), right – cooling decay rates over thermostat setbacks 

Quantitatively, we calculated the pre-post slopes of the regression lines using the whole-home 

equivalent approach (see Section 4), as well as their standard deviations. The pre-retrofit slope 

value is 0.0151 with a standard deviation of 0.0012. The post-retrofit value is 0.0120 with a 

standard deviation of 0.0008. The savings can be roughly estimated as (0.0151 – 0.0120)/.0151 = 

20.5%. The difference in slopes is 0.0031 and its standard deviation is 0.0014, i.e., the slope 

difference is about 2.2. This difference is statistically significant at a significance level of 0.014 

for a normal distribution. Encouragingly, this change in the second-floor thermal performance is 

consistent with the major upgrade in attic insulation, i.e., adding ~R-18 of insulation to an R-12 

attic.  

7.2.2 Example 2 

The second example is a home heated by a condensing furnace. The home was built in 2000, and 

the HEA values for wall R-value is 11.4 and for attic R-value is 17.8. The following ECMs were 

installed on or about February 21, 2017: 

 Air sealing, door stripping 

 No wall insulation 

 Attic: (1) Propavent 2’ or 4’, (2) attic stair cover thermal barrier with carpentry, (3) attic 

floor open blow cellulose 4”. 

Figure 22 shows the computed correlations for the CT data obtained by the home’s thermostat. 

Although the installation date is more than a month later than that in the first example, there are 

relatively few pre-ECM data points because the CT was connected on February 2, 2017—less 

than three weeks prior to ECM implementation. Yet, some pre/post difference is visible in the 

runtime correlations. The calculated decay rates are not very meaningful, mainly because the 

temperature data from vendor #2 are too coarse (see Table 1). 
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Figure 22. Correlations for pre/post ECM implementation for a home from vendor #2 

Left – runtime correlations from Eq. (5), right – cooling decay rates over thermostat setbacks 

Quantitatively, the calculated pre-retrofit slope value is 0.0118 with a standard deviation of 

0.0025. The post-retrofit value is 0.0089 with a standard deviation of 0.0011. The savings can be 

roughly estimated as (0.0118 – 0.0089)/.0118 = 24.6%. The difference in slopes is 0.0029 and its 

standard deviation is 0.0027, so the slope difference is about 1.1. This difference, though close 

to the slope difference in the previous example (0.0031) is not statistically significant because 

the standard deviation of the pre-retrofit slope is too large due to relatively few data points. Our 

calculations suggest that increasing the number of good-quality pre-retrofit data points by a 

factor of about two would make the slope difference statistically significant at significance level 

of 0.08. 

These examples are promising, yet large pre-post data samples and additional work are required 

to establish an EM&V method on the basis of the proposed approach. 

7.3 Cases Without Fuel Bills 

The requirement to have gas bills available can limit the applicability of the project’s results 

because (1) a CT reward program may not be controlled by a gas utility, and (2) many homes, 

especially in the Northeast, are heated by delivered fuels, i.e., heating oil or propane.  

Gas bills enable us to estimate the heat supply Q in Eqs. (2)-(5); this means that without bills, we 

need an alternate approach to estimate Q. All other things being equal, Q should scale 

approximately linearly with the home’s conditioned area. Indeed, the estimated Q values 

reported in the HEAs show this dependence. Such a correlation implies a relatively narrow 

distribution of heat supply for a given conditioned area in a home which could ultimately result 

in a more definitive answer to the question of whether a given home with no gas bills is a good 

candidate for insulation and/or air sealing retrofit. 

Suppose the probability density function of Q for a given home is known. Our approach so far 

uses a single value or a point estimate of Q to estimate the most important physical parameters 
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characterizing retrofit opportunities, the overall home R-value and ACH50. Both parameters have 

a functional relationship with Q: the R-value is inversely proportional to Q (see Eq. (5)) and 

ACH50 is linearly proportional to Q (see Eqs. (9)-(12)). Thus, it is possible to derive a confidence 

interval for the estimated R-value or estimate the probability that the R-value is less than the 

threshold value (assumed to be 8 in our work). In this way, we could potentially overcome the 

need for fuel bills. Additional sources of uncertainty (e.g., those related to home measurements 

and model simplifications) can be accounted for as well, although our previous analysis related 

to the modeling of a home with two CTs shows very small variability related to these factors (see 

Section 4). 

The statistical distribution of Q for a home can be characterized using a sample of similar homes 

with known Q values. As an example, we calculated values of Q for 628 homes from vendor #1, 

part of the RCT data set (see Section 6.1). With the limited information provided to us, we can 

only characterize “similarity” of homes by their floor space and the number of floors. Figure 23 

shows the calculated values of Q for two-story homes. 

 

Figure 23. Calculated heat supply, Q, for a sample of two-story homes  

The RCT data set from vendor #1 was used. Results for 230 homes are shown. 

Suppose now we have a two-story home with an unknown heat supply from the same population, 

and its conditioned area is 2,000 ft2. Ideally, to characterize the statistical distribution of this 

home’s heat supply, we would down-select homes with the same conditioned area from our 

sample. Because the sample is not large, we allow an arbitrary tolerance of ±300 ft2 for a home 

to be “similar.” A histogram of the calculated heat supply for such homes is shown in Figure 24.  
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Figure 24. Distribution of calculated heat supply for a sample of two-story homes with conditioned area of 
about 2,000 ft2  

The histogram is built from homes used in Figure 23 that have conditioned area of 2,000±300 ft2 (101 in total). 

It is seen in the figure that the distribution mode (i.e., the most frequent value) is about 100 

kBTU/h. Suppose we used this value as a point estimate of Q and derived, using our approach 

and available CT data, the corresponding estimates for the overall R-value of 7.5 and ACH50 of 

17.2 for this home. Using the empirical distribution (plotted in Figure 24), we can obtain the 

distribution of R-values and ACH50 corresponding to these two estimates. 

These distributions (which can be considered to be statistical distributions of actually estimated 

values with the value of Q being known), are shown in Figure 25. As expected, Figure 25 

suggests that there is a wide range of possible “actual” parameter estimates. Quantitatively, we 

can estimate the probability that this home is a candidate for insulation retrofit, meaning that the 

“actual” R-value <8. This probability equals the number of R-values <8 (58) divided by the total 

sample size (101), i.e., 57.4%. Analogously, the probability that the home is an air sealing 

candidate equals the number of ACH50 >10 (85) divided by the total sample size (101), i.e., 

84.1%. Whether these probabilities are high enough to justify approaching this home with a 

retrofit offer would depend on the program design and could be decided, e.g., by calculating the 

chance that the expected savings exceed a threshold or by comparing the saving expectation with 

HEA cost. Such calculations could be performed along the lines of the proposed approach. 

In practice, actual (i.e., nameplate) installed furnace and boiler capacities come in discrete 

capacities and depend on several factors, foremost contractor system sizing decisions. 

Consequently, using distributions of actual Q values derived from field data (e.g., from 
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completed retrofit projects) as a function of relevant variables (e.g., vintage)16 would likely yield 

more accurate distributions. 

Figure 25. Distributions of potential values of R-values and ACH50 for a home with unknown heat supply 

The distributions are obtained for a two-story home with 2,000 conditioned area and point estimates of 7.5 for R-value and 

17.2 for ACH50. 

8 Conclusions 
In this work, we successfully developed and validated a set of scalable algorithms that 

automatically analyze CT data to accurately characterize home retrofit opportunities and predict 

expected energy savings for homes with one or two CTs. Unlike other research groups, we use 

home energy assessment reports as the source of comparison and verification and a “static” (i.e., 

averaged over time) approach for estimation of physical home parameters that characterize the 

retrofit opportunity. Importantly, our physics-based approach is based on first principles, so it 

does not require “training” that would limit its applicability.  

The results for the building envelope R-values and for air leakage characteristic ACH50 suggest 

that we can accurately identify low-performing homes that are prime candidates for insulation 

and air sealing retrofits, achieving classification accuracies of 89% and 96% for insulation and 

air sealing retrofits, respectively. Among scalable and computationally efficient approaches, ours 

can uniquely separate conduction heat losses from infiltration losses. Initially, we developed our 

algorithms for homes with a single CT and then subsequently successfully extended the approach 

to homes with two CTs. Thus, our method is generally applicable to homes using gas-fired 

furnaces and boilers controlled by CTs located in heating-dominant climates. We have not, 

however, evaluated the effectiveness of the algorithms for combi-systems, i.e., boilers that meet 

both space and water heating loads. Neither we were able to quantitatively characterize the 

heating system efficiency of a home. 

That said, we found several challenges related to the quality of CT data and precision of on-site 

home energy assessments. In particular, obtaining high-quality CT data proved to be a major 

                                                 
16 We presume that the Q estimates reported from the HEAs reflect algorithms based on these kinds of underlying 
data. 
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challenge, with two of the three vendors providing lower resolution data that negatively impacted 

algorithm effectiveness, particularly for EM&V. In addition, missing CT runtime data also 

appears to be a significant challenge. Consequently, utilities and energy efficiency programs 

need to carefully consider what data fields and resolution/precision they expect CT providers to 

report when developing CT procurement specifications to take advantage of emerging use cases 

such as remote home energy assessments. 

Ultimately, the targeted and customized outreach enabled by the algorithms has the potential to 

increase the energy savings and cost-effectiveness of energy efficiency programs in multiple 

ways. First, we expect this will appreciably increase the number of HEAs requested by homes 

with significant (10%+ savings) insulation and air sealing opportunities, as well as the number of 

insulation and air sealing projects completed. Not only does this increase the quantify of savings 

realized, it also increases the cost-effectiveness of the HEAs because the savings per HEA 

increase. Second, the information provided by the algorithms can be used to focus the HEAs and, 

therefore, decrease their cost. Third, the algorithms can also be used by the programs to perform 

automated home-specific post-retrofit EM&V of retrofits performed by comparing actual post-

retrofit thermal performance with expected performance. This will reduce program quality 

control and evaluation costs and should increase the ratio of actual to expected energy savings.  

To better understand how targeted, customized outreach affects HEA and ECM uptake, we 

conducted an RCT field pilot with our utility partners. The RCT results suggest that personal 

messaging leads to a significant increase in the HEA uptake rate. Because of a time lag of up to a 

year between an HEA and ECM implementation in a home, it is too early to conclude whether 

the ECM realization rate also increased for such homes. Potential future work could involve 

gathering precise pre-retrofit field data measurements (insulation levels, air infiltration, and other 

characteristics) to further refine/validate the algorithm. 
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