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We can demonstrate human level performance or higher on a 
range of common data processing tasks in test studies.
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5-10k Events

159 Stations

Task: Binary Classification 

{ model }

earthquake explosion
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Focus on using synthetics to improve event type predictions



Failure to generalize across 
subsurface differences

Significant average 
crustal properties over 
long distances/scales

Shallow 
subsurface, site, 
or local crustal 
variation with 
significant 
impact on 
waveform 
characteristics at 
higher 
frequencies
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Can we accurately generate 
synthetic waveforms that 
match observations with 
sufficient fidelity to use 
them for model training?

• Rare events
• New locations
• New stations
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Simulation Pair #1

Simulation Pair #2

SPU

1.Earthquake simulation
2.Explosion simulation
3.Explosion at earthquake depth
4.Find optimal solution
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Generating realistic local – regional synthetics



Predictable behavior for new 
event types?

• 2 weeks of seismicity

• 147 catalog events vs 7k new 
events

• New source types
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UUSS: University of Utah Seismograph Stations
UUEB: Unconstrained Utah Event Bulletin



Intractable to optimize fit over the entire catalog

Key challenge: designing metrics that reflect quality of fit 
according to waveform characteristics of interest
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More groundwork needed for local waveform fitting
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What do ML models need most for effective learning?

Higher frequency 
waveform 

characteristics can be 
harder to model. 

The good news is those 
characteristics might 
not be as diagnostic.



104,311 Examples

13,313 Events

159 Stations

14 Networks

Stochastic Variations

• Velocity Models

• Source Parameters

• Complexity
 

How to incorporate real 
examples?

Will the extreme variation 
result in meaningful 
decisions?

Will the issues of scale 
outweigh the benefit of the 
model? 
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Can Data-Driven Synthetics be useful?
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Generative Adversarial Networks
 (GANs)

• Sample from a learned 
distribution

• Generate new physically plausible 
examples according to specific 
conditions

 

Input: noise vector

Generator: NN with 
the task of making 

realistic output 

Loss: low if the 
discriminator can’t 

tell it’s a fake

Output: n x n x n 
(image)

Input: data, generator 
images

Discriminator: NN 
with the task of 

identifying fake images

Loss: low if it can tell 
generator data from 

real data

Output: binary 
(decision)



GANS on Utah Data

 
Vanilla GAN

 they look real but are too unspecific

Conditional GAN*

 they can look real but suffer from 
mode collapse and non-convergence

*conditional gan input: noise + label
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GANS on Synthetic Pulses  
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Conclusions

1. Higher frequency waveform characteristics are hard to model. 
2. Currently, good fits are possible but require manual tuning per 

event.
3. Large catalogs with stochastic variation across unknowns is our 

current approach.
4. GANs are an interesting idea, but new methods that address 

current issues need to be explored
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Thank You

Questions: llinvil@sandia.gov
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