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TOPIC OVERVIEW
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We can demonstrate human level performance or higher on a

range of common data processing tasks in test studies.
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Focus on using synthetics to improve event type predictions

Task: Binary Classification
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Failure to generalize across
subsurface differences
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Can we accurately generate
synthetic waveforms that
match observations with
sufficient fidelity to use
them for model training?

e Rare events
* New locations
e New stations




Generating realistic local — regional synthetics

1.Earthquake simulation
2 .Explosion simulation
3.Explosion at earthquake depth

4.Find optimal solution
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Predictable behavior for new
event types?

e 2 weeks of seismicity

147 catalog events vs 7k new
events

* New source types

UUSS: University of Utah Seismograph Stations
UUEB: Unconstrained Utah Event Bulletin
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More groundwork needed for local waveform fitting

Intractable to optimize fit over the entire catalog

Key challenge: designhing metrics that reflect quality of fit
according to waveform characteristics of interest
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What do ML models need most for effective learning?
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Higher frequency
waveform
characteristics can be
harder to model.

The good news is those
characteristics might
not be as diagnhostic.
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Stochastic Variations

How to incorporate real
examples?

* Velocity Models

Will the extreme variation
result in meaningful

e Source Parameters decisions?

: Will the Issues of scale
* Complexity outweigh the benefit of the

model?
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Can Data-Driven Synthetics be useful?

Input: data, generator Generative Adversarial Networks
Images (GANS)

Input: noise vector

the task of making with the task of ° Sample from a learned

realistic output identifying fake images distribution

Loss: low if the Loss: low if it can tell , ,
discriminator can't | generator data from * Generate new physically plausible

teliS—e real data examples according to specific
conditions

Output: n X n x n Output: binary

(image) (decision) @




GANS on Utah Data
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they can look real but suffer from
mode collapse and non-convergence
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GANS on Synthetic Pulses
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Conclusions

Higher frequency waveform characteristics are hard to model.
Currently, good fits are possible but require manual tuning per
event. ‘)

Large catalogs with stochastic variation across unknowns is our

current approach.
GANSs are an interesting idea, but new methods that address

current issues need to be explored
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Thank You

Questions: llinvil@sandia.gov
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