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Background

• High-altitude electromagnetic pulses (HEMP) pose an 
unknown threat for the electric grid

• EMP-Resilient Grid program at Sandia focused on 
three core thrusts:
1. Vulnerability Assessment and Model Generation
2. Materials and Device Innovation
3. Optimal Resilience Strategies

• Primary efforts are focused on early-time (E1) HEMP 
due to strong electric field transients
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IEC 61000-2-9 Radiated HEMP Definitions



Lightning Surge Arrester Experimental Motivation

• Primary interest: HEMP impact on transformer

• Typical interface includes lightning surge arrester

• Neglecting impacts of nearby substation devices

• Motivating research questions:
• Do lightning surge arresters offer protection against 

HEMP?
• Response time?
• Arrester survivability?
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Literature Model Response to Lightning / E1

• Several arrester models optimized in 
literature for lightning response

• Significant variations when E1-like pulse is 
applied
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10 kA, 8/20 pulse circuit response (combination wave)

E1-like voltage wave response (5 km coupled wave)

• IEEE WG 3.4.11, IEEE Trans. Power Deliv. 7(1), 302-309, 1992.
• P. Pinceti et al, IEEE Trans. Power Deliv. 14(2), 393-398, 1999.
• F. Fernández et al, “Metal-oxide surge arrester model for fast 

transient simulations,” Proc. IPST 2001.
• J. G. Zola, IEEE Trans. Comput.-Aided Design Integr. Circuits 

Syst. 23(10), 1491-1494, 2004.
• V. S. Brito et al, IEEE Trans. Power Deliv. 33(1), 102-109, 2018.

Validated circuit model needed for scalable 
assessment of arrester response to HEMP



Roadmap of Arrester Work
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Distribution Arrester 
Measurement:

• Bias dependent impedance
• I-V curve tracing
• Pulsed characterization

Scalable SPICE Circuit 
Model:

• Estimations from manufacturer data
• Critical HEMP response parameters
• Failure mode analysis

Transmission Arrester 
Model(s):

• Anticipated arrester response 
under HEMP with simple load

• Validation of XYCE 
compatibility

Integration into Coupling 
and Grid Simulations



Generation of Basic Arrester Model
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• Basic high frequency RLC behavior 
characterized by VNA sweep

• Critical components identified for 
scalable, general use circuit model

Circuit with separate isolator
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General-use scalable 
circuit without isolator

Impedance Data from VNA sweep
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Non-linear Resistance Measurements
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• I-V curve trace measurements up to 
20 mA
• Pulsed to avoid overheating

• Resistance approximately linear at 
low voltage

• Strong nonlinearity in resistance at 
increased voltages
• Testing did not reach upturn 

behavior of MOVs

Bias-Dependent 
Parameter
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Bias Tee for Non-linear Capacitance Measurement
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• Measurement setup with isolated AC and DC loops
• AC loop measures VNA signal, 

protected by capacitors
• DC loop provides high voltage bias, 

isolated by inductors
• MOV pucks measured at bias conditions up to

18 kV or 20 mA maximum



• Capacitance measured using VNA sweeps on 
bias tee up to 20 mA
• Diminishing ability to increase voltage as pucks 

entered breakdown region

• Trend approximately linear when normalized 
based on puck thickness

• <30% shift in capacitance expected for 10 kA 
signal
• No impact on modeled impulse response

for E1 HEMP or 8/20 lightning test

Bias-Dependent 
Parameter

Bias Dependence Measurements of ZnO Pucks
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Roadmap of Arrester Work
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Distribution Arrester 
Measurement:

• Bias dependent impedance
• I-V curve tracing
• Pulsed characterization

Scalable SPICE Circuit 
Model:

• Estimations from manufacturer data
• Critical HEMP response parameters
• Failure mode analysis

Transmission Arrester 
Model(s):

• Anticipated arrester response 
under HEMP with simple load

• Validation of XYCE 
compatibility

Integration into Coupling 
and Grid Simulations



Scalable Arrester Model Considerations
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• Isolators not considered for general model

• Non-linear resistance should be implementable
as SPICE function

• Capacitance ideally based on ZnO dimensions

• Non-linear capacitance negligible

• Can account for ESR with 0.01 dissipation factor



Parameter Estimations for Arrester Model
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Result is quickly scalable 
model based only on 
manufacturer data.

Leakage Current Region

Breakdown/TOV Region

Up-turn 
Region

Example 3 kV Arrester I-V Curve for RBias
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Distribution Arrester Model Response – 3 kV
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Model with 
isolator present

E1-like 3 kV Arrester Simulation on a 5 km Line

Inductance is primary limiting factor of E1 response.

• 3 kV arrester model subjected to E1-like pulse generated in ATLOG

• Primary response due to inductive ‘kick’ causing high overvoltage

• Delay between initial response and proper arrester behavior
• Clamping time = within 10% of non-inductive simulation
• Observed clamping time ranges: 130-340 ns



Typical arrester failure metric: energy handling

• Arrester rated to 2.7 kJ/kVMCOV, or ~6.89 kJ

• HEMP pulses orders of magnitude 
below damage threshold

• Potential for damage due to voltage peak

• Unknown how aging effects energy response

Failure Assessment – 3 kV Arrester
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Arresters have negligible chance of failure by normal metrics. 
Other potential failure modes outside scope of work.

Total Energy

1.929 kJ

10.28 kJ

10.52 J

508.8 J



MOV Puck Testing with Fast Transients

• Fast transient insult test
using Marx bank pulser
with output filter

• 13 stage Marx charged to 
39.5 kV per stage

• CVRs used to measure current 
through MOV and voltage at filter 
output

• Results compared to Spice circuit
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Pulser Filter MOV



MOV Puck Testing with Fast Transients

• Simulated current and voltage show good 
alignment to measurements

• Inductive delay prevents immediate 
clamping (Vclamp around 6 kV)

• Inductive peak and rebound last beyond 
length of signal

• Follow-on needed with reduced inductance
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Roadmap of Arrester Work
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Distribution Arrester 
Measurement:

• Bias dependent impedance
• I-V curve tracing
• Pulsed characterization

Scalable SPICE Circuit 
Model:

• Estimations from manufacturer data
• Critical HEMP response parameters
• Failure mode analysis

Transmission Arrester 
Model(s):

• Anticipated arrester response 
under HEMP with simple load

• Validation of XYCE 
compatibility

Integration into Coupling 
and Grid Simulations



Transmission Arrester Response Modeling – 108 kV
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•MacLean ZIP 108 kV Arrester 

Volker Hinrichsen, “Metal-Oxide Surge 
Arresters in High-Voltage Power Systems”, 

3rd edition handbook from Siemens 

E1-like 108 kV Arrester Simulation on a 5 km Line

149 ns delay

199 ns delay

• Some high voltage passes arrester before clamping 
takes place (exceeds typical insulation level) 

• Addition of minimum conductor clearances creates 
inductive delay beyond width of pulse



Initial Substation Voltage Simulation (XYCE)
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• IEC E1 and E2 HEMP 
source 

• Field incidence angle: 
9 degrees

20 km of 3 Phase, 230kV, T.L.

Δ-side insult

10’

e0=10.0 s=0.01 S/m

10m
d = 4 cm

R’ = 1.67e-8 Ω/m

IEEE Working Group Sandia Ideal
Additional lengths:
• 187 nH lead
• 2.77 uH pedestal

Ideal model has 1.613 uH 
internal inductance (same 
as Sandia).

• Multiple lightning arrester models examined: 



Initial Substation Voltage Simulation (XYCE)
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IEEE Working Group Sandia Ideal

• Preliminary results show lack of 
sufficient clamping from arresters

• Greater than anticipated delay 
requires more investigation

Reduced L:
•Lead: 1.87 nH

•Order of magnitude 

•Pedestal: 0.74 μH
•Coaxial length 
approximation

There is a need for HEMP 
arresters and parasitic 
inductance handling.



Summary
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• Scalable arrester model developed for simulation integration.

• Estimated inductance for arrester is primary limitation of 
existing technology. 
• Device failure is unlikely for unaged arresters.

• Some final model validation necessary with nanosecond-scale 
transient testing.
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Thank You

(Please contact tbowma@sandia.gov for questions)
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