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2 I MELCOR Code System

MELGEN
o User input processing

> Package activation
o Database setup
o Restart generation

MELCOR
o Evaluation of models

o Advancement of simulation
through time

MELGEN used to initialize the
simulation

MELCOR acts to evolve the state
of the system stored into the
database
o Evolves from an initial time with
state present in restart file

> Evolution proceeds until specified
end time of simulation
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TP =Transfer Process

DCH = Decay Heat

COR = Core

SPR = Containment Spray

BUR = Gas Combustion

FDI = Fuel Dispersal Interaction
CAV = Cavity (MCCI)

ESF = Engineered Safety Features
MP = Matenal Properties

RN = Radionuclide

HS = Heal Structure

CVH = CV Hydrodynamics
EDF = External Data File

CF = Control Function

MES = Special Messages
MEX = Executive

CVT = CV Thermodynamics
NCG = Mon Condensible Gas



Complexity and Accident Modeling

Equations encountered across MELCOR involve
rate of change of some state with time

Complexity of modeling arises because of dynamic
manner in which states coupled

° Prior to accident many interactions between “states”
do not exist

° For example, fuel mass cannot be transported to
chemically interact with cladding

Process of core degradation exhibits features of
combinatorial evolution

o With time, increasingly more degrees of freedom are
liberated

Current models for many processes can be reduced
to canonical form

do -~
E=M(G’,t)
dM &7y
E=T(M,0’,t)



+ | Generalized Oxidation Model

Definition of
Support for multiple oxide products generalized
introduced in generalized oxidation
architecture

Generalized
Oxidation
Model

_ o Oxidation
Arrhenius kinetics reaction

parameters parametric
specification

Oxidizing material
Oxidant

Oxide material

Stochiometric coefficients

Definition of
generalized
oxidation
reaction
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s | MELCOR Molten Salt Model (MSM)

MELCOR provides mass
of radionuclides released

into salt, chemistry, T
and P

MSM computes what
remains in salt as soluble,

colloidal, deposited, and »

released as vapor and
aerosol

For Each Timestep

MELCOR continues to
transport materials to
and from the salt control
volume




6 ‘ Molten Salt Fission Product Transport Modeling

Evaluation of thermochemical state

o Gibbs Energy Minimization with
Thermochimica

> Provides solubilities and vapor pressures

Thermodynamic database

o Generalized approach to utilize any
thermodynamic database
- MSTDB has two systems

o Pu-U-Th-Nd-Ce-La-Cs-Rb-Ca-K-Na-F-Be-
Li and Pu-U-Cs-K-CI-Mg-Na-Li

Collaboration underway to inform
database developers on severe accident
needs

o lodine, strontium, tritium etc.

o Chemicals introduced in severe accidents
such as oxygen and water vapor

\_ ° Temperatures much higher than operating /

Radionuclides grouped into 6 forms as found in the Molten Salt

Reactor Experiment at ORNL
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Solubility determined from empirical evidence (P. Britt,

ORNL 2017)

Solubilities mapped to 17 MELCOR fission product

classes
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> Pebble Bed Reactor Fuel/Matrix
Components
> Fueled part of pebble

o Unfueled shell (matrix) is modeled as separate
component

> Fuel radial temperature profile for sphere

Fueled pebble cor

7 ‘ TRISO-related Components
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> Prismatic Modular Reactor Fuel/Matrix
Components
> “Rod-like” geometry

o Part of hex block associated with a fuel channel
is matrix component

> Fuel radial temperature profile for cylinder
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TRISO Radionuclide Release Models

o Recent failures — particles failing within latest time-step (burst release, diffusion release in time-step)
o Previous failures — particles failing on a previous time-step (time history of diffusion release)

o Contamination and recoil
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9 ‘ TRISO Radionuclide Diffusion Release Model

Intact TRISO Particles

> One-dimensional finite volume diffusion equation solver for
multiple zones (materials) Diffusivity Data Availability
o Temperature-dependent diffusion coefficients (Arrhenius form) > — )
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10 I MELCOR Code Architecture Evolution

Generalized numerical
solution engine

Hydrodynamics
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1 I MELCOR In-Vessel Core Damage Progression

Generalization of the code architecture

20000 - Eutectic Intéractive

> Reduce numerical variability 18000 - g
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> MELCOR moves melting material down a component surface “ /f_’//*
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MaseidhInni@sthaeitiméts oxidation and heat transfer for material in
» Enblasements to enable code to more flexibly represent new material systems

* Critical in evaluation of high-temperature material response for range of advanced nuclear energy
technologies

* Support generalized treatment of fission product speciation in novel systems
* Rationalize material system with ex-vessel (CAV) package

Lower head structure

* The lower head model to be rewritten to improve the numerical solution of the equations to better account
for melting at the interior boundary

COR component objects and restructuring of COR database
* Allow templated creation of component objects

» Carry-over properties such as oxidation, hold-up, number of surfaces in contact with CVH, etc. for new
components



