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Neutron-induced reaction studies
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Neutron-induced reactions 

+
Total
(n,tot)

Projectile Compound
Nucleus

(excited!!!)

De-excitation channels
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Neutron-induced cross sections 

• Cross section (σi) : The probability/area for the reaction i to occur (1 barn = 10-24 cm2 )

“Size” of a nucleus 
for a given projectile
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Neutron resonances and nuclear levels

• Nuclear levels show up as 
spikes (resonances) in the 
cross section

• The higher the excitation, the 
closer the levels

• At high excitation energies the 
levels are so close, that it’s 
hard to resolve them.

• At high excitation energies the 
(n,γ) cross section drops.
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Neutron capture measurements

• (n,γ) cross sections are important 
for:
o Nuclear physics and 

astrophysics
o Nuclear criticality safety, 

advanced reactors, 
radiochemical diagnostics

• Neutrons impinge on a sample
• Gamma detectors are close to the 

sample and catch the gammas from 
the de-excitation.

• Works fine for stable or moderately 
radioactive samples.

Neutron
beam



84/5/21 84/5/21

Neutron capture measurements on radionuclides

• Challenging direct measurements (especially En~keV): large backgrounds involved

• Indirect measurements and techniques

• A new technique is proposed:
o Neutron transmission experiments to measure the (n,tot) cross section
o R-Matrix fits of the resonances seen in the transmission spectrum
o Fit results to calibrate the Nuclear Statistical Model and tightly constrain (n,γ)

Deexcitation
photon

Excited
nucleus

Before neutron capture After neutron capture

Incoming
neutron Unstable

nucleus

Intrinsic
photons
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The technique in a nutshell
• Cases where the most probable 

reactions are capture and scattering

Scattering
Capture

Total

• Each resonance can be analytically 
described by its Energy and Width

• Similar to the cross sections, resonance 
widths are 

ScatteringCaptureTotal

𝚪𝐭𝐨𝐭 = 𝚪𝛄 + 𝚪𝐧

• At resonance energies:

𝚪𝛄 = 𝚪𝐭𝐨𝐭 − 𝚪𝐧
• At intermediate energies (keV):

𝛔𝛄 = 𝐟(𝚪𝐭𝐨𝐭, 𝚪𝐧, 𝐃𝟎)

Level 
spacing
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The technique in a nutshell
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Neutron transmission measurements
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800 MeV
protons

• Neutrons are produced 
through spallation

• A high energy ion beam 
impinges on a heavy material

• Neutrons are uncharged and 
go all over the place

• Collimators: blocks with 
holes

• Moderation: slow down of 
neutrons using light materials

• Continuous spectrum (white 
beam) at resonance and 
intermediate energies.

Neutron production @ Los Alamos Neutron Science Center
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The time of flight (tof) technique

L

Detector

• The neutron velocity v is “proportional” to its energy E

𝐸 =
1
2𝑚 𝑣! =

𝑚
2

𝐿
𝑡

!
≅ 72.3

𝐿[𝑚]
𝑡[𝜇𝑠]

!

• Fast neutrons need less time than slow ones, to travel a given distance L

• Measuring the travel time or time of flight t, we reconstruct the incident energy E

Pulsed ion
beam

Target/moderator

t
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Traditional transmission measurements: How to

~10m ~10m

Neutron
detector

Neutron
beam

Collimator

• The neutron spectrum is recorded
by a neutron detector (sample out)

• A sample, usually big, is installed and
absorption dips appear
(sample in)

• The transmission is the ratio 
sample in/out

Γ

Γn

𝑇 =
𝑺𝒂𝒎𝒑𝒍𝒆 𝑶𝒖𝒕
𝑺𝒂𝒎𝒑𝒍𝒆 𝑰𝒏

D0



154/5/21 154/5/21

• Sample cycling is needed therefore a positioning system must be utilized.

• Position systems have a finite accuracy and that’s a serious bottleneck, in 
measuring limited amounts of materials.

• Precise repeatability of the sample’s position, relative to the collimation 
system, is not necessarily ensured.

• Treatment: samples are much larger than the neutron beam diameter which 
is defined by the collimation system.

• Large samples are sometimes difficult to fabricate when there are dose rates 
and rarity of the material considerations.

Traditional transmission measurements: Challenges

• What if…the sample didn’t have to move…?
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• Binocular mode of operation: Simultaneous measurement of sample in/out
• Binocular collimator is a unique concept conceived, designed and executed 

at DICER.
• No precise repositioning concerns, as long as the sample is precisely 

positioned beforehand: metrology network ~10μm and ~10 mdeg accuracy
• Added bonus: measurements will be completed 50% faster!
• High flux facility à small samples (~10,000 smaller than typical)
• ~50 radionuclides are within reach (t1/2 > 30days, D0<50eV)

Neutron
detectors

Neutron
beam

Collimator

Non-traditional measurements: Binocular approach

A. Stamatopoulos et al, NIMA (1025) 166166, 2022
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Device for Indirect Capture Experiments on Radionuclides
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Sample collimator

Sample can

Aperture stop ORELA style detectors

χ-ν style detectors

1mm diameter

Rotating
Beam blocker

LAPPD

Description of the apparatus:
Device for Indirect Capture Experiments on Radionuclides
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DICER, IPF, C-division synergy: The 88Zr case
• The radioactive sample fabrication relies on the synergy between DICER and IPF
• Proton irradiation of a suitable bulk material
• Chemical separation and purification (600 mCi, 10 mL 88Zr + D2O●6mol/L DCl )
• Gamma spectroscopy                     

A. Stamatopoulos et al., EPJ., Conf. 260, 03006 (2022)
A. Stamatopoulos et al., J Rad. Nucl. Chem., In press
A. Matyskin et al, Submitted to Scientific Reports
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Development of filling station
• Operations have to take place in a hot cell with a remote handling capability
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88Zr
• 88Zr was recently reported (Shusterman et al, Nature 565, p. 328 (2019) ) to have an 

enormous capture cross section at thermal: σth = 8.61 kb
• We measured a 66 ng  88Zr sample (~8,500 times smaller than the next smallest)
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Thank you for your 
attention!
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9Back-up slides
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Development of inkjet printing
• Inject printing of radioactive samples is a possibility we are currently 

exploring
• This will allow to print samples with a small diameter (i.e. 88Y)
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Development of a 0.1 mm collimator
• A smaller collimator will allow measurements on: smaller samples, higher 

energies, smaller cross sections
• Conceptual design is ready
• 4 tungsten pieces, each with each own precision alignment system
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88Y
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Introduction: Proof of Principle

• Resonance analysis on 151Sm(n,tot) data from RPI
• Normalize TALYS calculations and compare to 151Sm(n,γ) EXFOR data

P. Koehler, LA-UR-14-21466 
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Design of sample canisters
• Liquid samples ensure homogeneity
• Hard acidic environment is usually unavoidable
• Need for proper canisters to minimize dose and ensure secure handling


