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Neutron-induced reaction studies
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Neutron-induced reactions
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Neutron-induced cross sections

.0 O
» Cross section (o;) : The probability/area for the reaction i to occur (1 barn = 10-24 cm?)
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Neutron resonances and nuclear levels

Nuclear levels show up as
spikes (resonances) in the
cross section

The higher the excitation, the
closer the levels

Incident neutron energy
Incident neutron energy

At high excitation energies the
levels are so close, that it’s —
hard to resolve them. n+240 Py

At high excitation energies the
(n,y) cross section drops.

Fission cross section

level density

241 py excitation energy
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Neutron capture measurements

(n,y) cross sections are important
for:

o Nuclear physics and
astrophysics
o Nuclear criticality safety,

advanced reactors,
radiochemical diagnostics

Neutrons impinge on a sample

Gamma detectors are close to the
sample and catch the gammas from

the de-excitation.
Works fine for stable or moderately

radioactive samples. /

Neutron
beam
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Neutron capture measurements on radionuclides

« Challenging direct measurements (especially E,~keV): large backgrounds involved

Before neutron capture After neutron capture
Intrinsic -
photons '77 ﬂﬂd Deexcitation

-9 £ .

Unstable
nucleus

Incomlng
neutron

» Indirect measurements and techniques

« A new technique is proposed:
o Neutron transmission experiments to measure the (n,tot) cross section
o R-Matrix fits of the resonances seen in the transmission spectrum
o Fit results to calibrate the Nuclear Statistical Model and tightly constrain (n,y)
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The technique in a nutshell

» (Cases where the most probable

_ e Similar to the cross sections, resonance
reactions are capture and scattering

widths are

Otot = Oy + On FtOt — FY + Fn

| e\ [T\

Total Scattering Total Capture Scattering

« At resonance energies:
« Each resonance can be analytically

described by its Energy and Width Fy = Ttot — In

« At intermediate energies (keV):
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The technique in a nutshell
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Neutron transmission measurements
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Neutron production @ Los Alamos Neutron Science Center

* Neutrons are produced |
through spallation /

* A high energy ion beam
impinges on a heavy material 10"

9% | [~ Measured fx@7.om |

« Neutrons are uncharged and 10 = — Fit l;

go all over the place > 108 = —

E 107} -

« Collimators: blocks with L‘; NE =

holes » 100 =
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* Moderation: slow down of 5 10° 0 ]

neutrons using light materials & \ 1 =

s 10 = E

« Continuous spectrum (white 10%H -

beam) at resonance and NG
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The time of flight (tof) technique

* The neutron velocity v is “proportional” to its energy E

» Fast neutrons need less time than slow ones, to travel a given distance L

« Measuring the travel time or time of flight {, we reconstruct the incident energy E
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Traditional transmission measurements: How to

» The neutron spectrum is recorded
by a neutron detector (sample out)

~10m

»

~10m
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« Asample, usually big, is installed and I
absorption dips appear Neutron

(sample in) beam

{ 0.9
5 o8
"ﬁ 07f
 The transmission is the ratio E osl
sample in/out é 05
- 04
03
0.2
Sample Out ol

Sample In

AAAAAAAAAAAAAAAAAA

1.0

u

- DICER Data

R-matrix fit

u

|

|

]

|

o 1 L 1 | L |
024 026 028 030 032 034 036 038 040

E, (keV)



(<

Traditional transmission measurements: Challenges

« Sample cycling is needed therefore a positioning system must be utilized.

» Position systems have a finite accuracy and that’s a serious bottleneck, in
measuring limited amounts of materials.

» Precise repeatability of the sample’s position, relative to the collimation
system, is not necessarily ensured.

* Treatment: samples are much larger than the neutron beam diameter which
is defined by the collimation system.

« Large samples are sometimes difficult to fabricate when there are dose rates

and rarity of the material considerations.

'
S\ ’

« What if...the sample didn’t have to move...? '@
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Non-traditional measurements: Binocular approach

A. Stamatopoulos et al, NIMA (1025) 166166, 2022

Binocular mode of operation: Simultaneous measurement of sample in/out

Binocular collimator is a unique concept conceived, designed and executed
at DICER.

No precise repositioning concerns, as long as the sample is precisely
positioned beforehand: metrology network ~10um and ~10 mdeg accuracy

Added bonus: measurements will be completed 50% faster!
High flux facility - small samples (~10,000 smaller than typical)

~50 radionuclides are within reach (t1, > 30days, Dy<50eV)
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Device for Indirect Capture Experiments on Radionuclides
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Description of the apparatus:
Device for Indirect Capture Experiments on Radionuclides

1mm diameter

»

Rotating
Beam blocker
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Aperture stop ORELA style detectors
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Sample collimator

s | Sample can




DICER, IPF, C-division synergy: The 8Zr case

» The radioactive sample fabrication relies on the synergy between DICER and IPF
» Proton irradiation of a suitable bulk material

» Chemical separation and purification (600 mCi, 10 mL 8Zr + D,Oe6mol/L DCI )

« Gamma spectroscopy 103; 87,
H,O -
] 102
1" |

100 MeV H* a i ® 10 sy
F— g : S
(@)

\ \HI\H‘ \ HIHH‘C \HHH‘ \ \HIH\‘

400 600 800 1000 1200 1400 1600 1800
E, (keV)

A. Stamatopoulos et al., EPJ., Conf. 260, 03006 (2022)
A. Stamatopoulos et al., J Rad. Nucl. Chem., In press

"3 Los Alamos A. Matyskin et al, Submitted to Scientific Reports
<
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Development of filling station

» Operations have to take place in a hot cell with a remote handling capability

Syringe

Camera

Syringe____!
Driver
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882r

« 87r was recently reported (Shusterman et al, Nature 565, p. 328 (2019) ) to have an
enormous capture cross section at thermal: oy, = 8.67 kb

« We measured a 66 ng 88Zr sample (~8,500 times smaller than the next smallest)
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Back-up slides
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Development of inkjet printing

* Inject printing of radioactive samples is a possibility we are currently
exploring

 This will allow to print samples with a small diameter (i.e. 88Y)
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Development of a 0.1 mm collimator

« A smaller collimator will allow measurements on: smaller samples, higher
energies, smaller cross sections

« Conceptual design is ready

4 tungsten pleces each with each own preC|S|on alignment system

/




88y
Estimates of the 8Y(n,y) Cross Section

88Y B Before DICER | |
n mmmm After DICER .
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Introduction: Proof of Principle

« Resonance analysis on 91Sm(n,tot) data from RPI

* Normalize TALYS calculations and compare to ¥'Sm(n,y) EXFOR data
P. Koehler, LA-UR-14-21466
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Design of sample canisters

 Liquid samples ensure homogeneity
« Hard acidic environment is usually unavoidable
» Need for proper canisters to minimize dose and ensure secure handling

A
~ TUNGSTEN
| SAMPLE CAN
/
/’J’
88Zr SAMPLE / ~ TUNGSTEN CARBIDE VEE
: /
\ , /

% /

INDIUM PREFORM
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_—@2mm ALUMINUM
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