
LA-UR-22-26855
Approved for public release; distribution is unlimited.

Title: Secure System Composition and Type Checking using Cryptographic Proofs

Author(s): Barrack, Daniel Abraham

Intended for: Presentation to be given to zkSNARK and formal methods researchers, as
well as other interested viewers

Issued: 2022-07-13

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

 1 1Managed by Triad National Security, LLC., for the U.S. Department of Energy’s NNSA.

Secure System Composition
and Type Checking using
Cryptographic Proofs

Collaborator: Zachary DeStefano
Mentor: Michael J. Dixon
Co-Mentor: Boris Gelfand

Dani Barrack
A-4: Advanced Research in Cyber Systems
Email: dbarrack@lanl.gov

 2

Cryptographic proofs

 3

Example. You want to prove that you have beaten Where’s Waldo?
• Traditional Proof: Point to Waldo to demonstrate you know where he is

• Not zero-knowledge!
This kind of proof leaks all information about his location, much more than
simply that you have knowledge of the location

Zero-Knowledge Proof for Where’s Waldo?

 4

Zero-knowledge proof for “Where’s Waldo?”
1. Cut out a Waldo shaped hole in a much larger piece of paper
2. Position the hole over Waldo’s location

Zero-Knowledge Proof for Where’s Waldo?

Slide under paper

This precisely obfuscates
Waldo’s location while
demonstrating knowledge
of his whereabouts!

To adversaries, the book underneath could
hypothetically be in any random orientation

 5

Zero-Knowledge Proofs and Verifiable Computation

Zero-knowledge proofs (ZKPs) allow us to prove that a claim IS true
without revealing WHY it is true, even if the prover is untrusted and
malicious.
zkSNARKs are special ZKPs that are tiny and non-interactive

O(1)
size

O(n*log(n)^k)
size

O(n)
size

Inputs:
Logs

Schematics
Program Traces

Signals
Encryption Keys

Attestations
etc.

Outputs:
Results

&
ZK Proof of

Computational
Integrity

Homomorphically Encrypted* *with tweaks

 6

1

a

t0

b

t1

zkSNARK Construction for Program Verification [BCGTV13]

Computation

Arithmetic
Circuit

R1CS

QAP

LPCP

LIP

zkSNARK

int myFunction(int a) {
int b=a*a-4;
return 3*b+a;

}

π

S • A * S • B = S • C
1

a

t0

b

t1

0

1

0

0

0

0

1

0

0

0

1

a

t0

b

t1

0

1

0

0

0

Zero Knowledge Added

Succinctness Added

Interactivity Removed

zkSNARK for
Program Integrity

Proof Representation
Of Program Execution

Rank-1 Constraint System (R1CS):

libsnark
backend

Prover
Binary

Verifier
Binary

libsnark

 7

Cryptographic Proof Systems

Cryptographic proof systems have variable completeness and
soundness (slightly distinct from their meaning in formal systems). For
non-interactive zero-knowledge proofs we care about:

(Completeness) ℙ[true statement AND verifier accepts] = 1
“Every valid proof will be accepted by a verifier ”

(Soundness) ℙ[false statement AND verifier rejects] = 1 - ε
“Low chance that a proof of a false statement is
encountered”

We sacrifice minimal amount of soundness (have to break crypto to
produce counter-example) in order to get valuable proof properties

 8

Assuring Safe System
Composition

 9

Motivation:

Postcondition:
output will
never be 0

Precondition:
input cannot

be 0
System A: System B:

Systems have specific conditions under which they operate
correctly. Often these involve restrictions on the data supplied to
them.

 10

Type checking is a kind of specification that defines what kind of parameters a
function takes, and what it returns.

Strong static typing gives strong static guarantees
- If it type checks, the program will not result in type errors when run
- Builds proof of correctness internally

oneFloor:: Integer -> NonZero Integer
oneFloor x = toNonZero $ max 1 x

Type checking is a form of composition checking

div :: Integer -> NonZero Integer -> Integer
div num denom = num / denom

floorDiv :: Integer -> Integer -> Integer
floorDiv num denom = div num $ oneFloor denom

 11

Challenge: Formally Verifying System Composition

Individual systems are verified with pre
and post-conditions, which are checked
at runtime. This may require re-execution
of computation or the revealing of
sensitive data.

Entire systems can be modeled and
verified together, but the state space can
become intractable, and this approach
assumes trusted computing capabilities.

 12

In type checking on a single-system program, it is generally assumed that data is
not altered in ways not captured by the type-system. One does not generally
need to worry about data-integrity of the memory of a running program on a
trusted system

Even if on paper two systems have pre and post conditions that are compatible,
this implies that the sending system can be trusted to abide by those
requirements.

Problem: Guarantees can be lost across systems

Precondition:
input cannot

be 0
System A: System B:

0

 13

Problem: Not all requirements can be checked easily

Obviously a requirement such as that the input value is not a zero, or a list is
non-empty is an easy thing to verify at runtime.

However, facts about what procedures were used to generate the data, data
quality as measured by non-public metrics, or relations between data that is
confidential may not be detectable without supplying additional privileged
information, or re-executing computations.

 14

Difficult Preconditions and Postconditions
record QualityMLModel : Set where

 field
 w : Weights
 errLimit : (error w) < (0.05)
 log : AuditLog
 logProof : execute log ≡ w

We can generate proofs (or an audit log) of desired properties (e.g. functional
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually
trained on actual data and are within a certain error threshold can be used by a
classifier.

The audit log and its proof would be huge. Instead, we can use a super small
zkSNARK to prove this dependent type and pass it along instead. We only need to
handle the case where the check fails.

trainModel : List Inputs → Maybe QualityMLModel

classifyPoint : Input → QualityMLModel → Class

 15

Dependent Types: Sigma types (Dependent pairs)

Sigma types can be thought of as existential statements.

The second member of a pair supplies a member of B(x), when the first
member is some x : A such that B(x) is inhabited.
“There exists some value x that meets these constraints B(x) imposes”

https://ncatlab.org/nlab/show/dependent+sum+type

 16

zkSNARKs: A tailored proof of knowledge

zkSNARK
gadget

https://ncatlab.org/nlab/show/dependent+sum+type

inputs

proof binary

zkSNARKs correspond to sigma types.

 The inputs correspond to the first member of the pair, the gadget
defines the predicate, and the second member of the pair is the
proof that the predicate holds over those inputs.

 17

Preconditions and Postconditions with Types
record QualityMLModel : Set where

 field
 w : Weights
 proof :
 IO (ZKP (∃[(w′ , inputs)]
 ((error w′) < 0.05 ,
 (train inputs ≡ w′)))

We can generate proofs (or an audit log) of desired properties (e.g. functional
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually
trained on actual data and are within a certain error threshold can be used by a
classifier.

The audit log and its proof would be huge. Instead, we can use a super small
zkSNARK to prove this dependent type and pass it along instead. We only need to
handle the case where the check fails.

trainModel : List Inputs → Maybe QualityMLModel

classifyPoint : Input → QualityMLModel → IO Class

 18

Formal analysis of programs with ZKP
record QualityMLModel : Set where

 field
 w : Weights
 proof :
 IO (ZKP (∃[(w′ , inputs)]
 ((error w′) < 0.05 ,
 (train inputs ≡ w′)))

If the implementation of the zkSNARK gadget g accurately captures the predicate of
the sigma type, we can postulate that if verification of the zkp succeeds, then the
existential it corresponds to is inhabited.

 verifyZKP g inputs key = 1 → ∃[inputs] P(inputs)

From this, we can verify properties of the programs using inputs constrained in this
way, using the property assured by this zkp.

trainModel : List Inputs → Maybe QualityMLModel

classifyPoint : Input → QualityMLModel → IO Class

 19

Solution: Assuring Safe Composition via zkSNARKs

Outputs: Model Inputs: Model
(properly trained)

ZKP
Verifier

Outputs: Trained model Inputs: Trained model
Postcondition Precondition

zkSNARK proving model is valid

System A:

Train ML Model

System B:

Classify Points

System A:

Train ML Model

System B:

Classify Points

Postcondition Precondition

 20

Dependent Type Replacement by ZKPs

 21

Distributed Verification

Prover
Key

Verifier
Key

Generated
Outputs

Transferred
Outputs

Generated Proof and Public Inputs Generated Proof and Public Inputs

 22

Benefits & Capabilities
Using zero-knowledge proofs, we can combine cyber systems while
preventing certain incorrect and malicious behaviors relating to
mismatched outputs and input constraints.

Portable proofs artificially
extends our trusted
computing base beyond
just our own system

ZKPs give fine-grained
control over which bits of
information to keep secret
and which to reveal

ZKPs enforce system
compatibility without the
expense of manually
proving correctness

 23

Demo:
Verifying an RSA Encryption

Pipeline

 24

Background: Textbook RSA Cryptography

RSA is multiplicatively (×) homomorphic, meaning that if we encrypt two messages
with the same key and modulus, the multiplication of those two ciphertexts equals
the encryption of the multiplication of the plaintexts

Encryption:

Decryption:

 25

Demo: RSA Encryption Pipeline

Prog A’s Output
c1, c2, modulus

m1=7
m2=5

Enck(35)

Program A Program B

ENC

ENC
N=pq

Input Prog B’s Output:
Encrypted product

MULT

Sample Pipeline
1. Program A encrypts two secret messages using RSA
2. Program B receives encrypted messages and multiplies them

Challenge
If we implement A and B in Haskell, program B can’t guarantee it is multiplying
valid RSA ciphertexts. B could end up yielding garbage and would be an error a
type checker could catch IF it could see everything 1) only discoverable at runtime
and 2) under the covers of encryption.

 26

Demo: Encryption Pipeline with Type Checking ZKPs

Prog A’s Output
c1, c2, modulus

m1=7
m2=5

Enck(35)

Program A Program B

ENC

ENC
N=pq

ZKP Type
Verifier

Input Prog B’s Output:
Encrypted product

ZKP Type Checking Pipeline

Regular Computation

ZKP Type
Prover

MULT

 27

Demo: Proving Type Checks with ZKPs

We can encode this proof as the ValidRSAPair type above, and generate a
zkSNARK that proves type compliance using our compiler toolchain.

We can use Type-Level Haskell to generate redacted and un-redacted types, so
type information is not lost between function calls, but sensitive information is not
present.

ValidRSAPair : Set
ValidRSAPair =
 ∃[(bitLength, message1, message2, key, modulus,
 ciphertext1, ciphertext2)] (
 RSAEncrypt key modulus message1 ≡ ciphertext1,
 RSAEncrypt key modulus message2 ≡ ciphertext2)

Haskell’s type checker can’t verify the encrypted variable’s type until program
runtime. Instead, we instruct it to know to ask for a ZKP of its type later.
Example. Type for a valid pair of RSA ciphertexts

 28

Demo: Unredacted Pair Multiplier

multiplyPair ::
(Length, Message, Message, Key, Mod, CipherText, CipherText)
-> IO Message
multiplyPair r@(bits,m1,m2,pubKey,modulus,c1,c2) = do
 c1’ <- encrypt m1 key modulus
 c2’ <- encrypt m2 key modulus
 shouldBe (c1’,c2’) (c1,c2)
 let prod = (c1 * c2) `mod` modulus
 return prod

A non-redacted multiplication function input reveals sensitive information

 29

Demo: Unredacted Pair Multiplier

multiplyPair ::
(Length, Message, Message, Key, Mod, CipherText, CipherText)
-> IO Message
multiplyPair r@(bits,▓▓,▓▓,▓▓▓▓▓▓,modulus,c1,c2) = do
 c1’ <- encrypt ▓▓ ▓▓ modulus
 c2’ <- encrypt ▓▓ ▓▓ modulus
 shouldBe (c1’,c2’) (c1,c2)
 let prod = (c1 * c2) `mod` modulus
 return prod

A non-redacted multiplication function input reveals sensitive information

 30

Demo: Redacted Pair Multiplier

multiplyPair ::
Redacted RSAPair
-> IO Message
multiplyPair r@(bits,_,_,_,modulus,c1,c2) = do
 verifyZKP r
 prod <- (c1 * c2) `mod` modulus
 return prod

The redacted information is simply not available when passed as an input.

 31

Encryption Property Verified with ZKP

encryptMessagePair ::
Length
-> Message
-> Message
-> PublicKey
-> Modulus
-> IO (Unredacted RSAPair)
encryptMessagePair bits m1 m2 key modulus =
 c1 <- encrypt m1 key modulus
 c2 <- encrypt m2 key modulus
 prepareZKP (bits, m1,m2, key, modulus, c1, c2)

This prepares the ZKP, which generates the proof files and redacts the information
we don't want the other function to see.

 32

(Int,
Bitstring Integer,
Bitstring Integer,
Bitstring Integer,
Bitstring Integer,
Bitstring Integer,
Bitstring Integer)

RSAPair

Type-Level Programming Gives Type Safety

Redacted

We can use type level programming to generate input and output types
for functions from a central type.

(Int,
PrivInt,
PrivInt,
PrivInt,
PrivInt,
Bitstring Integer,
Bitstring Integer)

Unredacted

 33

A function to Illustrate Homomorphic Property

encryptMessagePair ::
Length
-> Message
-> Message
-> PublicKey
-> Modulus
-> IO (Unredacted RSAPair)

This function encrypts two messages with the same key and modulus, and returns
them along with the bit width.

The decrypt function relies on the fact that the two supplied ciphertexts are encrypted
with the same key and modulus.

multiplyPair ::
Redacted RSAPair
-> IO Message

 34

Benchmarks for Demo

 35

Demo Summary and Challenges

We were able to show an example of this approach using zkSNARKS to verify both
functions interacting in a program, and programs interacting across a file system.

It relies on the writing of zkSNARK gadgets, which using extant libraries is extremely
labor-intensive and requires knowledge of esoteric programming techniques.

In order to leverage the Haskell type system this approach requires type level
Haskell programming, which is considered somewhat niche even among advanced
Haskell programmers.

Can we mitigate these challenges?

 36

Prototype ZKP Compiler

 37

1

a

t0

b

t1

zkSNARK Construction for Program Verification [BCGTV13]

Computation

Arithmetic
Circuit

R1CS

QAP

LPCP

LIP

zkSNARK

int myFunction(int a) {
int b=a*a-4;
return 3*b+a;

}

π

S • A * S • B = S • C
1

a

t0

b

t1

0

1

0

0

0

0

1

0

0

0

1

a

t0

b

t1

0

1

0

0

0

Zero Knowledge Added

Succinctness Added

Interactivity Removed

zkSNARK for
Program Integrity

Proof Representation
Of Program Execution

Rank-1 Constraint System (R1CS):

libsnark
backend

Prover
Binary

Verifier
Binary

libsnark

 38

R1CS constraints

R1CS stands for Rank 1 Constraint system, a way of representing
programs as sets of satisfiable constraints. This is represented by sets
of equations of the following form, where ○ represents the dot product,
S is a solution vector, A and B are vectors of variables, and each of the
members of the vectors is a finite field element:

S ○ A ⨉ S ○ B = S ○ C

In practice, mapping of variables and satisfying assignments is done
automatically by zkp libraries, and thus are represented in the form:

Σ[operand] ⨉ Σ[operand] = Σ[operand]

 39

R1CS constraint example: Addition

To capture the addition of two field elements, x and y , which is
assigned to the variable z, this can be represented in r1cs as

Σ[x,y] ⨉ Σ[1] = Σ[z]

To make this hold we must supply a witness value for z,
in this case (x + y).

Note that this means we get multiple additions in a single constraint.

 40

Limits of R1CS

The basic unit of memory in R1CS is a finite field element. Computation
can be done directly on them, however these are limited in size, and
many operations (such as comparison or modulo) can’t be performed
directly on them.

We can use these R1CS constraints to build circuits that use binary
representations of numbers, one bit per field element, to do
bitstring-level computations.

As these gadgets effectively tie together R1CS constraints, inputs and
outputs are explicit, leading naturally to a to functional programming
paradigm.

 41

type family RetType a where

 GetParam RSAPair =

 (Int,

 Bitstring Integer,

 Bitstring Integer,

 Bitstring Integer,

 Bitstring Integer,

 Bitstring Integer,

 Bitstring Integer)

instance Name RSAPair where

getName _ = "RSAPair"

type family GerReturna where

 GetReturn RSAPair =

ValidRSAPair
(bitLen : CInt ,
 m1 : BitString bitLen,
 m2 : BitString bitLen,
 key : Bitstring bitLen,
 modulus : BitString bitLen,
 c1 : BitString bitLen,
 c2 : BitString bitLen)
-> Bit
 [(Eq
 EncRSA(key, modulus, m1)
 c1) : BitString bitLen
 (Eq
 EncRSA(key, modulus, m2)
 c2)] : BitString bitLen

Full Compiler Pipeline

ValidRSAPair

(bitLen : CInt ,

 m1 : BitString bitLen,

 m2 : BitString bitLen,

 key : Bitstring bitLen,

 modulus : BitString bitLen,

 c1 : BitString bitLen,

 c2 : BitString bitLen)

-> Bit

Let

 rsa1 = EncRSA(key, modulus, m1)
: BitString bitLen

 eqc1 = Eq rsa1 c1 : Bit

 rsa2 = EncRSA(key, modulus, m2)
: BitString bitLen

 eqc2 = Eq rsa2 c2 : Bit

And eqc1 eqc2 : Bit

ValidRSAPair : (Integer

Priv Bitstring Integer,

Priv Bitstring Integer,

Priv Bitstring Integer,

Priv Bitstring Int,

Bitstring Int,

Bitstring Int)

Custom Domain
Specific

Language

Input list for ZKP
Type-Level Haskell

Flattened Language Circuit Representation Libsnark Gadgets

DSL
Flattener

Type Extractor Haskell Generator

Circuit
Generator

C++
Gadget

Generator

 42

Demo: Custom Domain Specific Language Example

ValidRSAPair
(bitLen : CInt ,
 m1 : Priv BitString bitLen,
 m2 : Priv BitString bitLen,
 key : Priv Bitstring bitLen,
 modulus : BitString bitLen,
 c1 : BitString bitLen,
 c2 : BitString bitLen)
-> [Bit,Bit]
[
 (bsEq [EncRSA(key, modulus, m1), c1], : BitString bitLen)
 (bsEq [EncRSA(key, modulus, m2), c2]] : BitString bitLen)
]

 43

Demo: Flattened Language Example
ValidRSAPair
(bitLen : CInt ,
 m1 : Priv BitString bitLen,
 m2 : Priv BitString bitLen,
 key : Priv Bitstring bitLen,
 modulus : BitString bitLen,
 c1 : BitString bitLen,
 c2 : BitString bitLen)
-> [Bit,Bit]
Let
 [rsa1] = EncRSA[bitLen,key,modulus,m1] : BitString bitLen
 [eqc1] = bsEq[rsa1,c1] : Bit
 [rsa2] = EncRSA[bitLen,key,modulus,m2] : BitString bitLen
 [eqc2] = bsEq[bitlen,rsa2,c2] : Bit
[eqc1,eqc2] : Bit

 44

Demo: Using polymorphic functions

bsEq
(bitLen : CInt ,
 bs1 : BitString bitLen,
 bs2 : BitString bitLen)
-> [Bit]
Let
 [eqList] = zipWith[eq, bs1, bs2] : BitString bitLen
 [acc] = I
 [eqBit] = foldl[bitLen,and,acc,eqList] : Bit
[eqBit] : Bit

 45

Type checker

One of the benefits of using a DSL is
understandable error messages.

We implemented a type checker that supports
polymorphism, and supplying functions as
arguments.

Using this type checker, we caught bugs in our
prototype gadgets.

 46

type family ReturnType a where
 ReturnType RSAPair =
 (Int,
 Bitstring Integer,
 Bitstring Integer,
 Bitstring Integer,
 Bitstring Integer,
 Bitstring Integer,
 Bitstring Integer)

instance Name RSAPair where
getName _ = "RSAPair"

type family Redacted a where
 Redacted RSAPair =

 (Int,
 PrivInt,
 PrivInt,
 PrivInt,
 PrivInt,
 Bitstring Integer,

Type-level Haskell Generation Step

Expression Type-Level Haskell

ValidRSAPair = (Int
Priv Bitstring Integer,
Priv Bitstring Integer,
Priv Bitstring Integer,
Priv Bitstring Int,
Bitstring Int,
Bitstring Int)

zkSNARK Type

ValidRSAPair
(bitLen : CInt ,
 m1 : BitString bitLen,
 m2 : BitString bitLen,
 key : Bitstring bitLen,
 modulus : BitString bitLen,
 c1 : BitString bitLen,
 c2 : BitString bitLen)
-> [Bit,Bit]
 [Eq
 EncRSA(key, modulus, m1)
 c1), : BitString bitLen
 (Eq
 EncRSA(key, modulus, m2)
 c2)] : BitString bitLen

 47

Functional Gadget Library

Implementation Summary

We developed a library of
zkSNARK gadgets and types

in C++ using Libsnark

We developed a custom compiler
in Haskell to apply functional

programming techniques to
zkSNARK development

We produced a demo
dependently-typed zkSNARK
application for RSA encryption

and verification

Prototype Compiler Type Checking Demo

DSL Flattener

Custom Domain Specific Language

Type Extractor

Libsnark

Map, ZipWith, Fold, ...

Large Integer Math

RSA Components

Primitive Operations
Circuit

Generator
Haskell

Generator

C++ Gadget
Generator

Zero-Knowledge RSA
Encryption Application

Zero-Knowledge RSA Verifier
and Multiplier Application

Application Communication
Utility Scripts

 48

Conclusion

By using zkSNARKs to prove that values have
specific dependent types, it is possible to
provably assure compatibility and correctness
without revealing sensitive information and
extend our trusted computing base well beyond
our own system.

The approach we developed expands the scope
of what non-interactive zero-knowledge proofs
can capture to include properties about both the
execution and correctness of programs

 49

Future Work

I. Increase the extent of Haskell language integration to enforce verification on a
programming language level rather than trusting programmers to run the verifier
binaries manually.

II. Leverage approach to work with several ongoing efforts at LANL to help verify
mission-relevant cyber systems that utilize sensitive information

III. Build more advanced compiler automation to automatically integrate type-level
haskell and compile libsnark programs to allow faster development times.

IV. Build optimization steps to reduce number of gates into the compiler, and optimize
existing gadgets.

V. Increase the expressivity of the language to include ZKPs for uncertainty
measures and machine learning model properties developed by fellow LANL
student, Zachary DeStefano (A-4).

VI. Move the DSL into a monad which admits computation failure, to distinguish
between gadgets that always succeed at witness generation and those which can
fail.

 50

Questions?

dbarrack@lanl.gov

 51

Backup

 52

Benchmarks for Demo

 53

 < 20

+ *

*

 1 <

15

 < 20 1 <

and

and

3

18 4511 1 1

8101 1

Our function as a circuit

 54

Theory Behind ZKPs
(Backup)

 55

1. Publish homomorphically encrypted building blocks for a program

2. Prover blindly re-assembles them to compute the desired circuit (e.g. an
evaluation of the PCP circuit) and adding random blinds where appropriate

3. Verifier checks content by simply decrypting

Circuit Evaluation

 56

Language Grammar

 57

Language grammar

 58

Big step semantics

 59

Big step semantics

