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Cryptographic proofs
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Example. You want to prove that you have beaten Where’s Waldo?
• Traditional Proof: Point to Waldo to demonstrate you know where he is

• Not zero-knowledge!
This kind of proof leaks all information about his location, much more than 
simply that you have knowledge of the location

Zero-Knowledge Proof for Where’s Waldo?
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Zero-knowledge proof for “Where’s Waldo?”
1. Cut out a Waldo shaped hole in a much larger piece of paper
2. Position the hole over Waldo’s location

Zero-Knowledge Proof for Where’s Waldo?

Slide under paper

This precisely obfuscates 
Waldo’s location while 
demonstrating knowledge 
of his whereabouts!

To adversaries, the book underneath could 
hypothetically be in any random orientation
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Zero-Knowledge Proofs and Verifiable Computation

Zero-knowledge proofs (ZKPs) allow us to prove that a claim IS true 
without revealing WHY it is true, even if the prover is untrusted and 
malicious.
zkSNARKs are special ZKPs that are tiny and non-interactive

O(1)
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O(n)
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Inputs:
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Cryptographic Proof Systems

Cryptographic proof systems have variable completeness and 
soundness (slightly distinct from their meaning in formal systems). For 
non-interactive zero-knowledge proofs we care about:

(Completeness) ℙ[true statement AND verifier accepts] = 1
“Every valid proof will be accepted by a verifier ”

(Soundness) ℙ[false statement AND verifier rejects] = 1 - ε
“Low chance that a proof of a false statement is 
encountered”

We sacrifice minimal amount of soundness (have to break crypto to 
produce counter-example) in order to get valuable proof properties
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Assuring Safe System 
Composition
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Motivation: 

Postcondition: 
output will 
never be 0

Precondition:
input cannot 

be 0
System A: System B:

Systems have specific conditions under which they operate 
correctly. Often these involve restrictions on the data supplied to 
them.
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Type checking is a kind of specification that defines what kind of parameters a 
function takes, and what it returns.

Strong static typing gives strong static guarantees
- If it type checks, the program will not result in type errors when run
- Builds proof of correctness internally

oneFloor:: Integer -> NonZero Integer
oneFloor x = toNonZero $ max 1 x

Type checking is a form of composition checking

div :: Integer -> NonZero Integer -> Integer
div num denom = num / denom

floorDiv :: Integer -> Integer -> Integer
floorDiv num denom = div num $ oneFloor denom
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Challenge: Formally Verifying System Composition

Individual systems are verified with pre 
and post-conditions, which are checked 
at runtime. This may require re-execution 
of computation or the revealing of 
sensitive data.

Entire systems can be modeled and 
verified together, but the state space can 
become intractable, and this approach 
assumes trusted computing capabilities.  
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In type checking on a single-system program, it is generally assumed that data is 
not altered in ways not captured by the type-system. One does not generally 
need to worry about data-integrity of the memory of a running program on a 
trusted system

Even if on paper two systems have pre and post conditions that are compatible, 
this implies that the sending system can be trusted to abide by those 
requirements. 

Problem: Guarantees can be lost across systems  

Precondition:
input cannot 

be 0
System A: System B:

0
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Problem: Not all requirements can be checked easily 

Obviously a requirement such as that the input value is not a zero, or a list is 
non-empty is an easy thing to verify at runtime.

However, facts about what procedures were used to generate the data, data 
quality as measured by non-public metrics, or relations between data that is 
confidential may not be detectable without supplying additional privileged 
information, or re-executing computations.
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Difficult Preconditions and Postconditions
record QualityMLModel : Set where                                                                                                                        

  field                                                                                                                                                  
    w        : Weights                                                                                                                                   
    errLimit : (error w) < (0.05)                                                                                                                        
    log      : AuditLog                                                                                                                                  
    logProof : execute log ≡ w 

We can generate proofs (or an audit log) of desired properties (e.g. functional 
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually 
trained on actual data and are within a certain error threshold can be used by a 
classifier.

The audit log and its proof would be huge. Instead, we can use a super small 
zkSNARK to prove this dependent type and pass it along instead. We only need to 
handle the case where the check fails.

trainModel : List Inputs → Maybe QualityMLModel

 

classifyPoint : Input → QualityMLModel → Class
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Dependent Types: Sigma types (Dependent pairs)

Sigma types can be thought of as existential statements.

The second member of a pair supplies a member of B(x), when the first 
member is some x : A such that B(x) is inhabited. 
“There exists some value x that meets these constraints B(x) imposes” 

https://ncatlab.org/nlab/show/dependent+sum+type
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zkSNARKs: A tailored proof of knowledge

zkSNARK 
gadget 

https://ncatlab.org/nlab/show/dependent+sum+type

inputs

proof binary

zkSNARKs correspond to sigma types.

 The inputs correspond to the first member of the pair, the gadget 
defines the predicate, and the second member of the pair is the 
proof that the predicate holds over those inputs. 
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Preconditions and Postconditions with Types
record QualityMLModel : Set where                                                                                                                        

  field                                                                                                                                                  
    w        : Weights                                                                                                                                                                                                                                                                                                                                                                                           
    proof    : 
     IO (ZKP (∃[ ( w′ , inputs ) ]              
                ((error w′ ) < 0.05 , 
                (train inputs ≡ w′)))  

We can generate proofs (or an audit log) of desired properties (e.g. functional 
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually 
trained on actual data and are within a certain error threshold can be used by a 
classifier.

The audit log and its proof would be huge. Instead, we can use a super small 
zkSNARK to prove this dependent type and pass it along instead. We only need to 
handle the case where the check fails.

trainModel : List Inputs → Maybe QualityMLModel

 

classifyPoint : Input → QualityMLModel → IO Class
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Formal analysis of programs with ZKP 
record QualityMLModel : Set where                                                                                                                        

  field                                                                                                                                                  
    w        : Weights                                                                                                                                                                                                                                                                                                                                                                                           
    proof    : 
     IO (ZKP (∃[ ( w′ , inputs ) ]              
                ((error w′ ) < 0.05 , 
                (train inputs ≡ w′)))  

If the implementation of the zkSNARK gadget g accurately captures the predicate of 
the sigma type, we can postulate that if verification of the zkp succeeds, then the 
existential it corresponds to is inhabited.

      verifyZKP g inputs key = 1 →  ∃[inputs] P(inputs)

From this, we can verify properties of the programs using inputs constrained in this 
way, using the property assured by this zkp.

trainModel : List Inputs → Maybe QualityMLModel

 

classifyPoint : Input → QualityMLModel → IO Class
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Solution: Assuring Safe Composition via zkSNARKs

Outputs: Model Inputs: Model
(properly trained)

ZKP 
Verifier

Outputs: Trained model Inputs: Trained model
Postcondition Precondition

zkSNARK proving model is valid

System A:

Train ML Model

System B:

Classify Points

System A:

Train ML Model

System B:

Classify Points

Postcondition Precondition
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Dependent Type Replacement by ZKPs
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Distributed Verification

Prover 
Key

Verifier
Key

Generated 
Outputs

Transferred 
Outputs

Generated Proof and Public Inputs Generated Proof and Public Inputs 
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Benefits & Capabilities
Using zero-knowledge proofs, we can combine cyber systems while 
preventing certain incorrect and malicious behaviors relating to 
mismatched outputs and input constraints.

Portable proofs artificially  
extends our trusted 
computing base beyond 
just our own system

ZKPs give fine-grained 
control over which bits of 
information to keep secret 
and which to reveal

ZKPs enforce system 
compatibility without the 
expense of manually 
proving correctness
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Demo:
Verifying an RSA Encryption 

Pipeline
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Background: Textbook RSA Cryptography

RSA is multiplicatively (×) homomorphic, meaning that if we encrypt two messages 
with the same key and modulus, the multiplication of those two ciphertexts equals 
the encryption of the multiplication of the plaintexts

Encryption:

Decryption:
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Demo: RSA Encryption Pipeline

Prog A’s Output
c1, c2, modulus

m1=7
m2=5 

Enck(35)

Program A Program B

ENC

ENC
N=pq

Input Prog B’s Output:
Encrypted product

MULT

Sample Pipeline
1. Program A encrypts two secret messages using RSA
2. Program B receives encrypted messages and multiplies them

Challenge
If we implement A and B in Haskell, program B can’t guarantee it is multiplying 
valid RSA ciphertexts. B could end up yielding garbage and would be an error a 
type checker could catch IF it could see everything 1) only discoverable at runtime 
and 2) under the covers of encryption.
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Demo: Encryption Pipeline with Type Checking ZKPs

Prog A’s Output
c1, c2, modulus

m1=7
m2=5 

Enck(35)

Program A Program B

ENC

ENC
N=pq

ZKP Type 
Verifier

Input Prog B’s Output:
Encrypted product

ZKP Type Checking Pipeline

Regular Computation

ZKP Type
Prover

MULT
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Demo: Proving Type Checks with ZKPs

We can encode this proof as the ValidRSAPair type above, and generate a 
zkSNARK that proves type compliance using our compiler toolchain.

We can use Type-Level Haskell to generate redacted and un-redacted types, so 
type information is not lost between function calls, but sensitive information is not 
present.

ValidRSAPair : Set                                                                                                                                       
ValidRSAPair = 
  ∃[ ( bitLength, message1, message2, key, modulus,          
       ciphertext1, ciphertext2) ] (                                                          
  RSAEncrypt key modulus message1 ≡ ciphertext1,                                                                                                         
  RSAEncrypt key modulus message2 ≡ ciphertext2)

Haskell’s type checker can’t verify the encrypted variable’s type until program 
runtime. Instead, we instruct it to know to ask for a ZKP of its type later.
Example. Type for a valid pair of RSA ciphertexts
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Demo: Unredacted Pair Multiplier 

multiplyPair ::  
(Length, Message, Message, Key, Mod, CipherText, CipherText)  
-> IO Message
multiplyPair r@(bits,m1,m2,pubKey,modulus,c1,c2) = do
  c1’  <- encrypt m1 key modulus
  c2’  <- encrypt m2 key modulus
  shouldBe (c1’,c2’) (c1,c2)
  let prod = (c1 * c2) `mod` modulus
  return prod 

A non-redacted multiplication function input reveals sensitive information
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Demo: Unredacted Pair Multiplier 

multiplyPair ::  
(Length, Message, Message, Key, Mod, CipherText, CipherText)  
-> IO Message
multiplyPair r@(bits,▓▓,▓▓,▓▓▓▓▓▓,modulus,c1,c2) = do
  c1’  <- encrypt ▓▓ ▓▓ modulus
  c2’  <- encrypt ▓▓ ▓▓ modulus
  shouldBe (c1’,c2’) (c1,c2)
  let prod = (c1 * c2) `mod` modulus
  return prod 

A non-redacted multiplication function input reveals sensitive information
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Demo: Redacted Pair Multiplier  

multiplyPair ::  
Redacted RSAPair
-> IO Message
multiplyPair r@(bits,_,_,_,modulus,c1,c2) = do
  verifyZKP r
  prod <- (c1 * c2) `mod` modulus
  return prod 

The redacted information is simply not available when passed as an input.
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Encryption Property Verified with ZKP

encryptMessagePair :: 
Length 
-> Message 
-> Message 
-> PublicKey 
-> Modulus 
-> IO (Unredacted RSAPair)
encryptMessagePair bits m1 m2 key modulus = 
   c1 <- encrypt m1 key modulus
   c2 <- encrypt m2 key modulus
   prepareZKP (bits, m1,m2, key, modulus, c1, c2)

This prepares the ZKP, which generates the proof files and redacts the information 
we don't want the other function to see.
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(Int, 
Bitstring Integer, 
Bitstring Integer, 
Bitstring Integer, 
Bitstring Integer, 
Bitstring Integer, 
Bitstring Integer)

RSAPair

Type-Level Programming Gives Type Safety

Redacted

We can use type level programming to generate input and output types 
for functions from a central type.

(Int, 
PrivInt,
PrivInt,
PrivInt,
PrivInt,
Bitstring Integer,
Bitstring Integer)

Unredacted
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A function to Illustrate Homomorphic Property

encryptMessagePair :: 
Length 
-> Message 
-> Message 
-> PublicKey 
-> Modulus 
-> IO (Unredacted RSAPair)

This function encrypts two messages with the same key and modulus, and returns 
them along with the bit width.

The decrypt function relies on the fact that the two supplied ciphertexts are encrypted 
with the same key and modulus.

multiplyPair ::  
Redacted RSAPair 
-> IO Message
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Benchmarks for Demo
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Demo Summary and Challenges

We were able to show an example of this approach using zkSNARKS to verify both 
functions interacting in a program, and programs interacting across a file system.

It relies on the writing of zkSNARK gadgets, which using extant libraries is extremely 
labor-intensive and requires knowledge of esoteric programming techniques.

In order to leverage the Haskell type system this approach requires type level 
Haskell programming, which is considered somewhat niche even among advanced 
Haskell programmers.

Can we mitigate these challenges?
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Prototype ZKP Compiler
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R1CS constraints

R1CS stands for Rank 1 Constraint system, a way of representing 
programs as sets of satisfiable constraints. This is represented by sets 
of equations of the following form, where ○ represents the dot product, 
S is a solution vector, A and B are vectors of variables, and each of the 
members of the vectors is a finite field element:

S ○ A ⨉ S ○ B  =  S ○ C

In practice, mapping of variables and satisfying assignments is done 
automatically by zkp libraries, and thus are represented in the form:

Σ[operand] ⨉ Σ[operand] = Σ[operand]
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R1CS constraint example: Addition

To capture the addition of two field elements, x and y , which is 
assigned to the variable z, this can be represented in r1cs as

Σ[x,y] ⨉ Σ[1] = Σ[z]

To make this hold we must supply a witness value for z, 
in this case (x + y).

Note that this means we get multiple additions in a single constraint.
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Limits of R1CS

The basic unit of memory in R1CS is a finite field element. Computation 
can be done directly on them, however these are limited in size, and 
many operations (such as comparison or modulo) can’t be performed 
directly on them.

We can use these R1CS constraints to build circuits that use binary 
representations of numbers, one bit per field element, to do 
bitstring-level computations.

As these gadgets effectively tie together R1CS constraints, inputs and 
outputs are explicit, leading naturally to a to functional programming 
paradigm.
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type family RetType a where

          GetParam RSAPair = 

               (Int, 

                Bitstring Integer, 

                Bitstring Integer, 

                Bitstring Integer, 

                Bitstring Integer, 

                Bitstring Integer, 

                Bitstring Integer)

instance Name RSAPair where

getName _ = "RSAPair"

type family GerReturna where

  GetReturn RSAPair =

ValidRSAPair 
(bitLen  : CInt ,
 m1      : BitString bitLen, 
 m2      : BitString bitLen,
 key     : Bitstring bitLen,
 modulus : BitString bitLen, 
 c1      : BitString bitLen,
 c2      : BitString bitLen )
-> Bit 
  [(Eq 
    EncRSA(key, modulus, m1) 
    c1) : BitString bitLen
  (Eq 
    EncRSA(key, modulus, m2)
    c2)] : BitString bitLen

Full Compiler Pipeline

ValidRSAPair 

(bitLen  : CInt ,

 m1      : BitString bitLen, 

 m2      : BitString bitLen,

 key     : Bitstring bitLen,

 modulus : BitString bitLen, 

 c1      : BitString bitLen,

 c2      : BitString bitLen )

-> Bit 

Let 

  rsa1 = EncRSA(key, modulus, m1) 
: BitString bitLen 

  eqc1 = Eq rsa1 c1 : Bit

  rsa2 = EncRSA(key, modulus, m2) 
: BitString bitLen 

  eqc2 = Eq rsa2 c2 : Bit

And eqc1 eqc2 : Bit

ValidRSAPair : (Integer

Priv Bitstring Integer, 

Priv Bitstring Integer, 

Priv Bitstring Integer, 

Priv Bitstring Int, 

Bitstring Int, 

Bitstring Int) 

Custom Domain 
Specific 

Language

Input list for ZKP
Type-Level Haskell

Flattened Language Circuit Representation Libsnark Gadgets

DSL 
Flattener

Type Extractor Haskell Generator

Circuit 
Generator

C++ 
Gadget 

Generator
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Demo: Custom Domain Specific Language Example 

ValidRSAPair 
(bitLen  : CInt ,
 m1      : Priv BitString bitLen, 
 m2      : Priv BitString bitLen,
 key     : Priv Bitstring bitLen,
 modulus : BitString bitLen, 
 c1      : BitString bitLen,
 c2      : BitString bitLen )
-> [Bit,Bit] 
[
  (bsEq [EncRSA(key, modulus, m1), c1], : BitString bitLen)
  (bsEq [EncRSA(key, modulus, m2), c2]] : BitString bitLen)
]
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Demo: Flattened Language Example
ValidRSAPair 
(bitLen  : CInt ,
 m1      : Priv BitString bitLen, 
 m2      : Priv BitString bitLen,
 key     : Priv Bitstring bitLen,
 modulus : BitString bitLen, 
 c1      : BitString bitLen,
 c2      : BitString bitLen )
-> [Bit,Bit] 
Let 
  [rsa1] = EncRSA[bitLen,key,modulus,m1] : BitString bitLen 
  [eqc1] = bsEq[rsa1,c1] : Bit
  [rsa2] = EncRSA[bitLen,key,modulus,m2] : BitString bitLen 
  [eqc2] = bsEq[bitlen,rsa2,c2] : Bit
[eqc1,eqc2] : Bit
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Demo: Using polymorphic functions

bsEq
(bitLen  : CInt ,
 bs1     : BitString bitLen, 
 bs2     : BitString bitLen)
-> [Bit] 
Let 
  [eqList] = zipWith[eq, bs1, bs2] : BitString bitLen
  [acc]    = I 
  [eqBit]  = foldl[bitLen,and,acc,eqList]   : Bit
[eqBit] : Bit
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Type checker

One of the benefits of using a DSL is 
understandable error messages. 

We implemented a type checker that supports 
polymorphism, and supplying functions as 
arguments.

Using this type checker, we caught bugs in our 
prototype gadgets.
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type family ReturnType a where
          ReturnType RSAPair = 
               (Int, 
                Bitstring Integer, 
                Bitstring Integer, 
                Bitstring Integer, 
                Bitstring Integer, 
                Bitstring Integer, 
                Bitstring Integer)

instance Name RSAPair where
getName _ = "RSAPair"

type family Redacted a where
  Redacted RSAPair = 

              (Int, 
               PrivInt, 
               PrivInt, 
               PrivInt, 
               PrivInt, 
               Bitstring Integer, 
                

Type-level Haskell Generation Step

Expression Type-Level Haskell

ValidRSAPair = (Int
Priv Bitstring Integer, 
Priv Bitstring Integer, 
Priv Bitstring Integer, 
Priv Bitstring Int, 
Bitstring Int, 
Bitstring Int) 

zkSNARK Type

ValidRSAPair 
(bitLen  : CInt ,
 m1      : BitString bitLen, 
 m2      : BitString bitLen,
 key     : Bitstring bitLen,
 modulus : BitString bitLen, 
 c1      : BitString bitLen,
 c2      : BitString bitLen )
-> [Bit,Bit] 
  [Eq 
    EncRSA(key, modulus, m1) 
    c1), : BitString bitLen
  (Eq 
    EncRSA(key, modulus, m2)
    c2)] : BitString bitLen
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Functional Gadget Library

Implementation Summary

We developed a library of 
zkSNARK gadgets and types 

in C++ using Libsnark

We developed a custom compiler 
in Haskell to apply functional 

programming techniques to 
zkSNARK development 

We produced a demo 
dependently-typed zkSNARK 
application for RSA encryption 

and verification 

Prototype Compiler Type Checking Demo

DSL Flattener

Custom Domain Specific Language

Type Extractor

Libsnark

Map, ZipWith, Fold, ...

Large Integer Math

RSA Components

Primitive Operations
Circuit 

Generator
Haskell 

Generator

C++ Gadget 
Generator

Zero-Knowledge RSA 
Encryption Application

Zero-Knowledge RSA Verifier 
and Multiplier Application

Application Communication 
Utility Scripts
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Conclusion 

By using zkSNARKs to prove that values have 
specific dependent types, it is possible to 
provably assure compatibility and correctness 
without revealing sensitive information and 
extend our trusted computing base well beyond 
our own system.

The approach we developed expands the scope 
of what non-interactive zero-knowledge proofs 
can capture to include properties about both the 
execution and correctness of programs
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Future Work

I. Increase the extent of Haskell language integration to enforce verification on a 
programming language level rather than trusting programmers to run the verifier 
binaries manually.

II. Leverage approach to work with several ongoing efforts at LANL to help verify 
mission-relevant cyber systems that utilize sensitive information

III. Build more advanced compiler automation to automatically integrate type-level 
haskell and compile libsnark programs to allow faster development times.

IV. Build optimization steps to reduce number of gates into the compiler, and optimize 
existing gadgets.

V. Increase the expressivity of the language to include ZKPs for uncertainty 
measures and machine learning model properties developed by fellow LANL 
student, Zachary DeStefano (A-4). 

VI. Move the DSL into a monad which admits computation failure, to distinguish 
between gadgets that always succeed at witness generation and those which can 
fail.
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Questions?

dbarrack@lanl.gov
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Backup
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Benchmarks for Demo
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Theory Behind ZKPs
(Backup)
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1. Publish homomorphically encrypted building blocks for a program

2. Prover blindly re-assembles them to compute the desired circuit (e.g. an 
evaluation of the PCP circuit) and adding random blinds where appropriate

3. Verifier checks content by simply decrypting

Circuit Evaluation
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Language Grammar 
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Language grammar
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Big step semantics
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Big step semantics


