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Cryptographic proofs



Zero-Knowledge Proof for Where’s Waldo?

Example. You want to prove that you have beaten Where’s Waldo?
« Traditional Proof: Point to Waldo to demonstrate you know where he is

e r: - —

* Not zero-knowledge!

This kind of proof leaks all information about his location, much more than
simply that you have knowledge of the location




Zero-Knowledge Proof for Where’s Waldo?

Zero-knowledge proof for “Where’s Waldo?”

1. Cut out a Waldo shaped hole in a much larger piece of paper
2. Position the hole over Waldo’s location

Slide under paper

This precisely obfuscates

Waldo's Ioc_atlon while To adversaries, the book underneath could
demonstrating knowledge hypothetically be in any random orientation

of his whereabouts!




Zero-Knowledge Proofs and Verifiable Computation

Zero-knowledge proofs (ZKPs) allow us to prove that a claim IS true
without revealing WHY it is true, even if the prover is untrusted and

malicious.
zkSNARKSs are special ZKPs that are tiny and non-interactive
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zkSNARK Construction for Program Verification [BCGTV13]

libsnark

int (int a) {
int b=a*a-4; S
return 3*b+a; —P‘ Computation ,
}
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Cryptographic Proof Systems

Cryptographic proof systems have variable completeness and
soundness (slightly distinct from their meaning in formal systems). For
non-interactive zero-knowledge proofs we care about:

(Completeness) [P[true statement AND verifier accepts] = 1
“Every valid proof will be accepted by a verifier ”

(Soundness) [P[false statement AND verifier rejects] =1 - ¢
“Low chance that a proof of a false statement is
encountered”

We sacrifice minimal amount of soundness (have to break crypto to
produce counter-example) in order to get valuable proof properties

-




Assuring Safe System
Composition



Motivation:

Systems have specific conditions under which they operate
correctly. Often these involve restrictions on the data supplied to
them.

Postcondition: Precondition:
output will input cannot
never be 0 be 0

System B:

System A:




Type checking is a form of composition checking

Type checking is a kind of specification that defines what kind of parameters a
function takes, and what it returns.

Strong static typing gives strong static guarantees
- If it type checks, the program will not result in type errors when run
- Builds proof of correctness internally

oneFloor:: Integer -> NonZero Integer iv :: Integer -> NonZero Integer -> Integer

( Id I
I I
1 oneFloor x = toNonZero § max 1 X | div num denom = num / denom :
I I

I
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| floorDiv :: Integer -> Integer -> Integer \
\ floorDiv num denom = div num $ oneFloor denom !
1 1
\ /




Challenge: Formally Verifying System Composition

Entire systems can be modeled and
verified together, but the state space can
become intractable, and this approach
assumes trusted computing capabilities.

Individual systems are verified with pre
and post-conditions, which are checked
at runtime. This may require re-execution
of computation or the revealing of
sensitive data.




Problem: Guarantees can be lost across systems

In type checking on a single-system program, it is generally assumed that data is
not altered in ways not captured by the type-system. One does not generally
need to worry about data-integrity of the memory of a running program on a

trusted system

Precondition:
System A: input cannot _ System B:

o be 0

Even if on paper two systems have pre and post conditions that are compatible,
this implies that the sending system can be trusted to abide by those
requirements.




Problem: Not all requirements can be checked easily

Obviously a requirement such as that the input value is not a zero, or a list is
non-empty is an easy thing to verify at runtime.

However, facts about what procedures were used to generate the data, data
quality as measured by non-public metrics, or relations between data that is
confidential may not be detectable without supplying additional privileged
information, or re-executing computations.




Difficult Preconditions and Postconditions

record QualityMLModel : Set where trainModel : List Inputs — Maybe QualityMLModel

field
w : Weights
errLimit : (error w) < (0.05)
log : Auditlog classifyPoint : Input - QualityMLModel - Class

logProof : execute log = w

We can generate proofs (or an audit log) of desired properties (e.g. functional
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually
trained on actual data and are within a certain error threshold can be used by a
classifier.

The audit log and its proof would be huge. Instead, we can use a super small
zkSNARK to prove this dependent type and pass it along instead. We only need to
handle the case where the check falls.

®




Dependent Types: Sigma types (Dependent pairs)

Sigma types can be thought of as existential statements.
a: A b: B(a)
(CL, b) Zaz:A B(.ﬁl})

The second member of a pair supplies a member of B(x), when the first
member is some x : A such that B(x) is inhabited.

“There exists some value x that meets these constraints B(x) imposes”

S8
‘:Q https://ncatlab.org/nlab/show/dependent+sum+type
~—




zkSNARKS: A tailored proof of knowledge

zkSNARKSs correspond to sigma types.
proof binary

|
a: A b: B(a)
(@, 0): 3 . 4 B(%) Gagger

The inputs correspond to the first member of the pair, the gadget
defines the predicate, and the second member of the pair is the
proof that the predicate holds over those inputs.

inputs

S8
‘:6 https://ncatlab.org/nlab/show/dependent+sum+type
~—




Preconditions and Postconditions with Types

record QualityMLModel : Set where trainModel : List Inputs - Maybe QualityMLModel
field

w : Weights

proof

I0 (ZKP (3[ ( w' , dinputs ) ] classifyPoint : Input - QualityMLModel - IO Class

((error w' ) < 0.05 ,
(train inputs = w')))

We can generate proofs (or an audit log) of desired properties (e.g. functional
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually
trained on actual data and are within a certain error threshold can be used by a
classifier.

The audit log and its proof would be huge. Instead, we can use a super small
zkSNARK to prove this dependent type and pass it along instead. We only need to
handle the case where the check falls.

®




Formal analysis of programs with ZKP

record QualityMLModel : Set where trainModel : List Inputs - Maybe QualityMLModel
field

w : Weights

proof

I0 (ZKP (3[ ( w' , dinputs ) ] classifyPoint : Input - QualityMLModel - IO Class

((error w' ) < 0.05 ,
(train inputs = w')))

If the implementation of the zkSNARK gadget g accurately captures the predicate of
the sigma type, we can postulate that if verification of the zkp succeeds, then the
existential it corresponds to is inhabited.

verifyZKP g inputs key =1 — 3[inputs] P(inputs)

From this, we can verify properties of the programs using inputs constrained in this
way, using the property assured by this zkp.




Solution: Assuring Safe Composition via zkSNARKSs

System A: Postcondition Precondition System B:

77 e 0o

e —
Al ¢o
L

LR Lo o
Train ML Model

Outputs: Model Inputs: Model
(properly trained)

|

Postcondition Precondition
System A: Outputs: Trained model Inputs: Trained model System B:

77 e 0o

e =
Al ¢o
L =

Classify Points

ZKP

|||I[IU jeee Verifier

Train ML Model  zkSNARK proving model is valid Classify Points




Dependent Type Replacement by ZKPs

Execution Layer

Zero-knowledge Layer

Dependent Type Verifier
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Distributed Verification
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Benefits & Capabilities

Using zero-knowledge proofs, we can combine cyber systems while
preventing certain incorrect and malicious behaviors relating to

mismatched outputs and input constraints.
]

848
S5 w0
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ZKPs enforce system Portable proofs artificially ZKPs give fine-grained
compatibility without the extends our trusted control over which bits of
expense of manually computing base beyond information to keep secret

proving correctness just our own system and which to reveal




Demo:
Verifying an RSA Encryption
Pipeline



Background: Textbook RSA Cryptography

Encryption: EnClgp

Decryption:

Deci .., (¢) = c*riv mod N

. (msg) = msg"»* mod N = c

msg

RSA is multiplicatively (x) homomorphic, meaning that if we encrypt two messages
with the same key and modulus, the multiplication of those two ciphertexts equals

the encryption of the multiplication of the plaintexts

C1 * Co

k')?L) k uo
msg,""" * msg,""" mod N

(msgy * msgs ) »uv mod N

= Ency,,, (msg1 * msgo)



Demo: RSA Encryption Pipeline

Sample Pipeline

1. Program A encrypts two secret messages using RSA
2. Program B receives encrypted messages and multiplies them

_____________

‘

: | | S— ST TTTTTTTT T \
1 — [ \I
S . . —l LT sb i
me=5 p|[ENC | | “E.:. ' Enc, (35) |

J . N=pq o ,=
Input Program A Prog A’s Output Program B Prog B’s Output:
Encrypted product

C, C, modulus

Challenge

If we implement A and B in Haskell, program B can’t guarantee it is multiplying
valid RSA ciphertexts. B could end up yielding garbage and would be an error a
type checker could catch IF it could see everything 1) only discoverable at runtime
and 2) under the covers of encryption.

®




Demo: Encryption Pipeline with Type Checking ZKPs

ZKP Type Checking Pipeline

(T T T T T T T T T T N (T T T T T T T T T T T = N
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e = e om I o Eeoupt |
i Input Program A Prog A’s Output Program B rog 5's Vutput. |

|
|

c,, C,, modulus Encrypted product




Demo: Proving Type Checks with ZKPs

Haskell’s type checker can’t verify the encrypted variable’s type until program
runtime. Instead, we instruct it to know to ask for a ZKP of its type later.

Example. Type for a valid pair of RSA ciphertexts

ValidRSAPair : Set
ValidRSAPair =
3[ ( bitLength, messagel, message2, key, modulus,
ciphertextl1, ciphertext2) ] (
RSAEncrypt key modulus messagel
RSAEncrypt key modulus message?2

ciphertextT,
ciphertext2)

We can encode this proof as the ValidRSAPair type above, and generate a
zkSNARK that proves type compliance using our compiler toolchain:.

We can use Type-Level Haskell to generate redacted and un-redacted types, so
type mf{ormatlon is not lost between function calls, but sensitive information is not
present.

®




Demo: Unredacted Pair Multiplier

(Length, Message, Message, Key, Mod, CipherText, CipherText)
-> JO Message
r@(bits,m1,m2, pubKey, modulus,c1,c2) = do

cl’ <- encrypt m1 key modulus

c2’ <- encrypt m2 key modulus

shouldBe (c1’,c2’') (c1,c2)

let prod = (c1 * ¢c2) "mod’ modulus

return prod

A non-redacted multiplication function input reveals sensitive information




Demo: Unredacted Pair Multiplier

(Length, Message—Messages—¥key, Mod, CipherText, CipherText)

-> JO Message
modulus,c1,c2) = do

showldBe{et+ et 2>
let prod = (c1 * ¢c2) "mod’ modulus
return prod

A non-redacted multiplication function input reveals sensitive information




Demo: Redacted Pair Multiplier

Redacted RSAPair
-> J0O Message
r@(bits,_, _, _,modulus,c1,c2) = do
verifyZKP r
prod <- (c1 * ¢2) "mod’ modulus
return prod

The redacted information is simply not available when passed as an input.




Encryption Property Verified with ZKP

Length

-> Message

-> Message

-> PublicKey

-> Modulus

-> I0 (Unredacted RSAPair)

bits m1 m2 key modulus

c1l <- encrypt m1l key modulus
c2 <- encrypt m2 key modulus
prepareZKP (bits, m1,m2, key, modulus, c1, c2)

This prepares the ZKP, which generates the proof files and redacts the information
we don't want the other function to see.

-




Type-Level Programming Gives Type Safety

{ (Int, ( (Irfc,

. Bitstring Integer, ! | Pr}vInt,

. Bitstring Integer, | . Privint,

. Bitstring Integer, . PrivInt,

. Bitstring Integer, . PrivInt,

. Bitstring Integer, | . Bitstring Integer,

\ Bitstring Integer) /

____________________________________

We can use type level programming to generate input and output types
for functions from a central type.

-




A function to lllustrate Homomorphic Property

Length Redacted RSAPair

-> Message -> I0 Message
-> Message

-> PublicKey

-> Modulus

-> I0 (Unredacted RSAPair)

This function encrypts two messages with the same key and modulus, and returns
them along with the bit width.

The decrypt function relies on the fact that the two supplied ciphertexts are encrypted
with the same key and modulus.

®




Benchmarks for Demo

Modulus Size vs Prover Time
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Demo Summary and Challenges

We were able to show an example of this approach using zkSNARKS to verify both
functions interacting in a program, and programs interacting across a file system.

It relies on the writing of zkSNARK gadgets, which using extant libraries is extremely
labor-intensive and requires knowledge of esoteric programming techniques.

In order to leverage the Haskell type system this approach requires type level

Haskell programming, which is considered somewhat niche even among advanced
Haskell programmers.

Can we mitigate these challenges?




Prototype ZKP Compiler



zkSNARK Construction for Program Verification [BCGTV13]

libsnark

int (int a) {
int b=a*a-4; S
return 3*b+a; —P‘ Computation ,
}
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R1CS constraints

R1CS stands for Rank 1 Constraint system, a way of representing
programs as sets of satisfiable constraints. This is represented by sets
of equations of the following form, where o represents the dot product,
S is a solution vector, A and B are vectors of variables, and each of the
members of the vectors is a finite field element:

SoAxSoB =SoC

In practice, mapping of variables and satisfying assignments is done
automatically by zkp libraries, and thus are represented in the form:

2[operand] x 2[operand] = Z[operand]




R1CS constraint example: Addition

To capture the addition of two field elements, x and y , which is
assigned to the variable z, this can be represented in r1cs as

S[x,y] x [1] = Z[Z]

To make this hold we must supply a witness value for z,
in this case (x + ).

Note that this means we get multiple additions in a single constraint.




Limits of R1CS

The basic unit of memory in R1CS is a finite field element. Computation
can be done directly on them, however these are limited in size, and
many operations (such as comparison or modulo) can’t be performed
directly on them.

We can use these R1CS constraints to build circuits that use binary
representations of numbers, one bit per field element, to do
bitstring-level computations.

As these gadgets effectively tie together R1CS constraints, inputs and
outputs are explicit, leading naturally to a to functional programming
paradigm.

-




Full Compiler Pipeline

Type-Level Haskell
Input list for ZKP

(- - T T > ’Va]:dR;\Pa_ir _(I_n e_erN \
: : Type Extractor I‘ v s meser. 1| Haskell Generator
Priv Bitstring Integer,
1 (bitLen , 1 Priv Bitstrinz Intezer, !
I m : bitLen, 1 Priv Bitstring Int,
1 m : bitLen, I | Bitstring Int, | B
| key . bitLen, I \ Bitstring Int) ;
I modulus : bitLen, 1 SN e === -
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|1 ->
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1 c2)] : bitLen 1 R | E:;':loo —0 Y ' 0 S
! I . I 1
sTTTEETSEEEEE - - o . . I op, 1 ol
Custom Domain DSL ! I Circuit : = C++
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Demo: Custom Domain Specific Language Example

(bitLen : ,
m1 : bitLen,
m2 : bitLen,
key : bitLen,
modulus : bitLen,
o) : bitLen,
c2 : bitLen )
-> [Bit,Bit]
[
( [ (key, modulus, m1), c1], : bitlLen)

( [ (key, modulus, m2), c2]] : bitLen)




Demo: Flattened Language Example

(bitLen ,
m1 : bitLen,
m2 : bitLen,
key : bitlLen,
modulus : bitLen,
c : bitLen,
c2 : bitLen )
-> [Bit, ]
Let
[rsal] = [bitLen, key, modulus,m1]
[eqc1] = [rsal,c1] : Bit
[rsa2] = [bitLen, key, modulus,m2]
[eqc2] = [bitlen, rsa2,c2] : Bit

[eqc1,eqc2] : Bit

bitLen

bitlLen



Demo: Using polymorphic functions

(bitLen ,

bs1 : bitLen,

bs2 : bitlLen)

-> [Bit]

Let
[eqList] = [eq, bs1, bs2] : bitLen
[acc] = I
[egBit] = [bitLen, and, acc,eqlList] : Bit




Type checker

Typechecking error in
fun ICOS(x0 : Bit) —> [Num]
Let
[ intcons0] = -128
[x1] = CADD(x0, intcons0) : [Num]
[y0] = ISIN(x1l) : [Num]
in
[y0]
:while trying to unify input args:
[C NumT,C NumT] and [C BitT,C NumT]
NumT and BitT do not unify

One of the benefits of using a DSL is
understandable error messages.

We implemented a type checker that supports
polymorphism, and supplying functions as
arguments.

Using this type checker, we caught bugs in our
prototype gadgets.




- = = = o e e = E——

Type-level Haskell Generation Step

(bitLen ,
m1 : bitLen,
m2 : bitLen,
key : bitLen,
modulus : bitLen,
cl : bitLen,
c2 bitLen )
-
[
(key, modulus, m1)
cl), : bitLen
(
(key, modulus, m2)
c2)] : bitLen
Expression

ValidRSAPair = (Int
Priv Bitstring Integer,
Priv Bitstring Integer,
Priv Bitstring Integer,
Priv Bitstring Int,
Bitstring Int,
Bitstring Int)

zkSNARK Type

type family ReturnType a
ReturnType RSA
(Int,
Bitstrin
Bitstrin
Bitstring
Bitstring Integer,
Bitstring Integer,
Bitstring Integer)

instance Name RSAPair where
_ = "RSAPair”

type family Redacted a where
Redacted RSAPair =
(Int,
PrivInt,
PrivInt,
PrivInt,
PrivInt,

Bitstring Integer,

Type-Level Haskell




Implementation Summary

We developed a library of

zkSNARK gadgets and types

in C++ using Libsnark

Functional Gadget Library

zkSNARK development

We developed a custom compiler
in Haskell to apply functional
programming techniques to

RSA Components

Prototype Compiler

Custom Domain Specific Language

Large Integer Math

Primitive Operations

DSL Flattener Type Extractor

Map, ZipWith, Fold, ...

Haskell
Generator

Circuit
Generator

Libsnark

Generator

C++ Gadget ]

We produced a demo

dependently-typed zkSNARK
application for RSA encryption

and verification

Type Checking Demo

~

Zero-Knowledge RSA
Encryption Application

Zero-Knowledge RSA Verifier
and Multiplier Application

J

Application Communication
Utility Scripts

N

/)




Conclusion

By using zkSNARKSs to prove that values have
specific dependent types, it is possible to
provably assure compatibility and correctness
without revealing sensitive information and
extend our trusted computing base well beyond
our own system.

The approach we developed expands the scope
of what non-interactive zero-knowledge proofs
can capture to include properties about both the
execution and correctness of programs




VL.

Increase the extent of Haskell language integration to enforce verification on a
programming language level rather than trusting programmers to run the verifier
binaries manually.

Leverage approach to work with several ongoing efforts at LANL to help verify
mission-relevant cyber systems that utilize sensitive information

Build more advanced compiler automation to automatically integrate type-level
haskell and compile libsnark programs to allow faster development times.

Build optimization steps to reduce number of gates into the compiler, and optimize
existing gadgets.

Increase the expressivity of the language to include ZKPs for uncertainty
measures and machine learning model properties developed by fellow LANL
student, Zachary DeStefano (A-4).

Move the DSL into a monad which admits computation failure, to distinguish
]tc)etween gadgets that always succeed at witness generation and those which can
ail.
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Questions?

dbarrac k@lanl.gov
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Benchmarks for Demo

Modulus Size vs Prover Time
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Our function as a circuit
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Theory Behind ZKPs
(Backup)



Circuit Evaluation

1. Publish homomorphically encrypted building blocks for a program
CRS = {Ency(ax),Enc,(ax?),..., Ency(ax®)}

2. Prover blindly re-assembles them to compute the desired circuit (e.g. an
evaluation of the PCP circuit) and adding random blinds where appropriate

Ency, (ax) i
Ency (ax?) % U m = Encg(PCP(x))
Ency (ax?)

3. Verifier checks content by simply decrypting

Decy, (Enck (PCP(@)) — {é if valid

if invalid




Language Grammar

(Bit Literal) = 1| O
(Arg) = Op (String) | Var (String)
(Literal) = Num, N | Bit, (Bit Literal)

(Ezpr) == Call [{ Templates)| [(Arg)] [(SimpleTy)]
| (Literal)

(TopEzx) ::= Let [([id : (SimplyType)], (Fzpr))] [id]

(Fun) ::= Fun (String) [id] [(id, (Ty))] [(Simple Type)] { TopEz)

(Program) ::= Program (String) [(Fun)]




Language grammar

(SimpleType) = Bit
| Num

| List (SimpleType) (Length)
|  Bool

| FixPt

| Int

| TypeVariable

(Type) = (SimpleType)
| [(SimpleType)] — [(Simple Type)]

(Function Type) = |Template| [{Type)| [(Simple Type)|




Big step semantics
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Big step semantics

|l e 7 t: Type, I'tlen : Int

Bit : Type, Int : Type, Num : Type, List ¢ len : Type,

T k= ags-a3] & [taortanl Pl [fagy oo Tgn] 2 [Eype ;- Typey]
| [b(% bm] : [ta()v tanJ ' [tl)()e tlnn] : [Typcs, TprsJ

[@0, --, an] = [bo, ---, br] : Type,

I'z:tel
' Te Bt | O: Bt |- Nuamyi: Num D'l Varzot

z:as—=>bsel’ Thzx:t

OP z:as— bs T lity, %:: [1]




