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Physical mechanisms in thermal batteries

Battery activation is a complicated, multi-step process
° Heat pellet burning

Thermal diffusion

Melting of the electrolyte

o

o

(o]

Deformation of the separator

(e]

Rebound of the insulation

o

Flow of the electrolyte

o Activation

Why performance models of thermal batteries?
° Predict activation times
° Predict electrochemical performance
> Optimize volume, insulation, manufacturing

> Understand system-level effects

Thermal battery activation is a true multi-physics process!
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TABS: The Thermally Activated Battery Simulator

TABS design principles

o Create a user interface intuitive to battery designers, not just for computational scientists

> Be computationally efficient, so many design iterations can be explored in a single work day
° Present the user with the most relevant quantities of interest, yet enable them to explore more deeply

> Have demonstrated credibility, such that the user knows when and how much to trust the solutions

TABS

FULL BATTERY

-| TABS-FB: Full Battery

Thermal

|£] TABS Single-Cell v5: Thermal + Electrochemical + Mechanical . a X
File | Mode| Edit View Run.. Help

1. Thermal
2. Electrochemical (1D)
3. Thermal + Electrochemical: Static Saturation
4. Thermal + i Dynamic rm
5. Thermal + Elef -

Li135i4 to Li7Si3 to LI12ST7 to Si multiplateau | |

SEPARATOR

FeS2 to Li3Fe254 to Li2+xFe1-xS2 to Li2$ multiplateau n

COLLECTOR

Two powerful performance/design models with an easy-to-use interface

TABS
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TABS-SC: Single Cell

e Thermal
* Mechanical
* Flow

* Electrochemical

SINGLE CELL




4 | Typical TABS workflow @i‘ E.:
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Setting up and running a TABS full battery thermal S|mu|at|on
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6 | Materials database editor — common across TABS modules

[éj Material Database Editor

>

All properties now
edited in separate
pop-up window

MDb editor allows for easy creation/modification of new

materials; highlights deviations from reference database

| £ Cathode

Solid Phase:
Solid Phase:
Solid Phase:
Liquid Phase:

{® Composite ) Pure

FeS2 -
Magnesium Oxide hd
Li20 -
Electrolyte LiKCI -

Mass Fraction: |7.35E-1
Mass Fraction: |3.75E-2
Mass Fraction: [1.5E-2

X

Composite materials capture multi-material layers to

enable evolving phase-averaged properties

Database pre-populated with credible properties for common materials, yet easily extensible

MName rLiQ DH Specific Heat KOOC KYY Calorific Output Burn F1
COPPER 0.0E0 9.2E-2 8.53E-1 Empty 0.0ED 0.0EQ0 |~
AMODE_LiSid45 0.0E0 Table Table Empty 0.0E0 0DE0 | |
ANODEflooded 0 1.755E1 Table 1.23E-2 Empty 0.0E0 0.0E0 |5
SEP_EB119B_LiCI-KCI 7 3.3035E1 Table 5RE-3 Empty 0.0E0 0.0ED
SEP XEB206 16 2 1993E1 Table 2.0E-3 Empty 0.0E0 0.0E0
HKLC176i FeS2,25%EB i2 9.477E0 Table Table Empty 0.0E0 0.0E0 | |
C¥Fl C2ATM 2 | 4 TRAFEN Tahle 2 n|=_9| quj'ni f1.0F0 00F0 D
[ Il 4
Add Material >
Add material from?
| Add from reference | | Copy from local | ‘ Create new |

| £ Function Table Data

) Empty
® Table
() Polynomial
O Power Law

O Constant

Hide Reference/Uncertainty Info

|£| Function Table Data
) Empty
® Table
© Polynomial
© Power Law
© Constant
Edit Reference/Uncertainty Info -.:’:. -Cancel
Temperature Value
350 2.04E-01 B
500 1.91E-01 =
640 2.23E-01 | |
800 2.10E-01
X

Value Reference:

Uncertainty:

Uncertainty Reference:

40%

National Institute of Standards and
Technology. “NIST Chemistry WebBook Standard Reference
Database”. Web (2016). URL http://webbook.nist.govichemistry/
and Wesolowski, D. "Personal Communication” (2011) and Masset,
P.J., Guidotti, R. A. “Thermal activated (“thermal”) battery
technol- ogy: Part Il. Molten salt electrolytes”. Journal of
Power Sources, 164(1):397 (2007).
doi:10.1016/.jpowsour.2006.10.080 and Janz, G. J., Allen, C.
B., Bansal, N. P, Murphy, R. M., Tomkins, R. P. T. “Physical

[1»
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Credibility,
reference, and
uncertainty info
now available
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Discrepancy [°C]

TABS-FB credibility assessment

Relative Error
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Verification, validation, and uncertainty quantification (V&V/UQ) establish model credibility

PS 2016 28.3 Trembacki




Setting up an electrochemical simulation in TABS-SC @i‘

TABS-SC brings electrochemical (current/voltage) predictions

. . [:J ingle-Cell v3: Thermal + Electrochemical + Mechanica —
° Thermal: Heat generation (burning, Joule) and transport e e e -
° Fluid: Two-phase porous flow in anode/separator/cathode e
. . . . Thermal + E!ectrochem?cal: Static .?aturaﬁonv TION
> Mechanical: Separator deformation, insulation rebound, stack force Thermal - ectochemicat nanc Saturaton
° Electrochemistry: Species diffusion, electrical transport, sub-grid
multi-plateau electrochemical reactions
COLLECTOR
Multiple fidelity modes (details in next talk, Voskuilen):
° 1: Thermal 11354 01753 0111257 0 5 mutipiaean |~
SRS
o 3: Static partially saturated fluid + thermal + electrochemical
. .
e Fhid + e clsochemic
° 5: Fluid + thermal + electrochemical + mechanical

TABS-SC is multi-physics solver for current and voltage at the single-cell scale




9 I TABS-SC multi-physics visualization demonstration

Time = 0.000 s
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10 | Additional quantities of interest from TABS-SC
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QI |Value

Rise time (@1.5V) 0.425 s

Cathode Species
2
[#4]

Lifetime (@1.5V) 691
Max Anode T 507 C 0.00
Max Cathode T 483 C Zz
Max Voltage 1.80V 8 0:03
Max Current 3.59A g?m
Separator Strain 16.3% g:::

0.00

Scalar QOls represent quick look at
first-order design parameters.
Predictions all in expected ranges

m— Fe52
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Reactions in cathode are fast, while
anode access multiple simultaneous
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2 — Constant ©

0.5 — Pulsed

- Constant Q life time
- Pulsed Q life time

Current [

—

200 200 600
Time [s]

800

1000

Pulses accelerate reactions and

reduce life time

Valuable design insight post-processed from simulation results, immediately available in Excel file




11 I Obtaining and using TABS @Iﬂ I:.:

Obtaining TABS
> Export controlled under EAR99

° Licensing under a no-fee Government Use Notice (GUN) for direct support of government contracts/work
> Small separate contract required for installation, training, and support

o Contact Scott Roberts (sarober(@sandia.gov) for more information

Computational requirements
> Runs natively under Linux and Mac OS, supporting Windows via virtual machine

° Can run efficiently on a multi-core desktop workstation
o TABS-FB: 1-5 minutes
> TABS-SC: 15-60 minutes, depending on physics fidelity mode



12 I A peek into the future of TABS @Iﬂ I:.:

TABS GUI and models under development for past 17 years
° 2001: TABS v1 — Full battery thermal (DIFUZN)

2011: TABS v2 — Transition to Sierra, user interface improvements

2013: TABS v3 — Burn-front model, 1D electrochemistry

2017: TABS v4 — 2D single-cell electrochemistry, thermal credibility assessment
2018: TABS v5 — Single-cell multi-physics model

o

o

(o]

O

What’s next for TABS?
> 2019: TABS v5.1 — Improved calibration/parameters, advanced post-processing, credibility assessments
° 2020: TABS v6 — Initial electrochemical (voltage/current) capability at the full battery scale
o 2023: TABS v7 — Full multi-physics (electrochemical+fluid+mechanical) capability at the full battery scale



THERMALLY ACTIVATED BATTERY SIMULATOR

Thank you for your attention!

Questions?

b2 5 il 053 2 e 4 I D

Thermal/Fluid Component Sciences Department
Sandia National Laboratories, Albuquerque, NM
http://www.sandia.gov/~sarober/
sarober@sandia.gov, (505) 844-7957

Also available via SIPR and STE




