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Introduction:

 Our problems frequently require an Eulerian approach.

* Traditional treatment of multi-material cells (with
unmixed materials and strength) are arguably deficient:

 Single velocity/displacement field per element.
* I[gnore interface mechanics (e.g. for sliding).

A multi-material cell ... ... and it’s effect with ad-hoc treatment.

* We are NOT attempting to address models for well
mixed materials (e.g. gases).




Our problem:

» Solve model equations:

d d
mass: —(pdv) = —(dm) =0
dtfj v) = gm)
momentum: paﬂ =pu=V-0+41
d o:D
energy: —e=0:

« Use traditional “Operator-Split” approach:
« Lagrangian step solve of above equations.
« Generate new mesh (Eulerian)
« Perform remap (See Mosso et al. presentation)




Closure needed for mixed cells:




The XFEM:

= XFEM is the eXtended Finite Element Method

= Originated in the late 1990s at Northwestern
University to model crack growth.

* Cracks are discontinuities in the displacement field
variablgzs_ (strong discontinuity)
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Extended to other physics:

= Further developed to model other problems with
important evolving “features.”

= Often characterized by discontinuities in field variable
derivatives (temperature gradient; weak discontinuity).

= Less cumbersome than adaptively body-fitted mesh.

XFEM/VOF evolved phase- XFEM for magnetics with edge-
change interface (DMRV08). based elements (SBKV13).




Partition of Unity Framework:

= Partition-of-unity (POU) approach constructs basis
functions as products of standard FEM bases and
local, enriched bases.
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Standard FEM basis enrichment(s)

« XFEM seeks to capture discontinuities, hence
enrichment functions are generally strongly or weakly
discontinuous.

 Aside: The Generalized Finite Element Method
(GFEM) is essentially XFEM. Developed in parallel at
different Universities.




XFEM enrichments:

Standard FEM basis enrichment(s)
 Ridge (weak) * Heaviside (weak & strong)
— parasitic high order terms — re-tie weak discontinuities
— complex multi-interface treatment — simple multi-interface treatment
— Some forms require blending — nice implementation “tricks”
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XFEM Heaviside enrichments:

« Enrichment term of the Heaviside enriched basis
contains the space of the classical term (can
represent a constant and linear). Hence the classical
term is dropped [SBO3].

Standard FEM basis enrichment(s)

* This reduced basis is an important component of our
ALEGRA implementation as we will see later.

* From this point on XFEM implies Heaviside XFEM.




Requires discontinuity location:

= Requires knowledge of the interface/discontinuity
location (strong or weak).

= Traditionally uses Level-Set approach ...
» |nterface is located by evolving a level-set function.
= Typically requires frequent fix-ups.
= Confounded by complex interface intersections.
= Doesn’t conserve mass.

= \We use Interface Reconstruction ...
= Material volume fractions are advected with flow.
= Interface is reconstructed from volume fraction field.
= Allows evolving, complex interface intersections.
= Conserves mass.




Accuracy Depends on Interface:

= XFEM depends on good material interface description:
= Need to locate the interface in an element from volume fractions

= |nterface reconstruction guarantees mass conservation (cf. level sets)
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XFEM discretization:

()
lllustrate with the momentum balance equation: ‘
; r, /
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Or in weak form:
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Materials move independently:

Assume two materials for simplicity then the momentum equation is:
Nn

w'(x) = 3 [H' ()ér(x)u} + H2(x)ér(x)u}]
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The element level versions of the above terms are:
i = | HiBTode,

internal forces:

'm,t / HQBTGQdQ

As stress for material 1 is only defined under Heaviside for material 1
(and vice-versa for material 2) we have:

{gte / H]_BTO'QdQ =0




Internal Force Quadrature:

Sub-domain quadrature
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= Extends to three-dimensions. fre /Qc 1

= Material state required at each (additional) quad point.
= Mappings can get complicated for iso-parametric elements.
= Exact (full) integration can actually be a problem.




Internal Force Quadrature:

Averaged Stress Approach (Song
et al. 2006) Vioa

C(VE+VE)

| Ve

int A T
. fe = 0'6% o B dv
VAT
%BO Wo
= Time-step is unchanged from standard mixed cell approach.
= Simple to implement.
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= No locking though requires (standard) hourglass stabilization.
= Assumes constant volume fraction through Lagrangian step.

= |ndependent of interface orientation.




Internal force Quadrature:

Material Mean
Quadrature it — / HaB o 4dv
Qe
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using Green-Gauss theorem:
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= Does not assume constant volume fraction.
= Sensitive to interface orientation.
= Does not demonstrate locking.

= _Time-step slightlx reduced relative to averaged stress aeeroach.



Construct hierarchy of entities:

« Parents are original elements / nodes.

« Parent elements are enriched (e.g. have Children) if they
have more than one material (including void).

» Parent nodes are enriched if they are attached to an
enriched element.

« Parents have as many Children as they do materials.
 Children have one material.
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Recoupling material responses:

« Materials in a mixed cell now have unique velocity
fields and hence deformation rates.

* Hence, individual material responses are decoupled
from one-another.

« Without modification, materials move without regard
to one another’s deformation.

« Significant/active area of research to “recouple”
material responses at their interfaces.




Interaction enforced with LMs:

* Recouple materials via “Lagrange multipliers.”

« Lagrange multipliers applied to “constrain” materials
such that they do not penetrate one another.

* We actually constrain materials to share normal
component of velocity at shared interfaces.
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Lagrange multipliers
Constraint matrices

G{ v + Givi® =0 Velocity constraint




Enforcement phase:

 Solve resulting system for Lagrange muiltipliers.
« Compute contact forces.
» Update “new” velocities.

[ M G ] [ vew ] [ Atfz’nt_'_MVold ]
GT B

0 A 0

contact forces




Material B-Matrix:

material standard
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Material B-Matrix:

Material B-matrix
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Material B-Matrix / Stable dt:




Remap Step:

* Transfer volume fractions from end of previous
Lagrangian step to start of next step.

 Construct new parent-child hierarchy.

 Transfer velocities and material state from mesh at
end of Lagrangian step to start of next step.

« Conserve mass, momentum and internal energy.

 Construct interfaces for next Lagrangian step.

See S. J. Mosso’s talk for details.




Sliding block:

body acceleration
a, =1.0%x 104 cm/s?
a, =-1.0x10* cm/s?

1 em Magnesium

*RHO REF =1.74 g/cm3
*Perfectly plastic yield 5. 7
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Densified magnesium
*RHO REF = 17.4 g/cm3
*Perfectly elastic




Lagrangian quality results:

Taylor anvil
[VBOG6]




Eulerian gets wrong answer:
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Whipple shield example:

Whipple Shield used in

satellite protection.
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High-velocity impact difficult for Lagrangian and
unrealistic for Eulerian are possible with X-FEM.
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A more whimsical example:

Logo with initial velocity impacts
stationary, layered copper plates.

Cu plates

Steel

v, =100 m/s
Al v, =50 m/s




XFEM approach

Geometry at time = 1.0e-2 s.

As expected, standard approach with shared velocity fields between materials
shows bonding while XFEM allows material impact and separation.




3D work Is ongoing:

XFEM Lagrangian simulation of ball impacting a
stationary plate. Plate and ball are created from
bodies “cut out of” the mesh show above using PIR
algorithm of Mosso et al.




Conclusions:

= Developing capability to more accurately treat multi-
material cells in an “operator-split” ALE context.

= Capability builds on existing ALE infrastructure.

= Uses X-FEM ideas to provide unique kinematics for
each material in a cell.

= Uses interface reconstruction rather than level-set
ideas to address conservation and complex
interface intersections.

= Demonstrates good convergence/accuracy for
problems investigated here.




