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Challenges of Shape Optimization

Shape gradient computation

» Finite Differences (slow, inaccurate)

» Automatic Differentiation (great if we can use it) ‘

» Volume Method, Boundary Method (may be difficult to implement)

» Strip Method (Preprint: http://dx.doi.org/10.13140/RG.2.2.32766.82246) |
Constraint formulation

» Smoothness (may be necessary for existence of solutions)

» Symmetry; manufacturability by a given process

» Contact ‘
Interplay with optimization algorithms

» Free-form design: large number of inequality constraints :

» Limitations of a priori parametrization
Mesh quality
» Elliptic smoothing

» Explicit reconnection based on remeshing I



+ 1 Model Problem: Square to Circle

min 7 (£2) := /Qj(u) dz,

Q

where u in (la) solves the PDE

—Au = f in
v =0 on 0f)

» Initial domain (unit square): Qy = (0, 1)?

> Tracking target: j(u) = (u — u.)?, f = Nu, |
_ (LT
= (le= G D)
» Optimal domain (circumscribing circle): I
|
2
Q, = {xeR2 : ‘x(% %)T‘ <\f}.

2 2 I



5 ‘ Numerical Results
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» Discretize (1) with piecewise-linear finite elements.

» Optimization variables: coordinates of the mesh nodes. I
» Compute the gradient d.7 using adjoint calculus.

» Looks like things are going well. I



Numerical Results - Lower Tolerance
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» Objective drops by a further three orders of magnitude!
» What happened to the mesh?
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The Volume Method

We model perturbations of {2 using the map
RY sz z+ Vi),

where V' € D! (continuously differentiable with compact support). The volume form is
<GQ, V>(D1)’,D1 = / (VU y (VV + VVT) Vp +p(V ' Vf)
Q

+div V (j(u) —Vu-Vp+pf)) dz,
where p solves the adjoint equation

—Ap = ju(u) in Q
P 0 on Of).

» Support of Gq is contained in 9X).
https://epubs.siam.org/doi/book/10.1137/1.9780898719826

» Discretization of the volume method is equivalent to differentiation of the discretization
(with suitable subspace for V').

» Volume method traditionally favored by engineers.

» Initial example: optimization of discretization error.



¢ | The Boundary Method

The gradient can also be expressed on the boundary. ‘
<GaQ, ’YaQ(V) ' V)C’l(aQ)/’le(aQ) = [ (V . I/) (j("tb) + auanU) do.
o9
» Boundary method traditionally favored by mathematicians. |

» Derivative of solution (0,p, d,u) not derivative of operator (VV',div V).

The Hadamard Structure Theorem states the equivalence of the two methods: ‘
(Goa,v00(V) - V)cr00)y.cro0) = (Ga, V)(pry p1, forall VeD"

» Main idea: integration by parts :
» Numerically, they are not equivalent: see Hiptmair et al. (2015)



9 ‘ Accuracy of the Boundary Method

Volume Method (16 iterations) Boundary Method (41 iterations)
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Boundary method is less accurate: I
» O(h) vs O(h?) for the volume method |
» On the other hand, it still converges. ..

» Does it have any other advantages? I



0 | Disadvantages of Existing Methods

Method Accuracy | Speed | Implementation Cost
Finite Differences X X
Automatic Differentiation X
Volume Method X
Boundary Method X

» No method is ideal.

» Main issue with implementation cost: invasiveness to existing codes.

» Want a method with high accuracy that is not invasive.




11 1 The Strip Gradient

Let the strip > C () be a fixed open set with
02 C 0X. We define the smooth cut-off function 0.8
¢ : RY — [0,1] to be infinitely differentiable and

10.8

satisfy o0 >
0.4 0.4
{1} if x € RV \ Q
W(x) € (0,1) ifxeX : 0.2 0.2
{0} ifzeQ\X
OO 0.2 0.4 0.6 0.8 1 °
We can thus decompose any V € D? as |
V=yV+4+(1-9y)V. I
By the Hadamard Structure Theorem, |
(G, V)pry.pr = (G, YV )mpry p1 +{(Ga, (1 =)V )p1y pr .
E<GZ,V\>r(rDl)/,Dl :0 I



2 1 The Strip Method: Error Analysis

» Let up,pn € Vj, solve the discrete state and adjoint equations

/ Vup - Vo, dx = / fup, de Vo, € Vy,, ‘

Q 0
/ Vpy, - Vo, doe = / ju(uh)vh dx Vv, € Vy,. |

0 Q

» The (semi-)discretized representations of G and Gyq are
(G, V) pry pr = f (Vuh (VV +VV ") Vp, — fV - Vp, ‘
O
+div V (j(up) — Vuy - Vpp) ) dx
)
and :
(Gha, 7900 (V) - Vo1 a0y .cr00) = / (V -v) (j(up) + Oupripuy) do . |
a0

» V;, is the finite element space of piecewise-linear (on simplices) or bilinear (on cubes)
elements that are globally continuous. I



3 1 The Strip Method: Error Analysis

Theorem (Hiptmair et al., 2015) ‘
Let Q be convex or CY! and f be the restriction of an H*(R™) function onto Q. If

(u,p) € H(Q) x HY () and (up,pr) € Vi, x Vy, respectively solve the continuous and

discrete state and adjoint equations then:

(Ga — G, V) ipry 1| < Ci(Q,u,p, [B?|V||w2a).

In addition, if
lallwo) < Cllf Lo ‘

for some p > N and a positive constant C', then

(Goo — Ghg, 700 (V) - V)oiaay.croa)| < C2h||V - v L= o), I

where the constant C'y > 0 is independent of h.



|
2 | The Strip Method: Error Analysis m

Corollary (Hardesty et al., 2021) ‘

Let ¥ : V s ¢V define a continuous linear operator from W24(Q) into W24(Q). Then, we

have |
(Gs — G, V) o | < CL(Qu,p, B[P ]lwza() |V w240y,

where C is the constant in the theorem.

» Can easily apply analysis of Hiptmair et al. (2015). ‘
» The strip method retains the higher accuracy of the volume method.

» No need to construct ¢ in practice. L
» Note we still have a continuous V'; how do we use this in a discretization? i



Discrete Gradients

» Consider a coarse mesh M, with Lagrange basis functions {¢§:i=1,...,N.}, and a
finer mesh M ¢ with Lagrange basis functions {zﬁf ci=1,...,Ns}.

> Let ; ;
c(r) — 27]231 i ()vf 4 () — Zi\ifl ; (T)vy
Vi (zf\i e ) v (z?‘a ol (@] ) |

» This results in gradient vectors (o = 1 or 2).

§c € RNe, gl e RMs,
» With mass matrices ‘

_ ] gl @)yl @) dz, (M), / o] (2)%(2) da, '
> I

the gradient on the fine mesh can be coarsened via L? projection:

Accx:M Mff a I



16 ‘ Strip Method: Summary

v v vy

v Vv

Volume method in a strip near the boundary
Accuracy of the volume method
Speed of the boundary method

Just needs state and adjoint at quadrature
points

Meshes can be independent
Codes can be independent

Adaptive refinement of strip mesh can
Increase accuracy

Can implement it using automatic
differentiation
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7 1 Conclusion

Many issues in shape optimization remain research topics.

» We now have much greater understanding of how to select a problem-appropriate strategy
for shape gradients.

» Software engineering: strip method makes working with legacy codes possible.
» Still useful for parameterized calculations: faster, more accurate than FD.

» Following parameterization from CAD to mesh to optimization: simple in principle, but
requires cross-team cooperation and organization.

» Supporting general shape changes is a large project with many moving parts.



