

Sandia
National
Laboratories

The Strip Method for Shape Derivatives

Sean Hardesty (Sandia National Labs)

Harbir Antil (George Mason University)

Drew Kouri (Sandia National Labs)

Denis Ridzal (Sandia National Labs)

MS21 - Advances in Shape Optimization Algorithms - Part I of III

SIAM Conference on Optimization (OP21)

July 20, 2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

A Model Shape Optimization Problem

- Overview of Shape Optimization

- Problem Formulation

- Numerical Results

Shape Gradients

- The Volume Method

- The Boundary Method

The Strip Method

- Disadvantages of Existing Methods

- A New Approach

Conclusion

Challenges of Shape Optimization

Shape gradient computation

- ▶ Finite Differences (slow, inaccurate)
- ▶ Automatic Differentiation (great if we can use it)
- ▶ Volume Method, Boundary Method (may be difficult to implement)
- ▶ Strip Method (Preprint: <http://dx.doi.org/10.13140/RG.2.2.32766.82246>)

Constraint formulation

- ▶ Smoothness (may be necessary for existence of solutions)
- ▶ Symmetry; manufacturability by a given process
- ▶ Contact

Interplay with optimization algorithms

- ▶ Free-form design: large number of inequality constraints
- ▶ Limitations of a priori parametrization

Mesh quality

- ▶ Elliptic smoothing
- ▶ Explicit reconnection based on remeshing

Model Problem: Square to Circle

(1a)

$$\min_{\Omega} \mathcal{J}(\Omega) := \int_{\Omega} j(u) \, dx,$$

where u in (1a) solves the PDE

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega. \end{cases} \quad (1b)$$

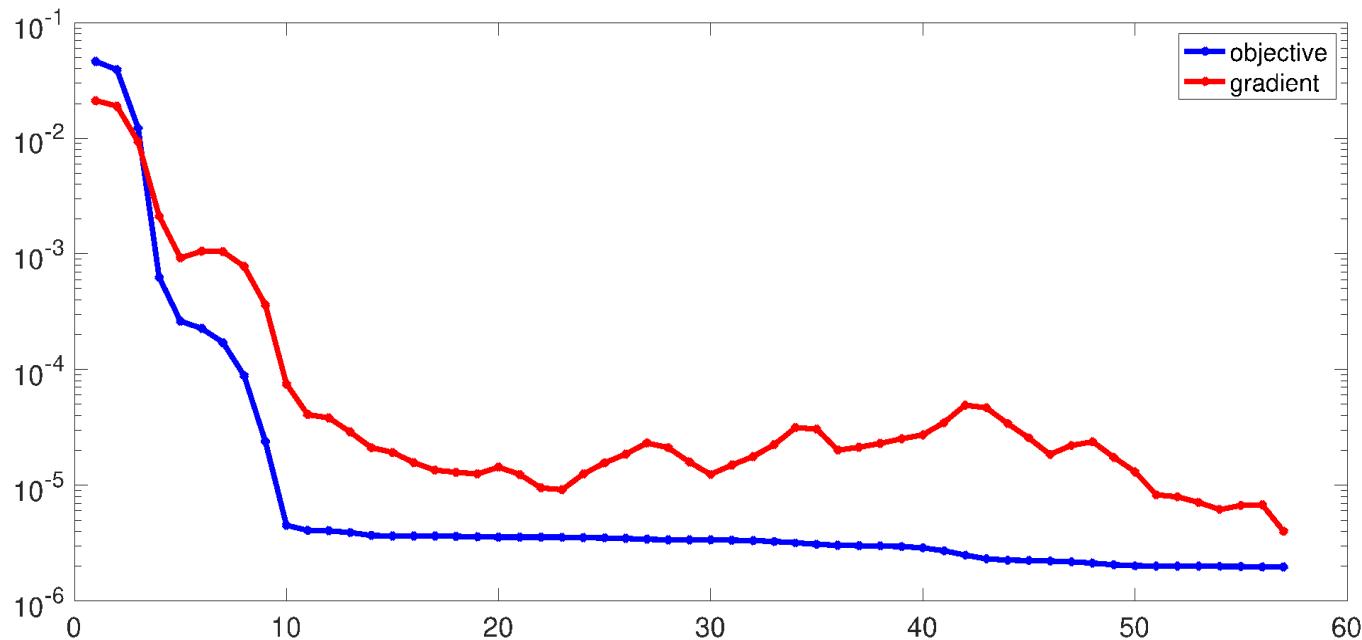
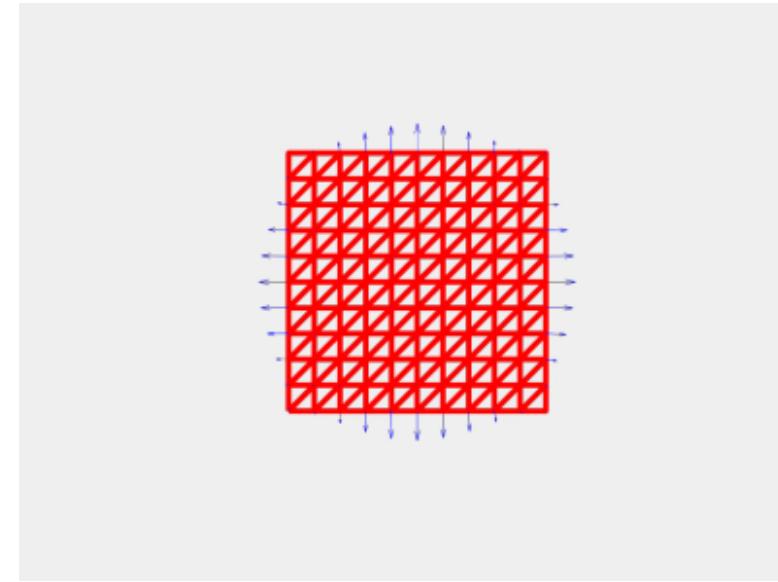
- ▶ Initial domain (unit square): $\Omega_0 = (0, 1)^2$
- ▶ Tracking target: $j(u) = \frac{1}{2}(u - u_*)^2$, $f = \lambda^2 u_*$

$$u_*(x) = J_0 \left(\lambda \left| x - \left(\frac{1}{2} \quad \frac{1}{2} \right)^\top \right|_2 \right)$$

- ▶ Optimal domain (circumscribing circle):

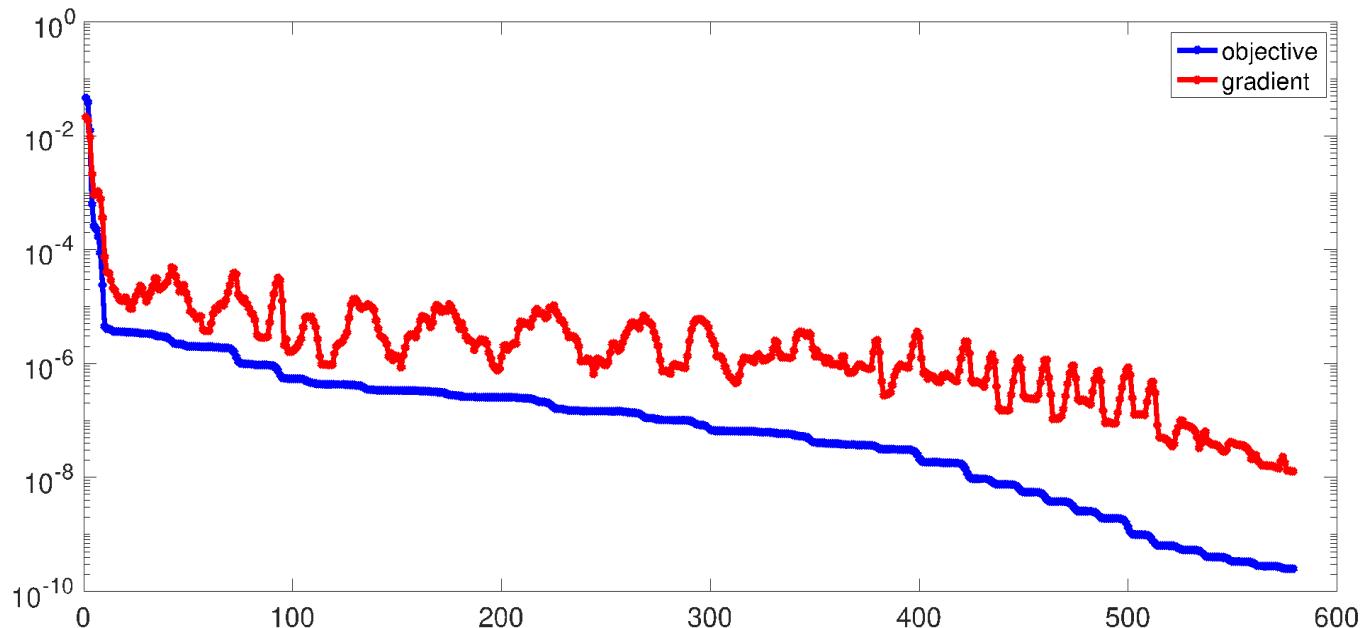
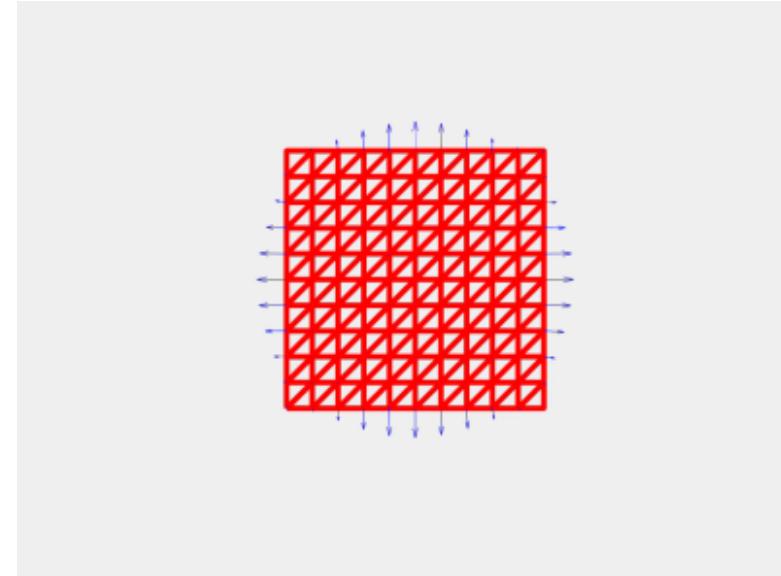
$$\Omega_* = \left\{ x \in \mathbb{R}^2 : \left| x - \left(\frac{1}{2} \quad \frac{1}{2} \right)^\top \right|_2 < \frac{\sqrt{2}}{2} \right\}.$$

Numerical Results



- ▶ Discretize (1) with piecewise-linear finite elements.
- ▶ Optimization variables: coordinates of the mesh nodes.
- ▶ Compute the gradient $d\mathcal{J}$ using adjoint calculus.
- ▶ Looks like things are going well.

Numerical Results - Lower Tolerance



- ▶ Objective drops by a further three orders of magnitude!
- ▶ What happened to the mesh?

The Volume Method

We model perturbations of Ω using the map

$$\mathbb{R}^N \ni x \mapsto x + \mathbf{V}(x),$$

where $\mathbf{V} \in \mathcal{D}^1$ (continuously differentiable with compact support). The volume form is

$$\begin{aligned} \langle \mathbf{G}_\Omega, \mathbf{V} \rangle_{(\mathcal{D}^1)', \mathcal{D}^1} = & \int_\Omega \left(\nabla u \cdot (\nabla \mathbf{V} + \nabla \mathbf{V}^\top) \nabla p + p(\mathbf{V} \cdot \nabla f) \right. \\ & \left. + \operatorname{div} \mathbf{V} (j(u) - \nabla u \cdot \nabla p + pf) \right) dx, \end{aligned}$$

where p solves the adjoint equation

$$\begin{cases} -\Delta p = j_u(u) & \text{in } \Omega \\ p = 0 & \text{on } \partial\Omega. \end{cases}$$

- ▶ Support of \mathbf{G}_Ω is contained in $\partial\Omega$.
- ▶ <https://pubs.siam.org/doi/book/10.1137/1.9780898719826>
- ▶ Discretization of the volume method is equivalent to differentiation of the discretization (with suitable subspace for \mathbf{V}).
- ▶ Volume method traditionally favored by engineers.
- ▶ Initial example: optimization of discretization error.

The Boundary Method

The gradient can also be expressed on the boundary.

$$\langle \mathbf{G}_{\partial\Omega}, \gamma_{\partial\Omega}(\mathbf{V}) \cdot \boldsymbol{\nu} \rangle_{C^1(\partial\Omega)', C^1(\partial\Omega)} = \int_{\partial\Omega} (\mathbf{V} \cdot \boldsymbol{\nu}) (j(u) + \partial_{\boldsymbol{\nu}} p \partial_{\boldsymbol{\nu}} u) \, d\sigma.$$

- ▶ Boundary method traditionally favored by mathematicians.
- ▶ Derivative of solution $(\partial_{\boldsymbol{\nu}} p, \partial_{\boldsymbol{\nu}} u)$ not derivative of operator $(\nabla \mathbf{V}, \operatorname{div} \mathbf{V})$.

The *Hadamard Structure Theorem* states the equivalence of the two methods:

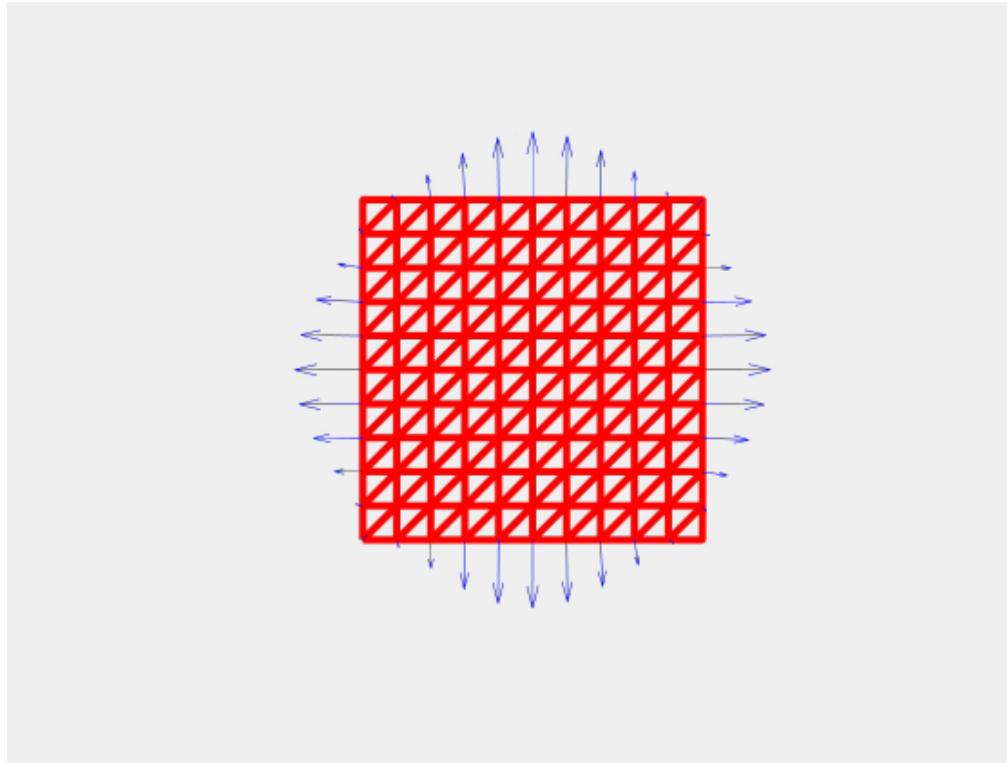
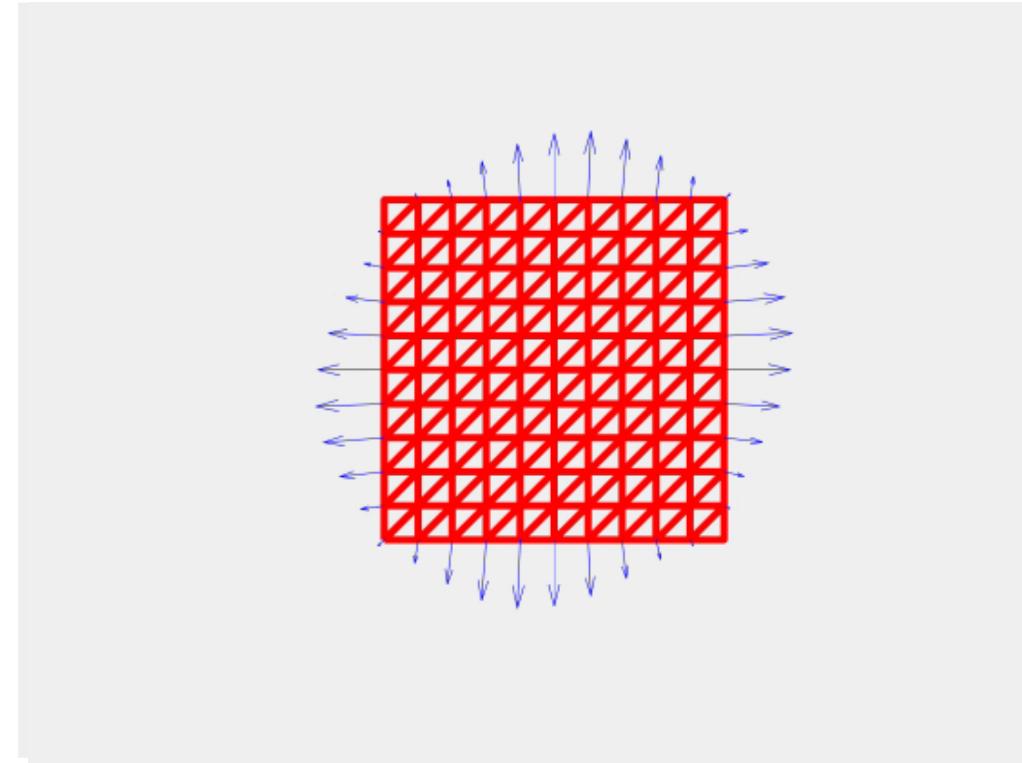
$$\langle \mathbf{G}_{\partial\Omega}, \gamma_{\partial\Omega}(\mathbf{V}) \cdot \boldsymbol{\nu} \rangle_{C^1(\partial\Omega)', C^1(\partial\Omega)} = \langle \mathbf{G}_{\Omega}, \mathbf{V} \rangle_{(\mathcal{D}^1)', \mathcal{D}^1}, \quad \text{for all } \mathbf{V} \in \mathcal{D}^1.$$

- ▶ **Main idea:** integration by parts
- ▶ Numerically, they are not equivalent: see Hiptmair et al. (2015)

Accuracy of the Boundary Method

Volume Method (16 iterations)

Boundary Method (41 iterations)



Boundary method is less accurate:

- ▶ $O(h)$ vs $O(h^2)$ for the volume method
- ▶ On the other hand, it still converges...
- ▶ Does it have any other advantages?

Disadvantages of Existing Methods

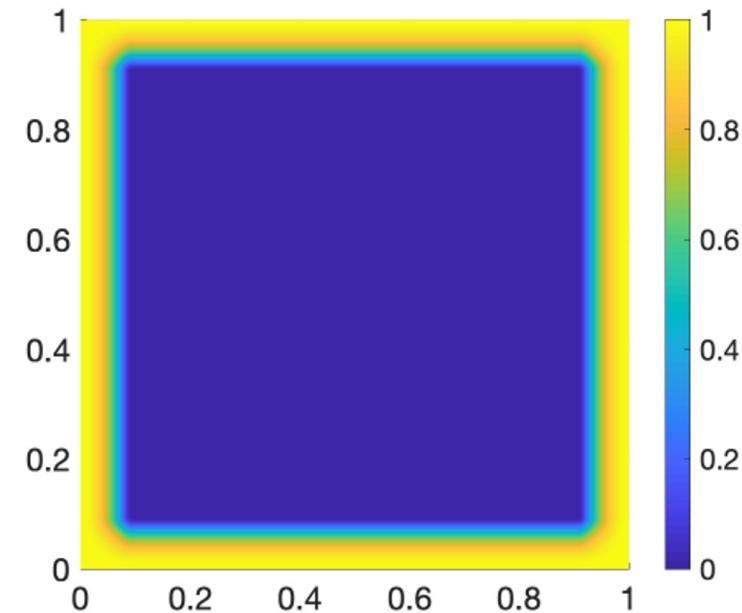
Method	Accuracy	Speed	Implementation Cost
Finite Differences	✗	✗	✓
Automatic Differentiation	✓	✓	✗
Volume Method	✓	✓	✗
Boundary Method	✗	✓	✓

- ▶ No method is ideal.
- ▶ Main issue with implementation cost: invasiveness to existing codes.
- ▶ Want a method with high accuracy that *is not invasive*.

The Strip Gradient

Let the strip $\Sigma \subseteq \Omega$ be a fixed open set with $\partial\Omega \subsetneq \partial\Sigma$. We define the smooth cut-off function $\psi : \mathbb{R}^N \rightarrow [0, 1]$ to be infinitely differentiable and satisfy

$$\psi(x) \in \begin{cases} \{1\} & \text{if } x \in \mathbb{R}^N \setminus \Omega \\ (0, 1) & \text{if } x \in \Sigma \\ \{0\} & \text{if } x \in \Omega \setminus \Sigma \end{cases}.$$



We can thus decompose any $\mathbf{V} \in \mathcal{D}^1$ as

$$\mathbf{V} = \psi\mathbf{V} + (1 - \psi)\mathbf{V}.$$

By the Hadamard Structure Theorem,

$$\langle \mathbf{G}_\Omega, \mathbf{V} \rangle_{(\mathcal{D}^1)', \mathcal{D}^1} = \underbrace{\langle \mathbf{G}_\Omega, \psi\mathbf{V} \rangle_{(\mathcal{D}^1)', \mathcal{D}^1}}_{\equiv \langle \mathbf{G}_\Sigma, \mathbf{V} \rangle_{(\mathcal{D}^1)', \mathcal{D}^1}} + \underbrace{\langle \mathbf{G}_\Omega, (1 - \psi)\mathbf{V} \rangle_{(\mathcal{D}^1)', \mathcal{D}^1}}_{=0}.$$

The Strip Method: Error Analysis

- Let $u_h, p_h \in \mathbb{V}_h$ solve the discrete state and adjoint equations

$$\begin{aligned}\int_{\Omega} \nabla u_h \cdot \nabla v_h \, dx &= \int_{\Omega} f v_h \, dx \quad \forall v_h \in \mathbb{V}_h, \\ \int_{\Omega} \nabla p_h \cdot \nabla v_h \, dx &= \int_{\Omega} j_u(u_h) v_h \, dx \quad \forall v_h \in \mathbb{V}_h.\end{aligned}$$

- The (semi-)discretized representations of \mathbf{G}_Ω and $\mathbf{G}_{\partial\Omega}$ are

$$\begin{aligned}\langle \mathbf{G}_\Omega^h, \mathbf{V} \rangle_{(\mathcal{D}^1)', \mathcal{D}^1} &= \int_{\Omega} \left(\nabla u_h \cdot (\nabla \mathbf{V} + \nabla \mathbf{V}^\top) \nabla p_h - f \mathbf{V} \cdot \nabla p_h \right. \\ &\quad \left. + \operatorname{div} \mathbf{V} (j(u_h) - \nabla u_h \cdot \nabla p_h) \right) dx\end{aligned}$$

and

$$\langle \mathbf{G}_{\partial\Omega}^h, \gamma_{\partial\Omega}(\mathbf{V}) \cdot \boldsymbol{\nu} \rangle_{C^1(\partial\Omega)', C^1(\partial\Omega)} = \int_{\partial\Omega} (\mathbf{V} \cdot \boldsymbol{\nu}) (j(u_h) + \partial_{\boldsymbol{\nu}} p_h \partial_{\boldsymbol{\nu}} u_h) \, d\sigma.$$

- \mathbb{V}_h is the finite element space of piecewise-linear (on simplices) or bilinear (on cubes) elements that are globally continuous.

The Strip Method: Error Analysis

Theorem (Hiptmair et al., 2015)

Let Ω be convex or $C^{1,1}$ and f be the restriction of an $H^1(\mathbb{R}^N)$ function onto Ω . If $(u, p) \in H_0^1(\Omega) \times H_0^1(\Omega)$ and $(u_h, p_h) \in \mathbb{V}_h \times \mathbb{V}_h$ respectively solve the continuous and discrete state and adjoint equations then:

$$|\langle \mathbf{G}_\Omega - \mathbf{G}_\Omega^h, \mathbf{V} \rangle_{(\mathcal{D}^1)', \mathcal{D}^1}| \leq C_1(\Omega, u, p, f) h^2 \|\mathbf{V}\|_{W^{2,4}(\Omega)}.$$

In addition, if

$$\|u\|_{W^{2,p}(\Omega)} \leq C \|f\|_{L^p(\Omega)}$$

for some $p > N$ and a positive constant C , then

$$|\langle \mathbf{G}_{\partial\Omega} - \mathbf{G}_{\partial\Omega}^h, \gamma_{\partial\Omega}(\mathbf{V}) \cdot \boldsymbol{\nu} \rangle_{C^1(\partial\Omega)', C^1(\partial\Omega)}| \leq C_2 h \|\mathbf{V} \cdot \boldsymbol{\nu}\|_{L^\infty(\partial\Omega)},$$

where the constant $C_2 > 0$ is independent of h .

The Strip Method: Error Analysis

Corollary (Hardesty et al., 2021)

Let $\Psi : \mathbf{V} \mapsto \psi \mathbf{V}$ define a continuous linear operator from $W^{2,4}(\Omega)$ into $W^{2,4}(\Omega)$. Then, we have

$$|\langle \mathbf{G}_\Sigma - \mathbf{G}_\Sigma^h, \mathbf{V} \rangle_{(\mathcal{D}^1)', \mathcal{D}^1}| \leq C_1(\Omega, u, p, f) h^2 \|\Psi\|_{W^{2,4}(\Omega)} \|\mathbf{V}\|_{W^{2,4}(\Omega)},$$

where C_1 is the constant in the theorem.

- ▶ Can easily apply analysis of Hiptmair et al. (2015).
- ▶ The strip method retains the higher accuracy of the volume method.
- ▶ No need to construct ψ in practice.
- ▶ Note we still have a continuous \mathbf{V} ; how do we use this in a discretization?

Discrete Gradients

- ▶ Consider a coarse mesh \mathcal{M}_c with Lagrange basis functions $\{\varphi_i^c : i = 1, \dots, N_c\}$, and a finer mesh \mathcal{M}_f with Lagrange basis functions $\{\psi_i^f : i = 1, \dots, N_f\}$.

- ▶ Let

$$\mathbf{V}^c(x) = \begin{pmatrix} \sum_{i=1}^{N_c} \varphi_i^c(x) v_{1,i}^c \\ \sum_{i=1}^{N_c} \varphi_i^c(x) v_{2,i}^c \end{pmatrix}, \quad \mathbf{V}^f(x) = \begin{pmatrix} \sum_{i=1}^{N_f} \varphi_i^f(x) v_{1,i}^f \\ \sum_{i=1}^{N_f} \varphi_i^f(x) v_{2,i}^f \end{pmatrix}.$$

- ▶ This results in gradient vectors ($\alpha = 1$ or 2).

$$\hat{g}_\alpha^c \in \mathbb{R}^{N_c}, \quad \hat{g}_\alpha^f \in \mathbb{R}^{N_f}.$$

- ▶ With mass matrices

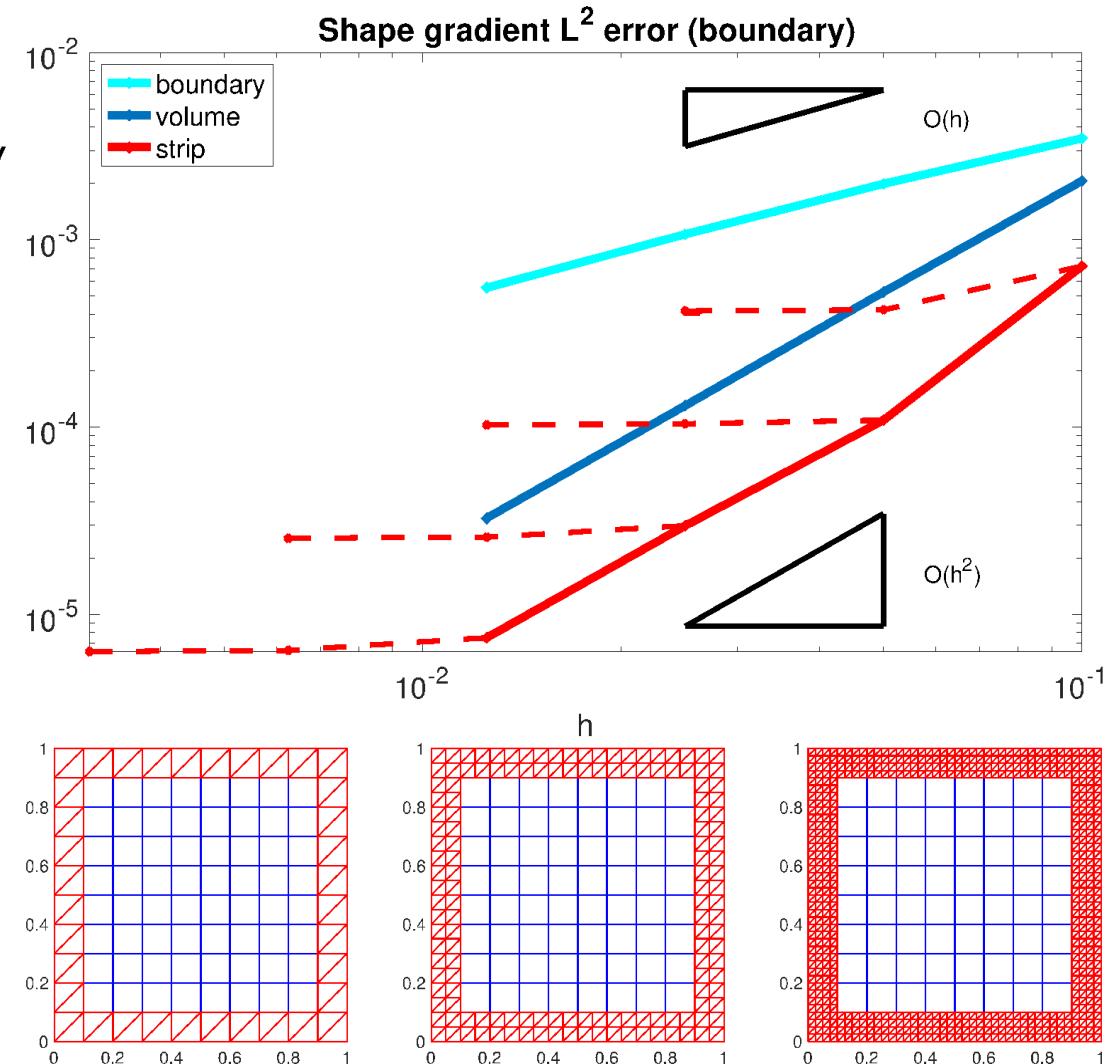
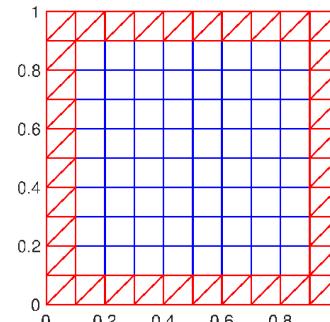
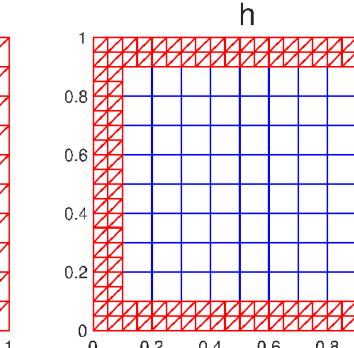
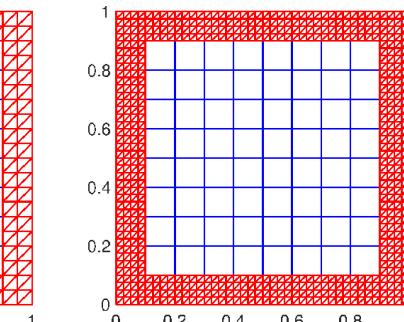
$$(M_{ff})_{ij} = \int_{\Sigma} \psi_i^f(x) \psi_j^f(x) \, dx, \quad (M_{fc})_{ij} = \int_{\Sigma} \psi_i^f(x) \varphi_j^c(x) \, dx,$$

the gradient on the fine mesh can be coarsened via L^2 projection:

$$\hat{g}_\alpha^c = M_{fc}^\top M_{ff}^{-1} \hat{g}_\alpha^f.$$

Strip Method: Summary

- ▶ Volume method in a strip near the boundary
- ▶ Accuracy of the volume method
- ▶ Speed of the boundary method
- ▶ Just needs state and adjoint at quadrature points
- ▶ Meshes can be independent
- ▶ Codes can be independent
- ▶ Adaptive refinement of strip mesh can increase accuracy
- ▶ Can implement it using automatic differentiation



Many issues in shape optimization remain research topics.

- ▶ We now have much greater understanding of how to select a problem-appropriate strategy for shape gradients.
- ▶ Software engineering: strip method makes working with legacy codes possible.
- ▶ Still useful for parameterized calculations: faster, more accurate than FD.
- ▶ Following parameterization from CAD to mesh to optimization: simple in principle, but requires cross-team cooperation and organization.
- ▶ Supporting general shape changes is a large project with many moving parts.

