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PINNs with Neural Networks for PDEs
2

▪We are using a form of neural networks known as Physics-Informed neural networks 
(PINN) to solve partial differential equations (PDEs) involved in fluid flow and 
reactive transport.

▪ A main idea of PINNs is to incorporate governing equations of physics in the form of 
partial differential equations (PDEs) into the loss via automatic differentiation (AD)
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Example of 2D Advection-Dispersion Reaction
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3 different cases
1. Concentration data Only

2. Concentration data + Advection Dispersion PDE

3. Concentration data + head loss and conductivity + 
ADE + Darcy Eqn (For Darcy eqn, K field can be 
estimated inversely)

Analytical

Solution:

4 v

Example of concentration field

(red-high, blue – low from analytical solution)
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• Boundary Conditions for Darcy Eqn: 

- Dirichlet BC at inlet/outlet: 

q(x=0,y,t) = uin

H(x=1,y,t) = Hout

• Initial Condition: 

- C(x,y,t=0) = 0



Key Model Parameters4

▪ 10,000 Epochs

▪ 4 hidden layers with 40 nodes each

▪ The number of collocation points: 0.34%, 0.68%, 1.3%, 6.7%, 13.4%, 26.9%

▪ Loss: Mean-Squared Error (MSE)

▪ Weight factors for each loss component (Cases 2&3)

▪ As we increase collocation points (N), relative error of ML decreases

A total number of points: 

26 (nx) * 26 (ny) *11 (nt) 

= 7436 points

N = Nc = NK = Nh = Nfc = Nf

Note: In the following analysis, we use 

N = 500 as base case given that the 

relative error stays around the same 

with increasing collocation points

Relative error of three 

different cases as a function 

of collocation points



Results: Concentration field with  = 0.5, N = 5005
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ADE + Darcy Equation



Comparison –  = 0.5, N = 500
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Case 1: Data – driven Only

▪ Loss from only data 

Case 2: Data + ADE

▪ Loss from data + ADE 
(& BCs+IC)

Case 3: Data + ADE + Darcy Eqn

▪ Loss from concentration & head (&K 
field) data and ADE

MSE Case 1 Case 2 Case 3

Collocation points 9.7611e-05 9.4096e-05 7.4566e-05 

Entire space & time 2.7133e-03 2.0631e-03 2.2484e-03

▪ For entire point, Case 3 performed 
better than other cases

Loss plot during training for three cases



Summary

▪ Incorporation of physical equations and data can enhance ML prediction

▪Physics-informed NNs can be formulated both in forward and inverse modeling 
frameworks

▪PINNs can be very powerful with sensitivity analysis since AD can be easily utilized to 
compute all sensitivity terms automatically

▪Current framework is in progress to achieve

o More general datasets with a range of model parameter spaces (velocity, 2D random field)

o Uncertainty quantification of advection-dispersion(or diffusion)-reaction systems



Backup



Motivations
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▪ Recent advances in deep learning neural networks have allowed us to tackle 
scientific and engineering problems.

▪We are using a form of neural networks known as Physics-Informed neural networks 
(PINN) to solve partial differential equations (PDEs) involved in fluid flow and 
reactive transport.

▪The ultimate goal is to solve fluid dynamic problems at a more efficient rate than 
traditional mesh-based methods.

(Maziar Raissi et al, Hidden Fluid Mechanics)

Example of hydrodymaics velocity field in the presence of an obstacle



Neural Network Architecture
10

▪ A main idea of PINNs is to incorporate governing equations of physics in the form of 
partial differential equations (PDEs) into the loss via automatic differentiation (AD)
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Differential Equations 
11

▪ Advection Dispersion Equation (ADE) 

o PDE used to introduce physics into ML

▪ Darcy Flow Equation (DE)

o Calculate velocity using head loss and 
conductivity

Where: 
R = retardation factor
C = concentration 
u = fluid velocity
Dx, Dy = dispersion coefficient
 = first order decay constant

* Note that u and D can be a full tensor if fully 
heterogeneous fields are considered.

Where: 
Φ = effective porosity of the medium
h = hydraulic head
K = conductivity

Updated for transient part from He et al (AWR, 2020)
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IC: C(x,y,t=0) = 0
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2D Advection-Dispersion Reaction
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Single Dataset: 3 Cases

1. Concentration data Only

2. Concentration data + Advection 
Dispersion PDE

3. Concentration data + head loss and 
conductivity + ADE + Darcy Eqn
(For Darcy eqn, K field can be 
estimated inversely)

Analytical Solution:

4

• Boundary Conditions for Darcy Eqn: 

- Dirichlet BC at inlet/outlet: 

q(x=0,y,t) = uin

H(x=1,y,t) = Hout

• Initial Condition: 

- C(x,y,t=0) = 0

v

v

Example of concentration field

(red-high, blue – low from analytical solution)



Key Model Parameters13

▪ 10,000 Epochs

▪ 4 hidden layers with 40 nodes each

▪ The number of collocation points: 0.34%, 0.68%, 1.3%, 6.7%, 13.4%, 26.9%

▪ Loss: Mean-Squared Error (MSE)

▪ As we increase collocation points (N), relative error of ML decreases

A total number of points: 

26 (nx) * 26 (ny) *11 (nt) 

= 7436 points

N = Nc = NK = Nh = Nfc = Nf

Note: In the following analysis, we use 

N = 500 as base case given that the 

relative error stays around the same 

with increasing collocation points

Relative error of three 

different cases as a function 

of collocation points



Results: Concentration field with  = 0, N = 50014
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Results: Concentration field with  = 0.1, N = 50015
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Results: Concentration field with  = 0.5, N = 50016
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Comparison –  = 0, N = 500
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Case 1: Data – driven Only

▪ Loss from only data 

Case 2: Data + ADE

▪ Loss from data + ADE 
(& BCs+IC)

Case 3: Data + ADE + Darcy Eqn

▪ Loss from concentration & head (&K 
field) data and ADE

MSE Case 1 Case 2 Case 3

Collocation points 6.0945e-05 9.5795e-05 5.6173e-05 

Entire space & time 3.5409e-03 2.6118e-03 2.2517e-03

▪ For entire point, Case 3 performed 
better than other cases

Loss plot during training for three cases



Comparison –  = 0.1, N = 500
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Case 1: Data – driven Only

▪ Loss from only data 

Case 2: Data + ADE

▪ Loss from data + ADE 
(& BCs+IC)

Case 3: Data + ADE + Darcy Eqn

▪ Loss from concentration & head (&K 
field) data and ADE

MSE Case 1 Case 2 Case 3

Collocation points 6.3934e-05 9.1593e-05 7.8149e-05 

Entire space & time 3.4033e-03 2.9904e-03 1.6247e-03

▪ For entire point, Case 3 performed 
better than other cases

Loss plot during training for three cases



Comparison –  = 0.5, N = 500
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Case 1: Data – driven Only

▪ Loss from only data 

Case 2: Data + ADE

▪ Loss from data + ADE 
(& BCs+IC)

Case 3: Data + ADE + Darcy Eqn

▪ Loss from concentration & head (&K 
field) data and ADE

MSE Case 1 Case 2 Case 3

Collocation points 9.7611e-05 9.4096e-05 7.4566e-05 

Entire space & time 2.7133e-03 2.0631e-03 2.2484e-03

▪ For entire point, Case 3 performed 
better than other cases

Loss plot during training for three cases



Comparison –  = 0.5, N = 1000
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Case 1: Data – driven Only

▪ Loss from only data 

Case 2: Data + ADE

▪ Loss from data + ADE (& BCs+IC)

Case 3: Data + ADE + Darcy Eqn

▪ Loss from concentration & head (&K 
field) data and ADE

MSE Case 1 Case 2 Case 3

Collocation points 6.5471e-4 9.7633e-4 1.0500e-3

Entire space & time 4.8075e-05 1.0856e-4 1.0787e-4

Loss plot during training for three cases

▪ For entire point, Case 1 performed 
better than other cases



Results: Case 3: Data (concentration, head) + ADE + Darcy 
Equation21

▪ Input: Data (head, conductivity)

▪Output: Velocity Fields generated using Darcy Equation

▪Ground truth: velocity ux = 0.5 and uy =0


