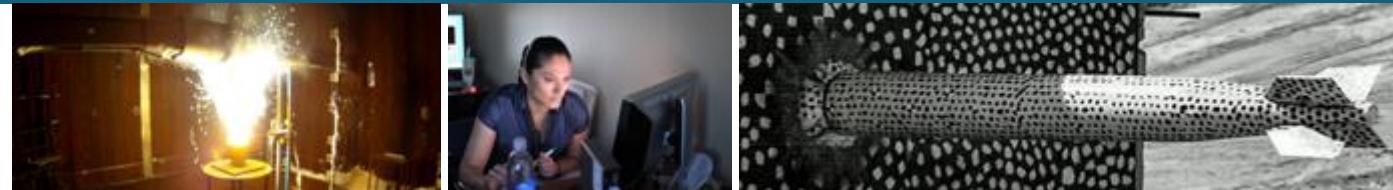


Sandia
National
Laboratories

Physics-informed machine learning of flow and reactive transport in porous media



Vincent Liu and Hongkyu Yoon

Geomechanics Department
Sandia National Laboratories
Albuquerque, NM, USA

Goldschmidt 2021

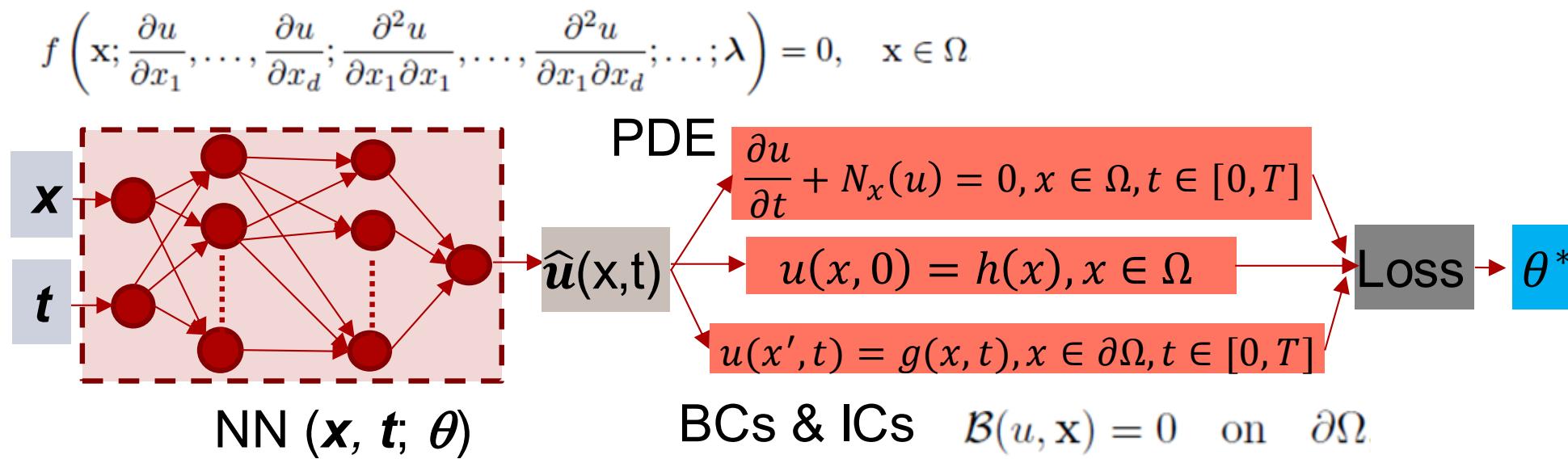
This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories and also DOE Office of Fossil Energy project -Science-informed Machine Learning to Accelerate Rear

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

PINNs with Neural Networks for PDEs

- We are using a form of neural networks known as **Physics-Informed neural networks** (PINN) to solve **partial differential equations** (PDEs) involved in fluid flow and reactive transport.
- A main idea of PINNs is to **incorporate governing equations of physics** in the form of **partial differential equations (PDEs) into the loss** via automatic differentiation (AD)



Loss = Sum of Data fit and physics regularization from PDEs, IC&BCs

3 different cases

1. Concentration data Only
2. Concentration data + Advection Dispersion PDE
3. Concentration data + head loss and conductivity + ADE + Darcy Eqn (For Darcy eqn, K field can be estimated inversely)

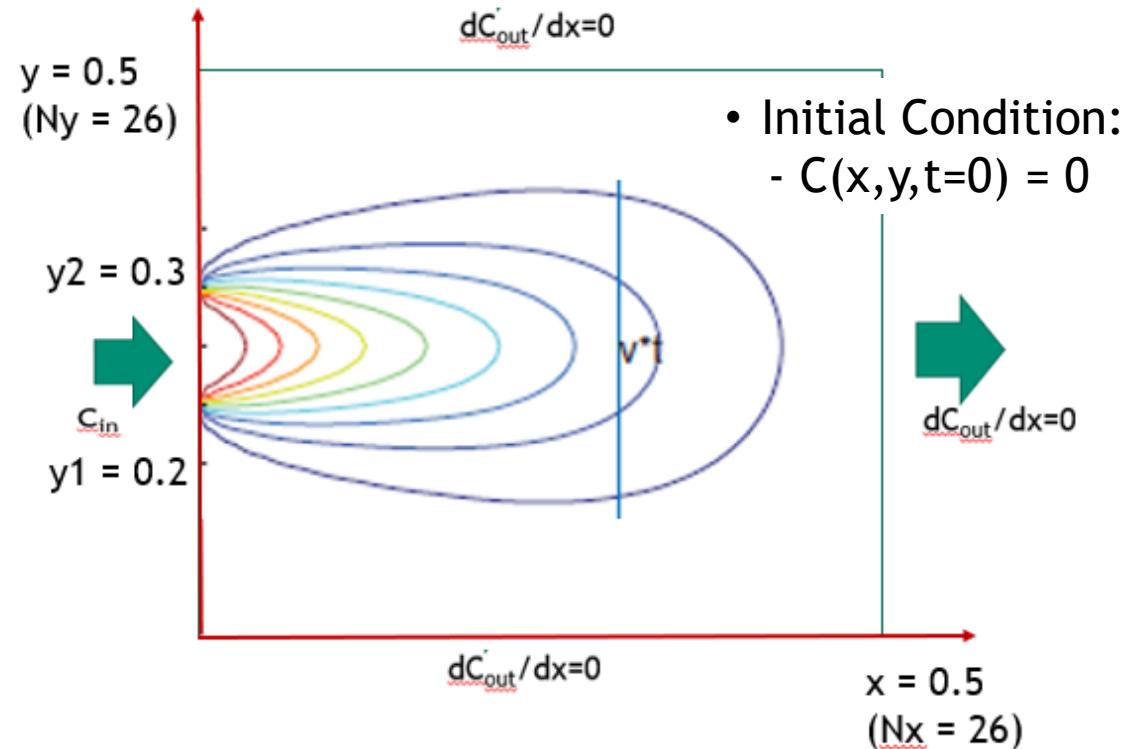
$$R \frac{\partial c}{\partial t} = -u \frac{\partial c}{\partial x} + D_x \frac{\partial^2 c}{\partial x^2} + D_y \frac{\partial^2 c}{\partial y^2} + \lambda c$$

$$c(x, y, z, t) = \frac{C_0}{8} \left\{ \exp \left[\frac{(v - u')x'}{2D_x} \right] erfc \left(\frac{x' - u't}{2\sqrt{D_x t}} \right) \right. \\ \left. + \exp \left[\frac{(v + u')x'}{2D_x} \right] erfc \left(\frac{x' + u't}{2\sqrt{D_x t}} \right) \right\} \\ \times \left[erfc \frac{y - y_2}{2\sqrt{D_y \tau_m}} - 4rfc \frac{y - y_1}{2\sqrt{D_y \tau_m}} \right]$$

$$u' = \sqrt{v^2 + 4\lambda D_x}, \quad \tau_m = x/v, \quad y_1 \leq y \leq y_2$$

$$\begin{cases} \mathbf{v}(\mathbf{x}) = -\frac{K(\mathbf{x})}{\phi} \nabla h(\mathbf{x}) \\ \nabla \cdot \mathbf{v}(\mathbf{x}) = 0, \quad \mathbf{x} \in \Omega \\ h(\mathbf{x}) = H_2, \quad x_1 = L_1 \\ -K(\mathbf{x}) \partial h(\mathbf{x}) / \partial x_1 = 0 \\ -K(\mathbf{x}) \partial h(\mathbf{x}) / \partial x_2 = 0 \end{cases}$$

Example of concentration field (red-high, blue - low from analytical solution)



- Boundary Conditions for Darcy Eqn:
 - Dirichlet BC at inlet/outlet:

$$q(x=0, y, t) = u_{in}$$

$$H(x=1, y, t) = H_{out}$$

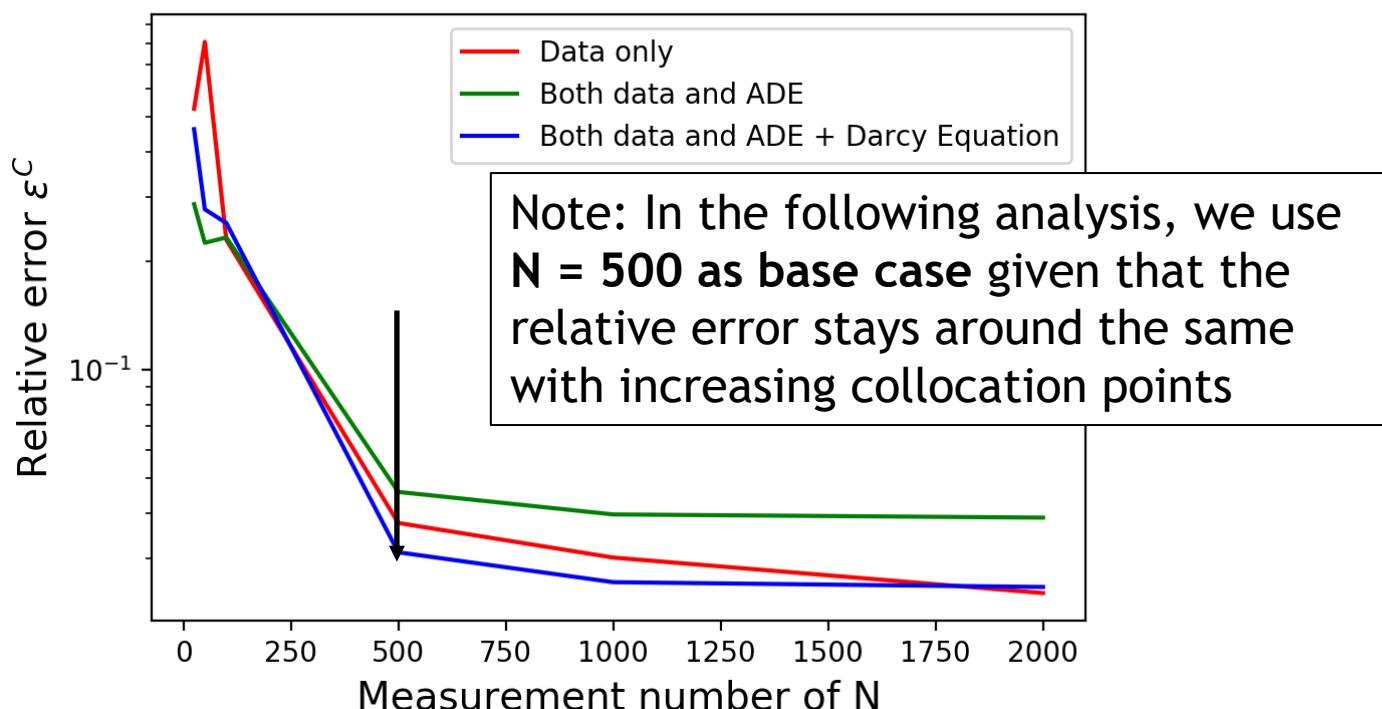
Key Model Parameters

- 10,000 Epochs
- 4 hidden layers with 40 nodes each
- The number of collocation points: 0.34%, 0.68%, 1.3%, 6.7%, 13.4%, 26.9%
- Loss: Mean-Squared Error (MSE)
- Weight factors for each loss component (Cases 2&3)
- As we increase collocation points (N), relative error of ML decreases

$$N = N_c = N_K = N_h = N_{fc} = N_f$$

Relative error of three different cases as a function of collocation points

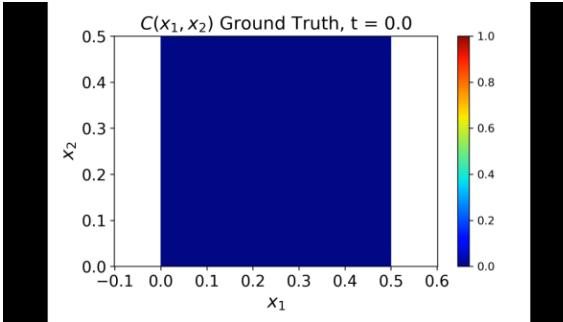
A total number of points:
 $26 (\text{nx}) * 26 (\text{ny}) * 11 (\text{nt})$
 $= 7436$ points



Results: Concentration field with $\lambda = 0.5$, $N = 500$

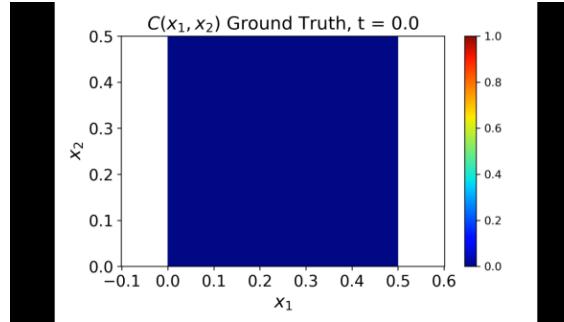
Truth

Case 1:
Data-Driven

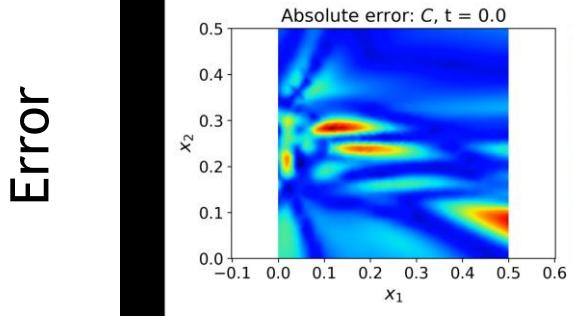


Prediction

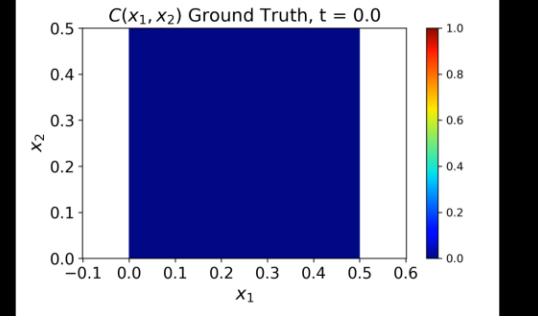
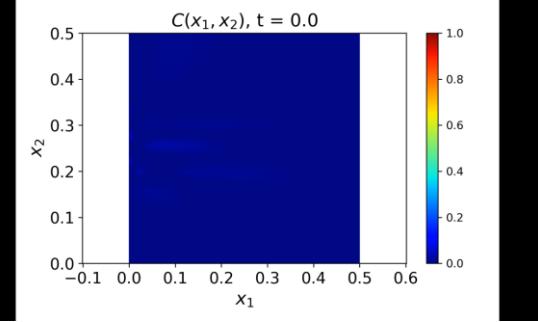
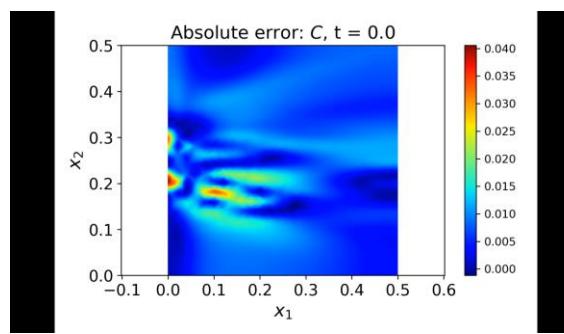
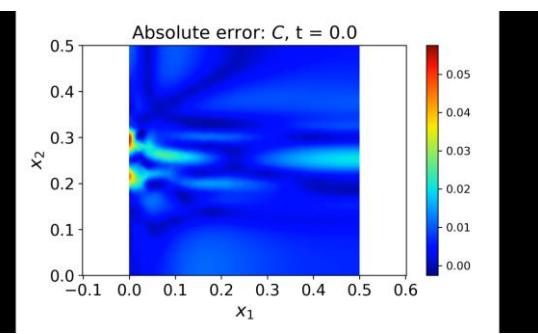
Case 2: Both
data and ADE



Error



Case 3: Both data and
ADE + Darcy Equation



Comparison – $\lambda = 0.5, N = 500$

Case 1: Data – driven Only

- Loss from only data

Case 2: Data + ADE

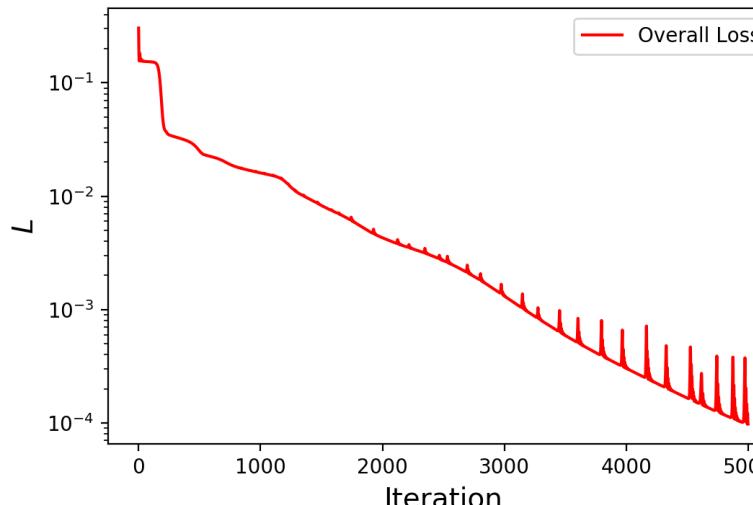
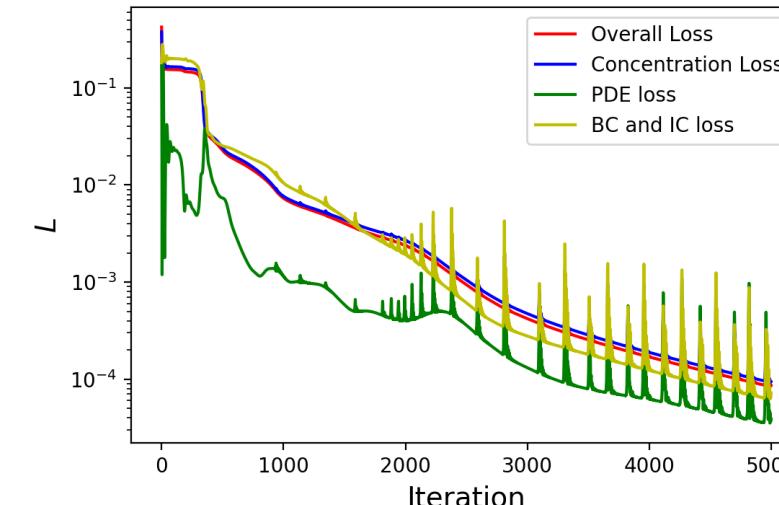
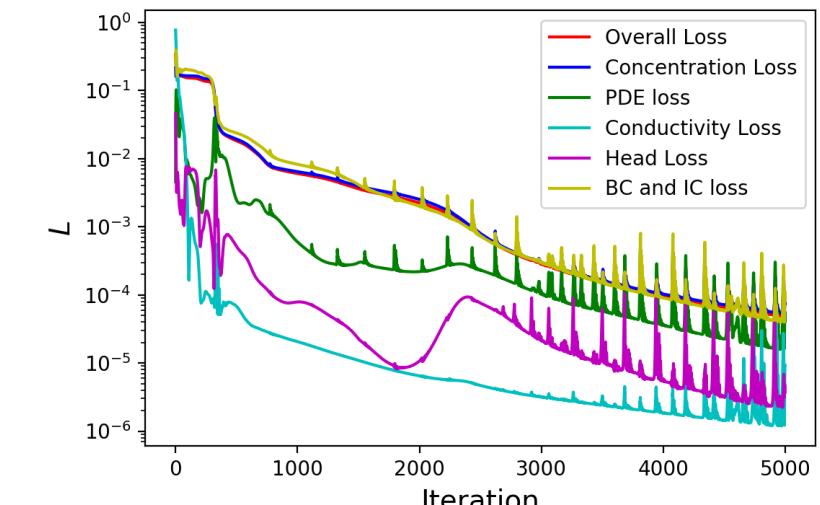
- Loss from data + ADE (& BCs+IC)

MSE	Case 1	Case 2	Case 3
Collocation points	9.7611e-05	9.4096e-05	7.4566e-05
Entire space & time	2.7133e-03	2.0631e-03	2.2484e-03

Case 3: Data + ADE + Darcy Eqn

- Loss from concentration & head (&K field) data and ADE
- For entire point, Case 3 performed better than other cases

Loss plot during training for three cases



Summary

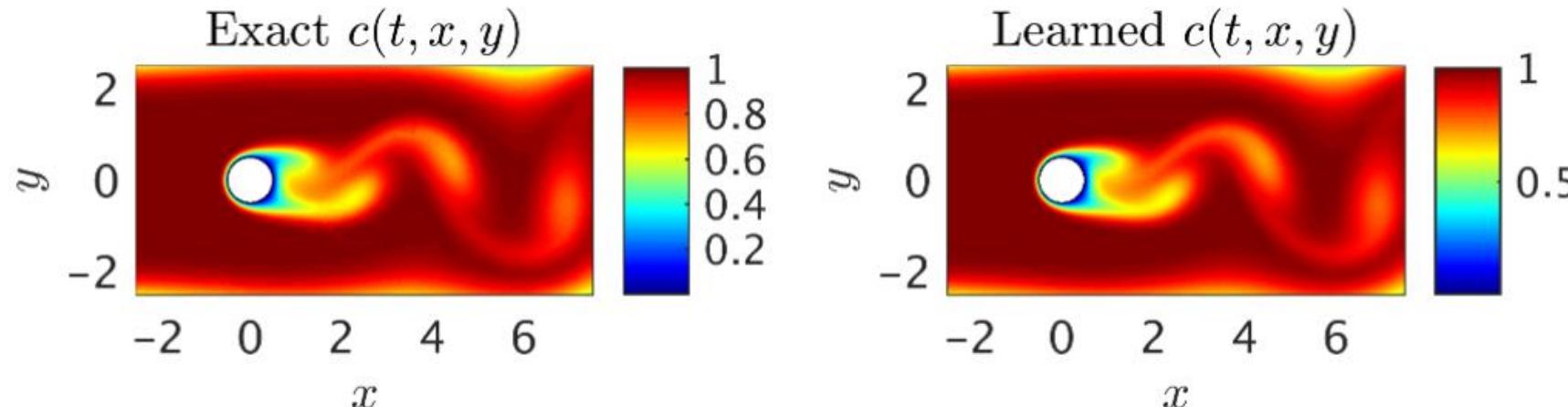
- Incorporation of physical equations and data can enhance ML prediction
- Physics-informed NNs can be formulated both in forward and inverse modeling frameworks
- PINNs can be very powerful with sensitivity analysis since AD can be easily utilized to compute all sensitivity terms automatically
- Current framework is in progress to achieve
 - More general datasets with a range of model parameter spaces (velocity, 2D random field)
 - Uncertainty quantification of advection-dispersion(or diffusion)-reaction systems

Backup

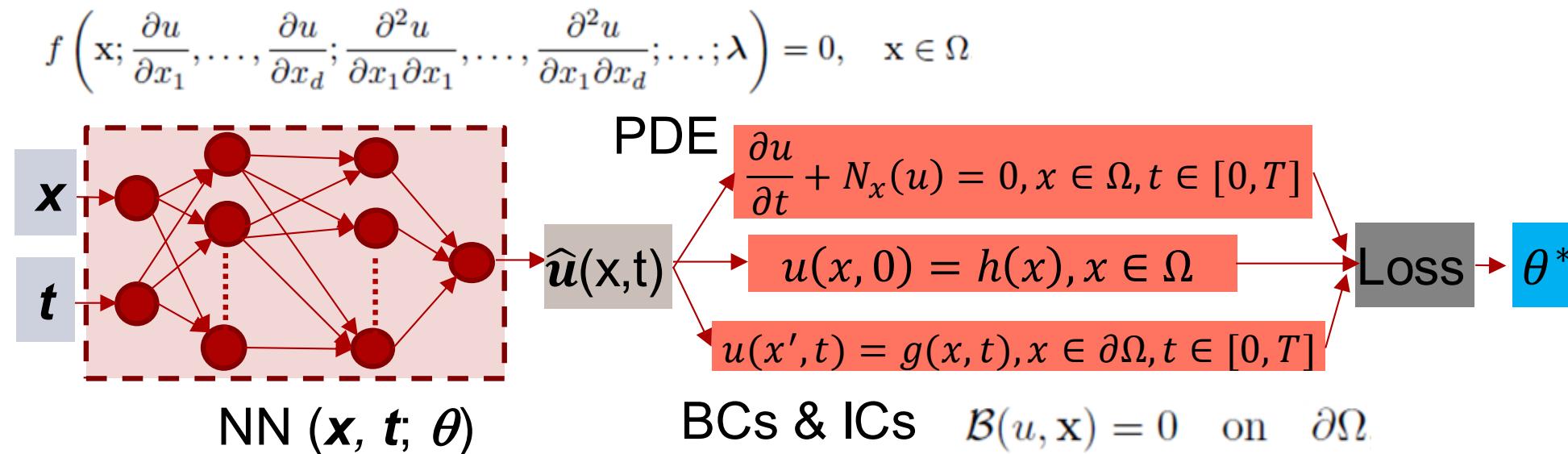
Motivations

- Recent advances in **deep learning neural networks** have allowed us to tackle scientific and engineering problems.
- We are using a form of neural networks known as **Physics-Informed neural networks** (PINN) to solve **partial differential equations** (PDEs) involved in fluid flow and reactive transport.
- The ultimate goal is to solve fluid dynamic problems at a **more efficient rate** than traditional mesh-based methods.

Example of hydrodynamics velocity field in the presence of an obstacle



- A main idea of PINNs is to **incorporate governing equations of physics** in the form of **partial differential equations (PDEs)** **into the loss** via automatic differentiation (AD)



Loss = Sum of Data fit and physics regularization from PDEs, IC&BCs

Differential Equations

■ Advection Dispersion Equation (ADE)

- PDE used to introduce physics into ML

$$R \frac{\partial c}{\partial t} = -u \frac{\partial c}{\partial x} + D_x \frac{\partial^2 c}{\partial x^2} + D_y \frac{\partial^2 c}{\partial y^2} + \lambda c$$

IC: $C(x,y,t=0) = 0$

$$C(\mathbf{x}) = C_0(x_2), \quad x_1 = 0$$

$$\partial C(\mathbf{x}) / \partial x_1 = 0, \quad x_1 = L_1$$

$$\partial C(\mathbf{x}) / \partial x_2 = 0, \quad x_2 = 0 \quad \text{or} \quad x_2 = L_2$$

Boundary Conditions

Where:

R = retardation factor

C = concentration

u = fluid velocity

D_x, D_y = dispersion coefficient

λ = first order decay constant

* Note that u and D can be a full tensor if fully heterogeneous fields are considered.

■ Darcy Flow Equation (DE)

- Calculate velocity using head loss and conductivity

$$\mathbf{v}(\mathbf{x}) = -\frac{K(\mathbf{x})}{\phi} \nabla h(\mathbf{x})$$

$$\nabla \cdot \mathbf{v}(\mathbf{x}) = 0, \quad \mathbf{x} \in \Omega$$

$$h(\mathbf{x}) = H_2, \quad x_1 = L_1$$

$$-K(\mathbf{x}) \partial h(\mathbf{x}) / \partial x_1 = q, \quad x_1 = 0$$

$$-K(\mathbf{x}) \partial h(\mathbf{x}) / \partial x_2 = 0, \quad x_2 = 0 \text{ or } x_2 = L_2$$

Boundary Conditions

Where:

ϕ = effective porosity of the medium

h = hydraulic head

K = conductivity

2D Advection-Dispersion Reaction

12

Single Dataset: 3 Cases

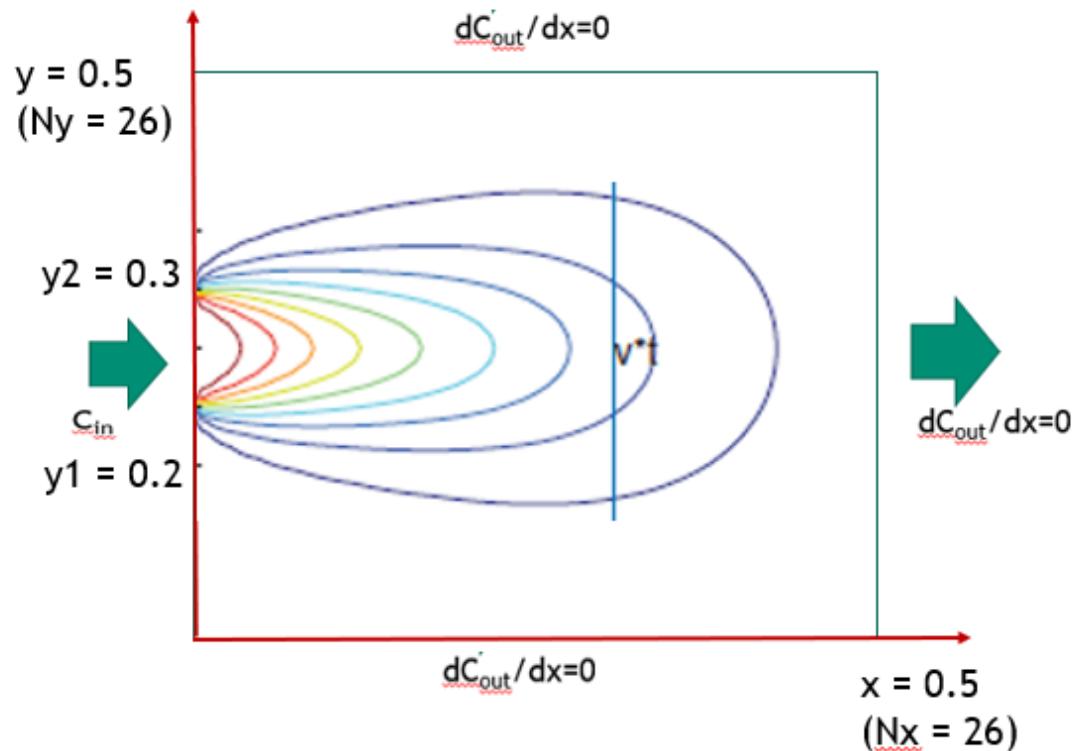
1. Concentration data Only
2. Concentration data + Advection Dispersion PDE
3. Concentration data + head loss and conductivity + ADE + Darcy Eqn
(For Darcy eqn, K field can be estimated inversely)

Analytical Solution:

$$c(x, y, t) = \frac{C_0}{4} \left\{ \exp \left[\frac{(v - u')x'}{2D_x} \right] \operatorname{erfc} \left(\frac{x' - u't}{2\sqrt{D_x t}} \right) \right. \\ \left. + \exp \left[\frac{(v + u')x'}{2D_x} \right] \operatorname{erfc} \left(\frac{x' + u't}{2\sqrt{D_x t}} \right) \right\} \\ \times \left[\operatorname{erfc} \frac{y - y_2}{2\sqrt{D_y \tau_m}} - \operatorname{erfc} \frac{y - y_1}{2\sqrt{D_y \tau_m}} \right]$$

$$u' = \sqrt{v^2 + 4\lambda D_x}, \tau_m = x/v, \quad y_1 \leq y \leq y_2$$

Example of concentration field
(red-high, blue - low from analytical solution)



- Boundary Conditions for Darcy Eqn:
 - Dirichlet BC at inlet/outlet: $q(x=0,y,t) = u_{in}$
 - $H(x=1,y,t) = H_{out}$
- Initial Condition:
 - $C(x,y,t=0) = 0$

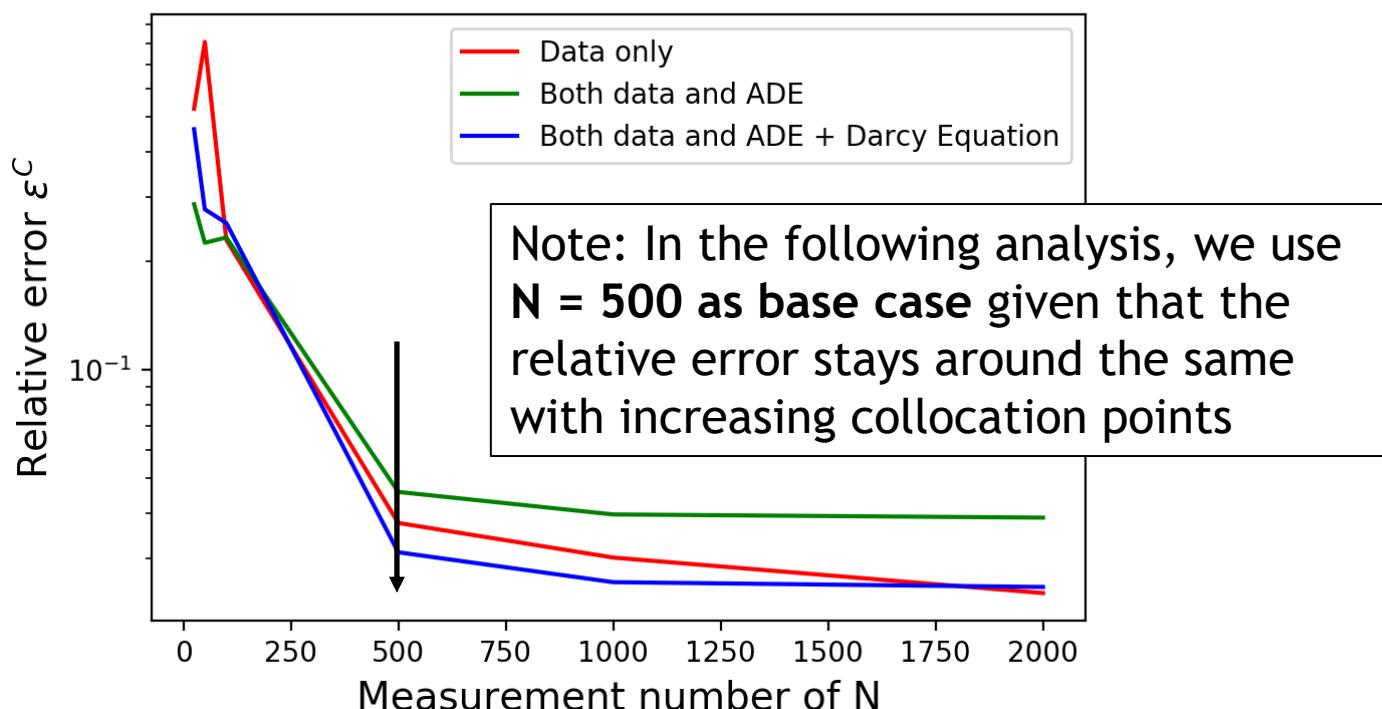
Key Model Parameters

- 10,000 Epochs
- 4 hidden layers with 40 nodes each
- The number of collocation points: 0.34%, 0.68%, 1.3%, 6.7%, 13.4%, 26.9%
- Loss: Mean-Squared Error (MSE)
- As we increase collocation points (N), relative error of ML decreases

$$N = N_c = N_K = N_h = N_{fc} = N_f$$

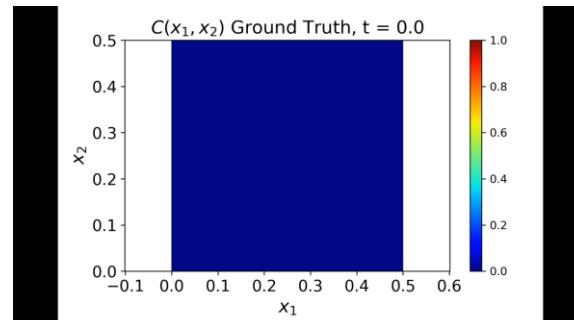
Relative error of three different cases as a function of collocation points

A total number of points:
 $26 (\text{nx}) * 26 (\text{ny}) * 11 (\text{nt})$
 $= 7436$ points

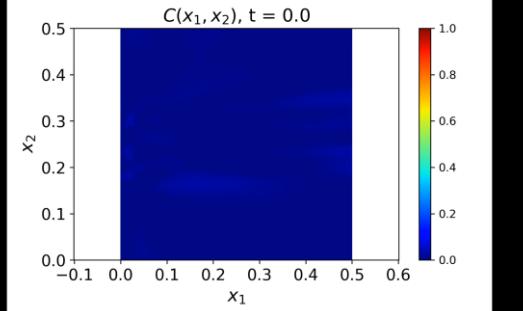


Results: Concentration field with $\lambda = 0, N = 500$

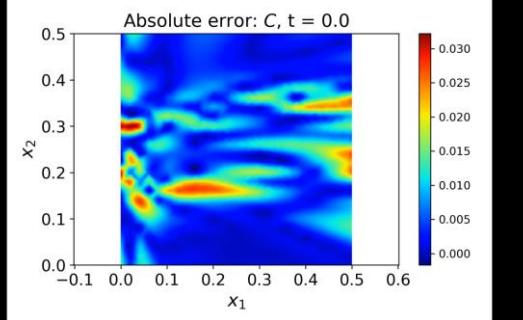
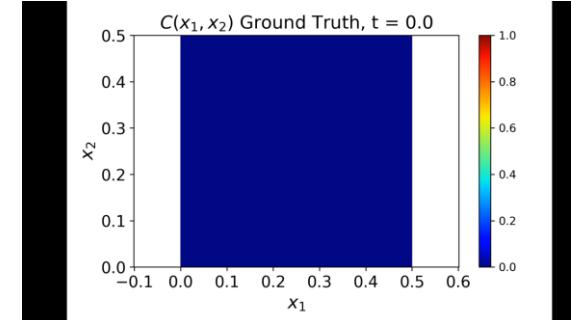
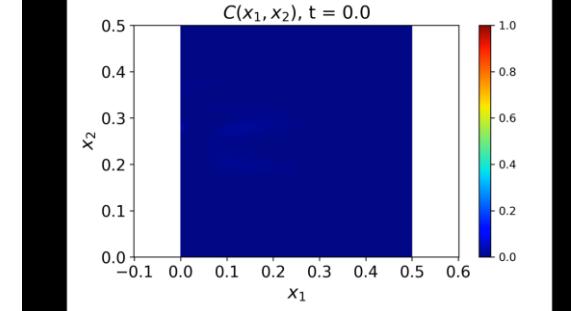
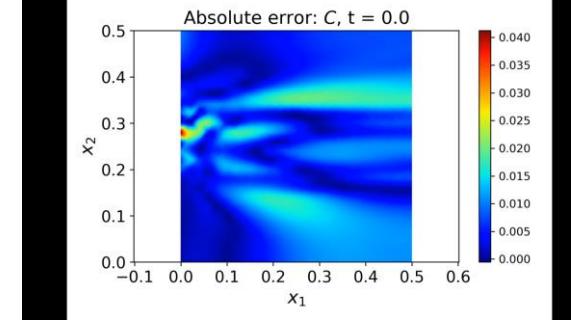
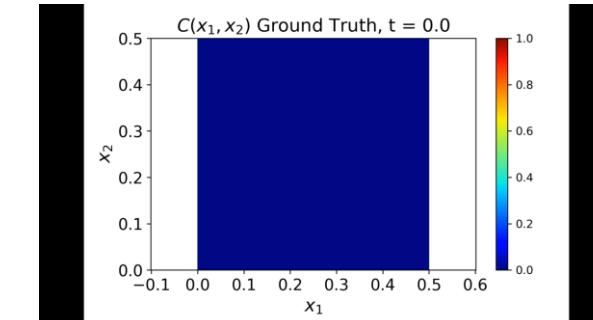
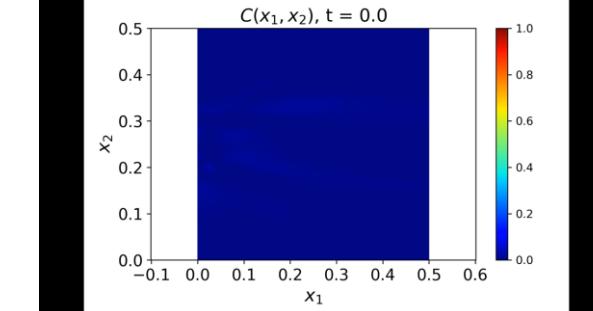
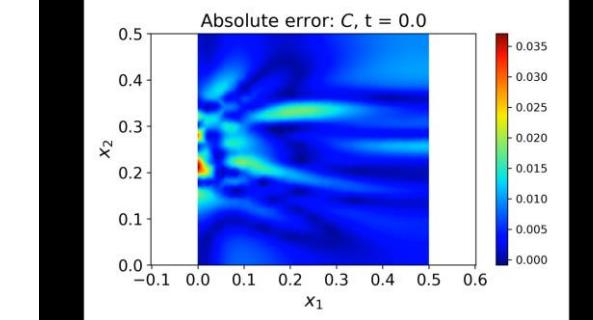
Truth

Case 1:
Data-Driven

Prediction



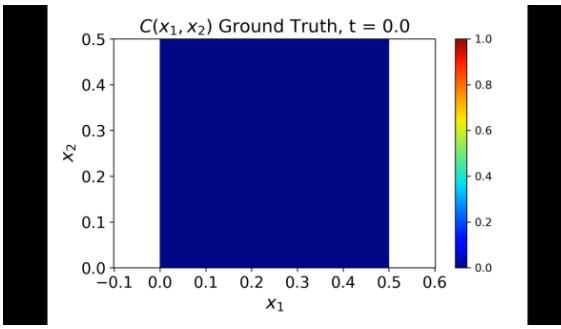
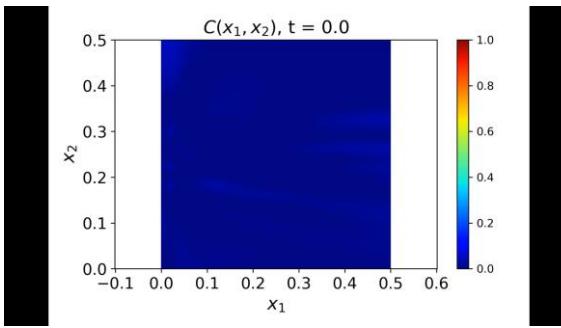
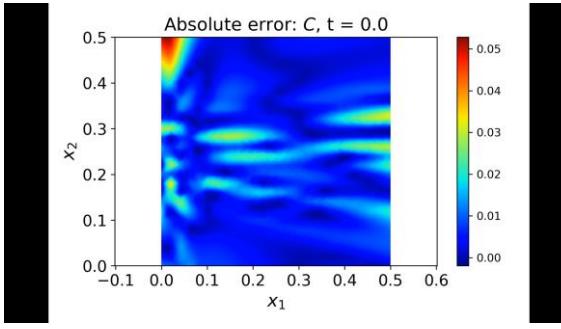
Error

Case 2: Both
data and ADECase 3: Both data and
ADE + Darcy Equation

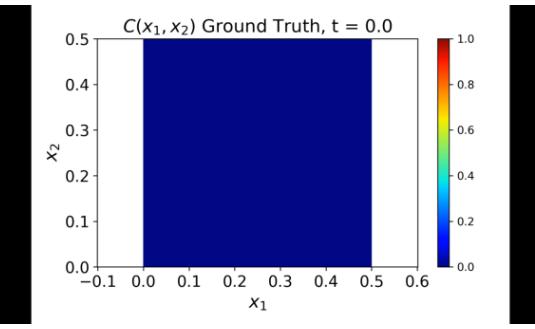
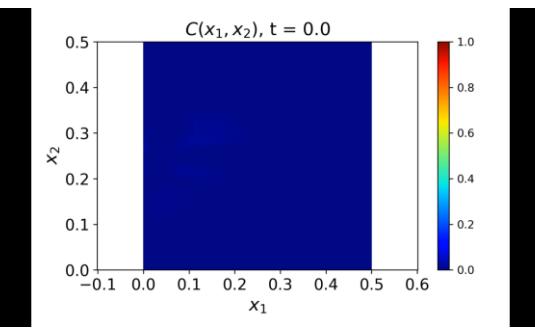
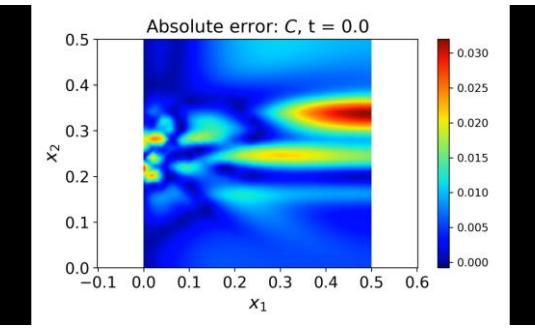
Results: Concentration field with $\lambda = 0.1$, $N = 500$

Truth
Prediction
Error

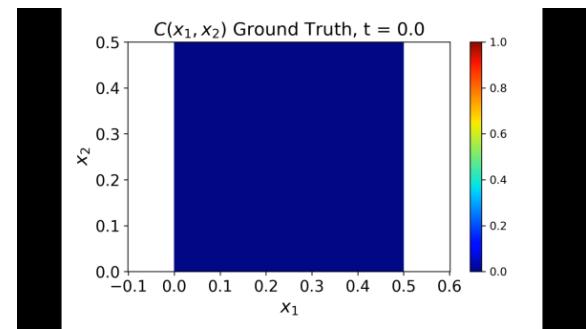
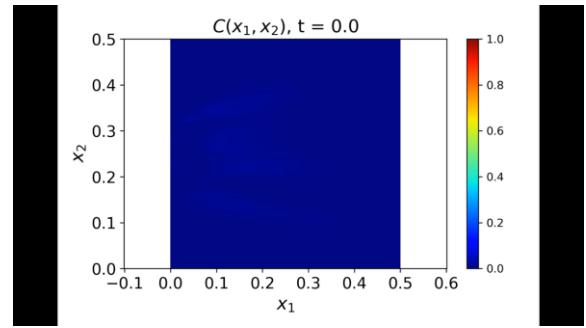
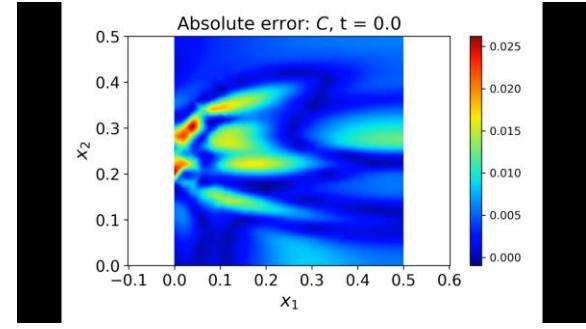
Case 1:
Data-Driven



Case 2: Both
data and ADE



Case 3: Both data and
ADE + Darcy Equation



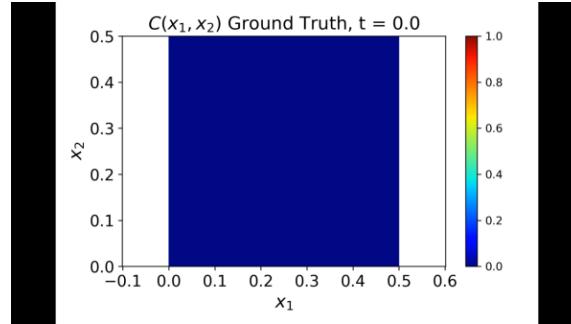
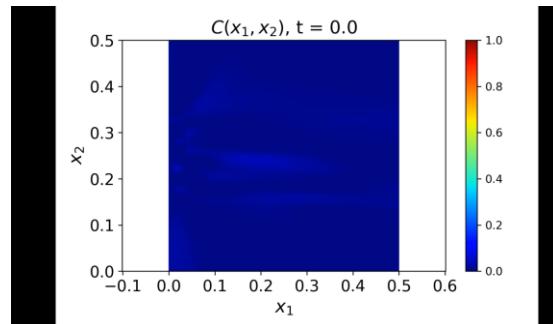
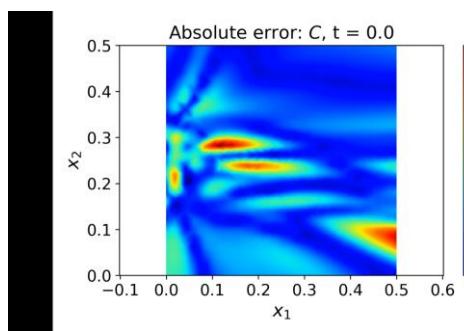
Results: Concentration field with $\lambda = 0.5$, $N = 500$

Truth

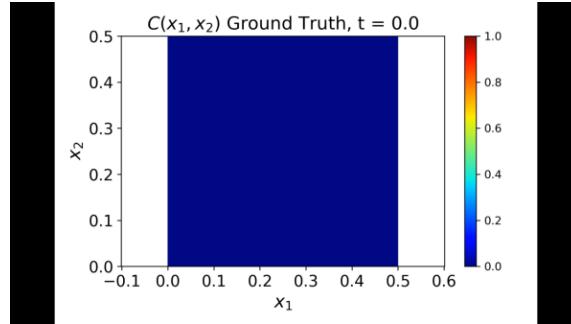
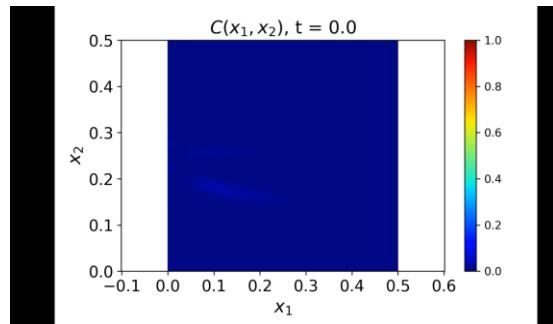
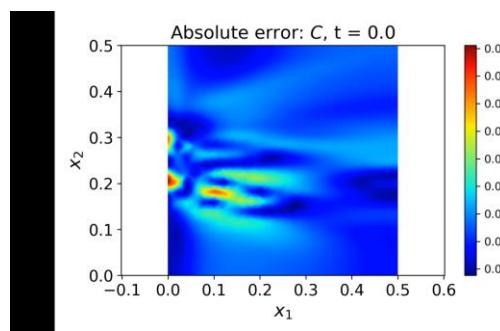
Prediction

Error

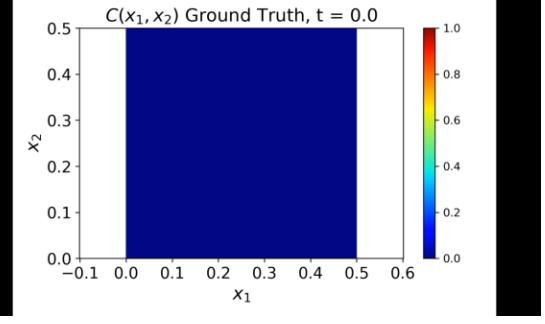
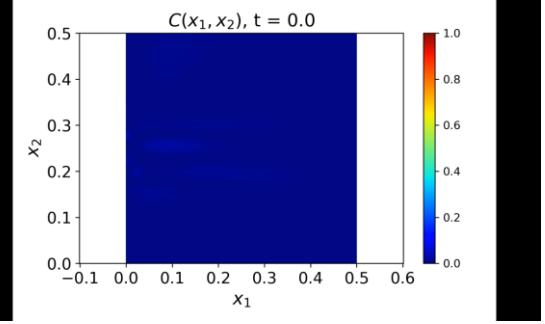
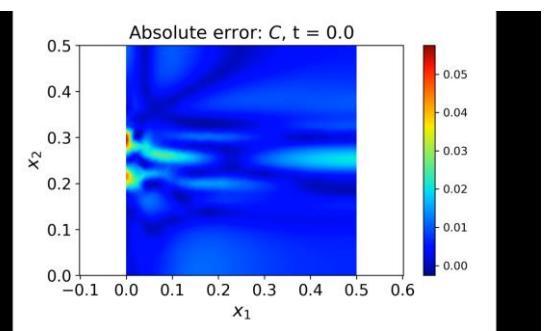
Case 1:
Data-Driven



Case 2: Both
data and ADE



Case 3: Both data and
ADE + Darcy Equation



Comparison – $\lambda = 0, N = 500$

Case 1: Data – driven Only

- Loss from only data

Case 2: Data + ADE

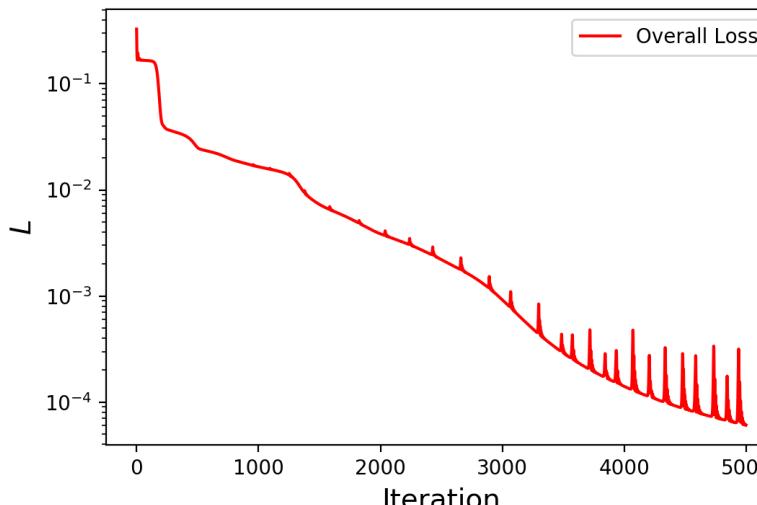
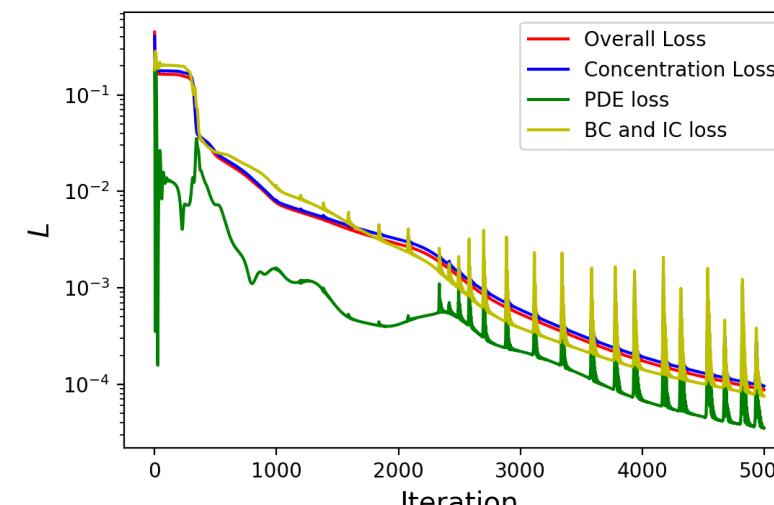
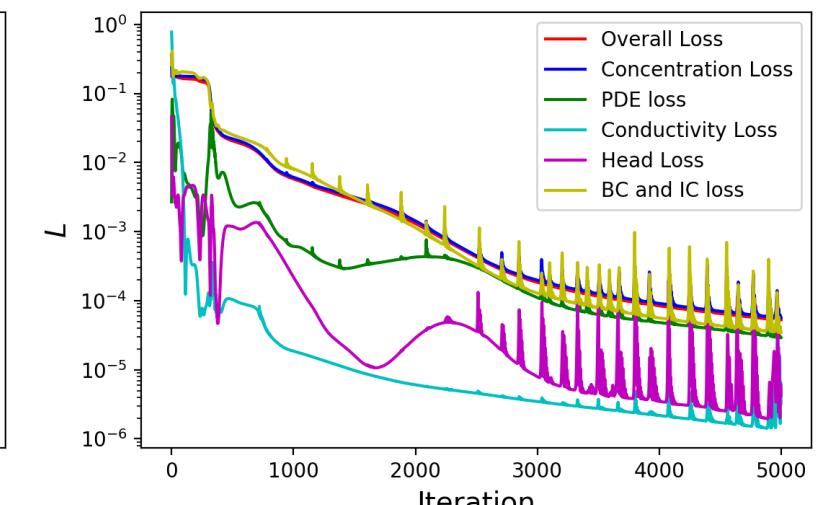
- Loss from data + ADE (& BCs+IC)

MSE	Case 1	Case 2	Case 3
Collocation points	6.0945e-05	9.5795e-05	5.6173e-05
Entire space & time	3.5409e-03	2.6118e-03	2.2517e-03

Case 3: Data + ADE + Darcy Eqn

- Loss from concentration & head (&K field) data and ADE
- For entire point, Case 3 performed better than other cases

Loss plot during training for three cases



Comparison – $\lambda = 0.1$, $N = 500$

Case 1: Data – driven Only

- Loss from only data

Case 2: Data + ADE

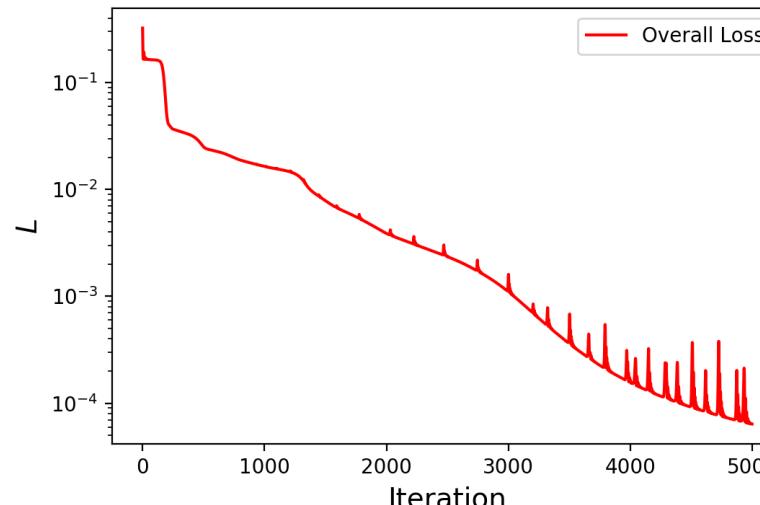
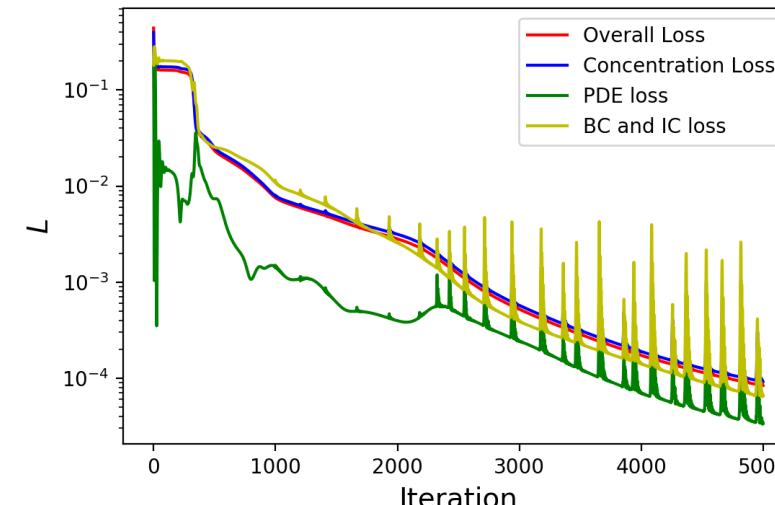
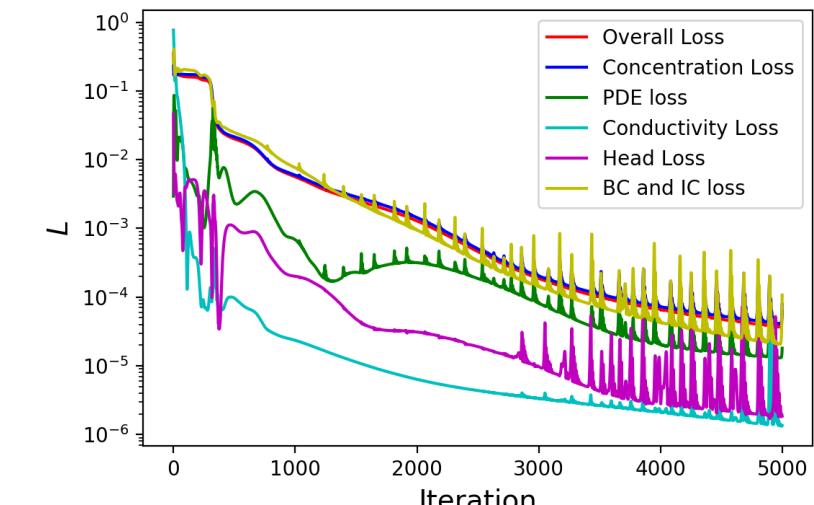
- Loss from data + ADE (& BCs+IC)

MSE	Case 1	Case 2	Case 3
Collocation points	6.3934e-05	9.1593e-05	7.8149e-05
Entire space & time	3.4033e-03	2.9904e-03	1.6247e-03

Case 3: Data + ADE + Darcy Eqn

- Loss from concentration & head (&K field) data and ADE
- For entire point, Case 3 performed better than other cases

Loss plot during training for three cases



Comparison – $\lambda = 0.5, N = 500$

Case 1: Data – driven Only

- Loss from only data

Case 2: Data + ADE

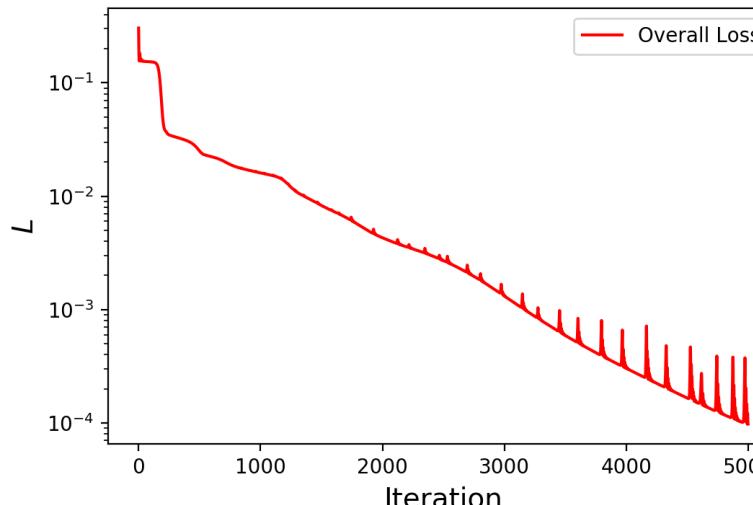
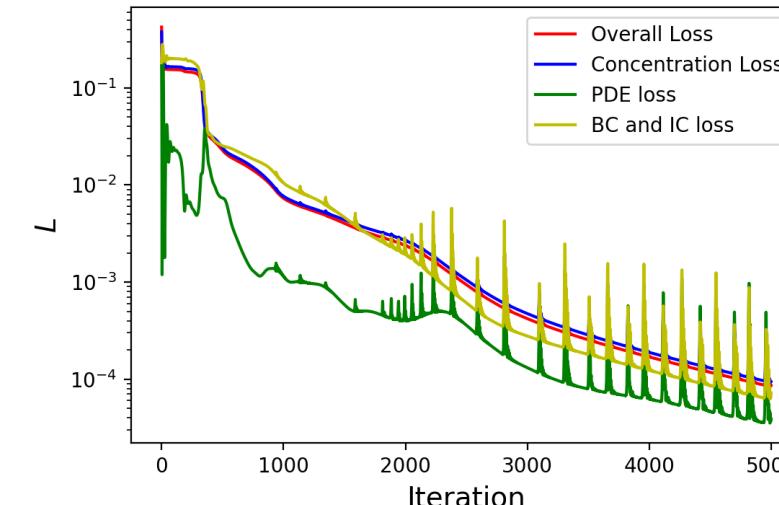
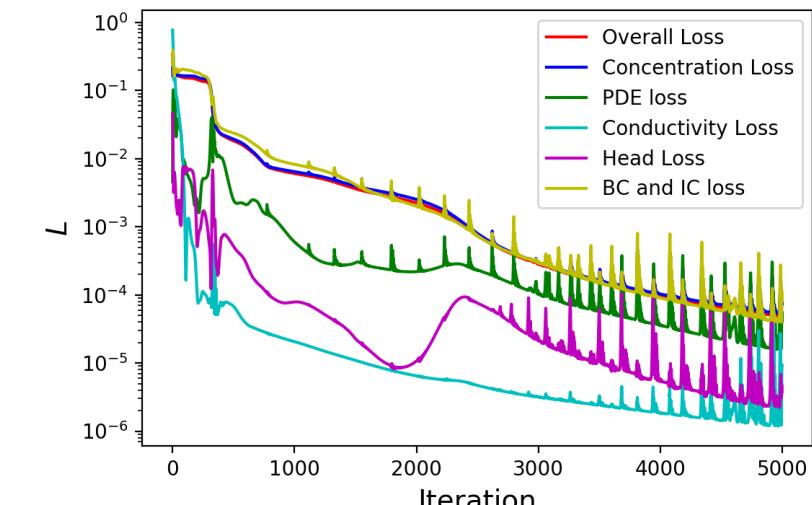
- Loss from data + ADE (& BCs+IC)

MSE	Case 1	Case 2	Case 3
Collocation points	9.7611e-05	9.4096e-05	7.4566e-05
Entire space & time	2.7133e-03	2.0631e-03	2.2484e-03

Case 3: Data + ADE + Darcy Eqn

- Loss from concentration & head (&K field) data and ADE
- For entire point, Case 3 performed better than other cases

Loss plot during training for three cases



Comparison – $\lambda = 0.5, N = 1000$

20

Case 1: Data – driven Only Case 2: Data + ADE

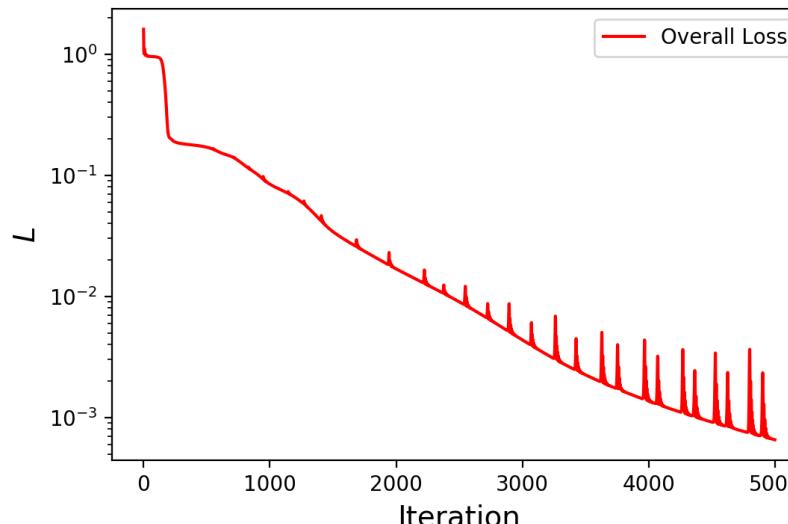
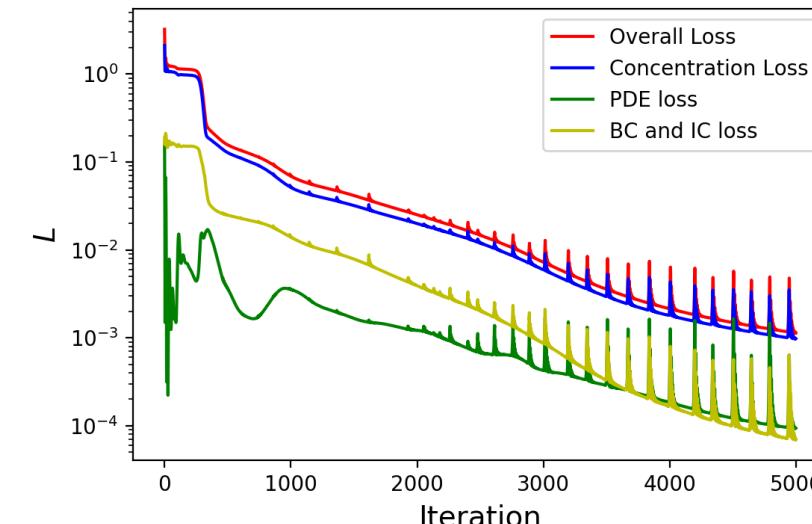
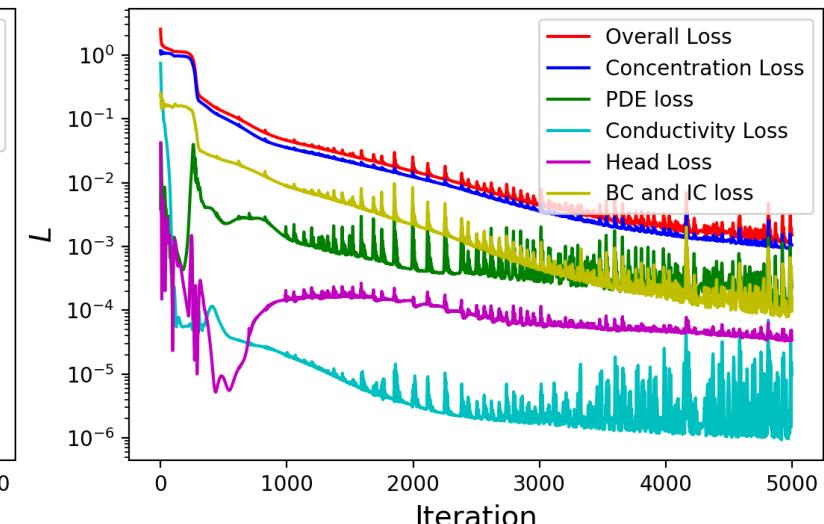
- Loss from only data
- Loss from data + ADE (& BCs+IC)

MSE	Case 1	Case 2	Case 3
Collocation points	6.5471e-4	9.7633e-4	1.0500e-3
Entire space & time	4.8075e-05	1.0856e-4	1.0787e-4

Case 3: Data + ADE + Darcy Eqn

- Loss from concentration & head (&K field) data and ADE
- For entire point, Case 1 performed better than other cases

Loss plot during training for three cases



Results: Case 3: Data (concentration, head) + ADE + Darcy Equation

21

- Input: Data (head, conductivity)
- Output: Velocity Fields generated using Darcy Equation
- Ground truth: velocity $u_x = 0.5$ and $u_y = 0$

