

COVER PAGE

DEVELOPMENT OF CARBON MOLECULAR SIEVES HOLLOW FIBER MEMBRANES BASED ON POLYBENZIMIDAZOLE DOPED WITH POLYPROTIC ACIDS WITH SUPERIOR H₂/CO₂ SEPARATION PROPERTIES

Final Report
Project Period: 10/1/2018 – 1/31/2022

by

Haiqing Lin, Ph.D. and Professor
haiqingl@buffalo.edu
716-645-1856

Date Issued: July 17, 2022

The U.S. Department of Energy
Office of Fossil Energy,
National Energy Technology Laboratory
Award Number: DE-FE0031636

Department of Chemical and Biological Engineering
University at Buffalo, The State University of New York (UB)

Other Contributors:

University at Buffalo (UB)

Leiqing Hu
Hien Nguyen

Vinh Bui
Maryam Omidvar

Wenji Guo
Sankhajit Pal

Los Alamos National Laboratory (LANL)

Rajinder Singh

Jong Geun Seong

Harshul Thakkar

Trimeric Corporation (Trimeric)

Katherine Dombrowski

Steven Fulk

Andrew Sexton

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

SIGNATURE PAGE

Final Report

Covering Period: October 1, 2018 – January 31, 2022

Date Submitted: April 25, 2022

Submitted to

Federal Agency: U.S. Department of Energy, National Energy Technology Laboratory

Award Number: DE-FE0031636

Project Title: Development of Carbon Molecular Sieves Hollow Fiber Membranes Based on Polybenzimidazole Doped with Polyprotic Acids with Superior H₂/CO₂ Separation Properties

Principal Investigator: Dr./Prof. Haiqing Lin; haiqingl@buffalo.edu; 716-645-1856

Recipient Organization: The Research Foundation for State University of New York
402 Crofts Hall, Buffalo, NY 14260

Project Period: 10/1/2018 – 1/31/2022

Signature:

DOE Project Officer: Krista Hill
U.S. Department of Energy
National Energy Technology Laboratory
Morgantown Campus
3610 Collins Ferry Road
304-285-4724
Krista.Hill@netl.doe.gov

DOE Contract Specialist: Jeffrey S. Kooser
U.S. Department of Energy
National Energy Technology Laboratory
304-285-4253
Jeffrey.Kooser@netl.doe.gov

Table of Contents

COVER PAGE.....	1
DISCLAIMER	2
SIGNATURE PAGE	3
1. EXECUTIVE SUMMARY	5
2. INTRODUCTION AND OUR APPROACH	7
2.1. Introduction.....	7
2.2. Current Membrane Technology	8
2.3. Our Approach and Rationale for Developing CMS HFMs	8
3. PROJECT MANAGEMENT AND PLANNING	10
4. DEVELOPMENT OF MEMBRANE MATERIALS	11
4.1. PBI doped with polyprotatic acids	11
4.2. CMS membranes based on PBI/acids	12
5. DEVELOPMENT OF HOLLOW FIBER MEMBRANES.....	13
5.1. Preparation of HFM.....	13
5.2. Parametric Tests of Membranes for H ₂ /CO ₂ Separation.....	14
5.3. Long-term tests	16
6. EVALUATE CMS MEMBRANE REACTORS	16
7. EVALUATE ECONOMIC POTENTIAL OF MEMBRANE PROCESS	17
8. PRODUCTS AND IMPACTS	20
STATE-POINT DATA FOR MEMBRANE BASED SYSTEMS	22
REFERENCES:	23

1. EXECUTIVE SUMMARY

The goal of this project was to develop a highly efficient membrane-based process to capture CO₂ from coal-derived syngas with 95% CO₂ purity, achieving the cost of electricity (COE) 30% below the baseline capture approaches (i.e., Selexol process) when coupled with the advancement in other areas of the power generation facility. Our core approach is based on high-permeance hollow fiber membranes (HFM) with superior H₂/CO₂ separation properties at the syngas process conditions, which can then be further utilized to design membrane reactors for process intensification of H₂ production and purification and CO₂ capture. Three organizations with complementary skills collaborated to achieve the goal, including the University at Buffalo (UB), Los Alamos National Laboratory (LANL), and Trimeric Corporation (Trimeric).

We formulated logical steps to bring the membrane technology from Technology Readiness Level (TRL) 3 (Experimental proof of concept) to TRL 4 (Laboratory scale validation in relevant environment). During the budget period (BP) 1, we screened various polymeric materials and identified polybenzimidazole doped with inorganic polyprotic acids as the desirable platform. The acid doping increases the H₂/CO₂ selectivity, and the sequential carbonization increases H₂ permeability while retaining the high selectivity. By manipulating the acid type and doping level and the carbonization temperature, we demonstrated advanced carbon molecular sieving (CMS) materials with H₂ permeability of above 200 Barrer (1 Barrer = 10^{-10} cm³(STP) cm cm⁻² s⁻² cmHg⁻¹) and H₂/CO₂ selectivity of above 40 at 200-300°C with simulated syngas containing CO and water vapor. For example, the PBI-(H₃PO₄)_{0.11} carbonized at 700 °C exhibits H₂ permeability of 200 Barrer and H₂/CO₂ selectivity of 60 at 200 °C, and H₂ permeability of 240 Barrer and H₂/CO₂ selectivity of 54 at 225 °C, which meets the targeted properties and surpasses Robeson's upper bound.

During the BP2, we focused on the conversion of the advanced CMS materials to stable HFM. Membranes with H₂ permeance of 1,090 GPU (1 GPU = 10^{-6} cm³(STP) cm⁻² s⁻² cmHg⁻¹) and H₂/CO₂ selectivity of 57 at 300 °C were successfully fabricated. The effects of temperature, gas compositions, pressure, and time on the separation properties were systematically investigated. Pencil modules were continuously evaluated for 219 h (dry pure gas) and 669 h (dry simulated syngas) and showed initial decline in permeance and increased H₂/CO₂ selectivity over time, ultimately achieving a steady state stable value, indicating that the ageing phenomena in the nanoporous structures of the membranes during the test.

Membrane reactors were fabricated based on the CMS membranes and evaluated for water-gas shift (WGS) reaction. The use of membranes slightly improves the conversion of the CO. However, parametric tests of the membrane reactors at various temperatures and flow rates need to be conducted, as well as the membranes with improved separation performance.

We performed a sensitivity analysis on the impact of H₂/CO₂ selectivity on the COE based on a hybrid process of a membrane unit and cryogenic unit developed by Membrane Technology and Research, Inc. (MTR). Three H₂/CO₂ selectivity (40, 60, and 15) cases were developed and compared with the baseline capture process (Case B5B) provided by the DOE report. Increasing the membrane H₂/CO₂ selectivity reduces COE, but the rate of the decrease of COE also diminishes. The COE values for H₂/CO₂ selectivities of 40 and 60 were nearly the same. As the

H_2/CO_2 selectivity increases, the inert recycling decreases, leading to smaller equipment, less auxiliary power requirements, and less heating, cooling, and refrigeration duty. The refrigeration system used to liquefy the CO_2 is the most expensive piece of equipment and consumes the most electricity within the CO_2 capture process. Increasing the CO_2 concentration in the recycle stream would improve the economics of the process by reducing the refrigeration duty requirement of the unit and also allow for higher liquefaction temperatures.

The high H_2 -selective membrane developed by our team may be applicable in other separation processes where lower pressure H_2 retains value. Typically, hydrogen retains its pressure when it is separated from syngas components. Residual components may be used as low-quality fuel and then vented to the atmosphere. Applications might include control of H_2/CO ratios or mitigation of the water gas shift reaction by CO_2 recycling to the feed of a gasifier or steam methane reformer.

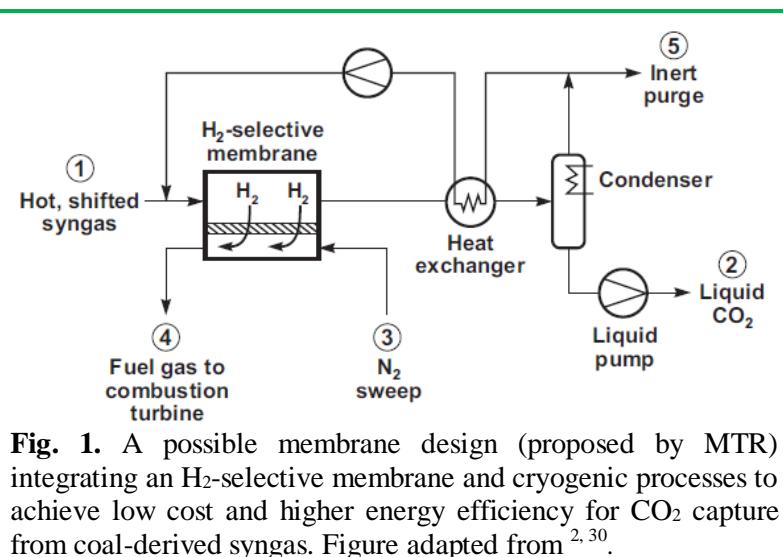
To summarize, we have developed industrial HFM_s with the best H_2/CO_2 separation performance reported in the literature. The membranes demonstrate stability with simulated syngas and show great potential for membrane reactors for WGS reactions, lowering the cost of blue H_2 production.

2. INTRODUCTION AND OUR APPROACH

2.1. Introduction

Pre-combustion CO₂ capture for utilization and sequestration is a critical path to mitigate the CO₂ emissions to the atmosphere. In this process, coal is gasified to produce syngas, *i.e.*, H₂ and CO. The CO is converted to CO₂ by the WGS reaction, producing ~55% H₂ and ~40% CO₂ at 200-300 °C and 20-40 bar.¹ Purified H₂ can be used as a clean fuel for a combustion turbine in what is called an Integrated Gasification Combined Cycle (IGCC) process. CO₂ must be removed from the syngas stream economically to be utilized or sequestered with a modest increase in energy costs. Because the CO₂ in the syngas is relatively concentrated and at high pressure, pre-combustion CO₂ capture in the IGCC approach is easier than the CO₂ capture from post-combustion flue gas, which is at atmospheric pressure and contains only 13% CO₂.²⁻⁵ When costs of carbon capture are included, power production by IGCC is claimed to be less costly than production by direct combustion of coal.²

The current leading technologies for pre-combustion CO₂ capture are physical absorption processes, such as Selexol® or Rectisol®.^{6, 7} These processes are complex and consume large amounts of energy in the desorption operation. The CO₂ from the desorption unit is at low pressures, and it must be recompressed for sequestration or utilization, which is energy-intensive. The U.S. DOE has examined the economics of Selexol for CO₂ capture from coal-derived syngas produced using GEE Radiant gasifier technology. The CO₂ capture (without consideration of CO₂ transportation and storage) increases the COE from \$102.6/MWh to \$135.4/MWh. The goal of the DOE Carbon Capture Program is to achieve the COE 30% below the baseline approach, which is \$94.8/MWh, even lower than the no capture case. Clearly, this ambitious goal can only be met with holistic development of every step in the IGCC process trains, including the CO₂ capture, compression, combustion turbines, hydrogen turbines, etc. The proposed work is expected to maximize the efficiency of the technology for CO₂ separation, making progress towards meeting the overall fossil energy performance goals of CO₂ capture.

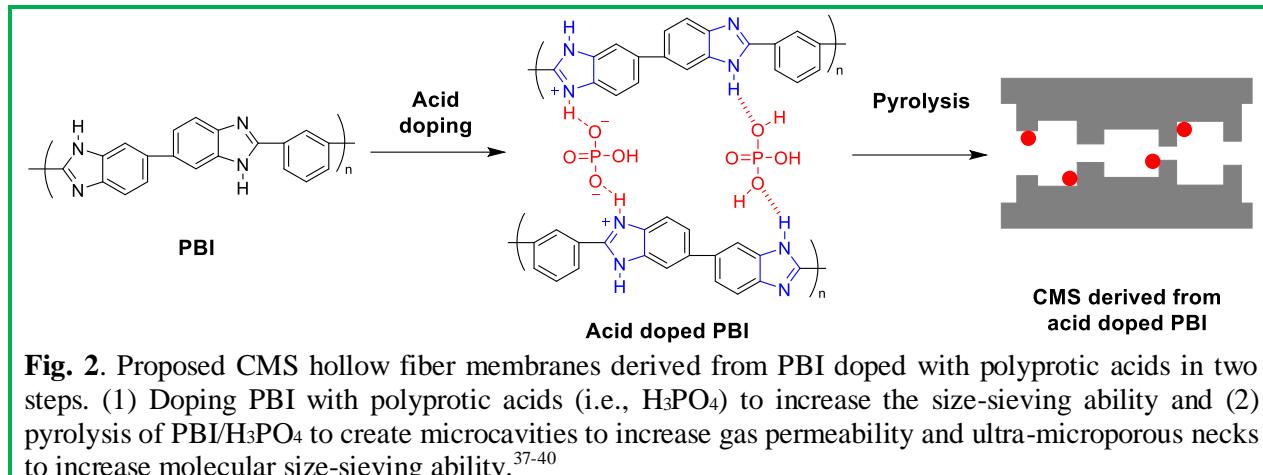

Membrane processes have been investigated to lower the cost and energy intensity of IGCC syngas cleanup.⁸⁻¹⁰ Because of the perceived desirability of operating at high temperatures,¹¹⁻¹⁴ much of this effort has focused on inorganic membranes, such as palladium alloys¹⁵⁻²⁰, ceramics,^{21, 22} metal-organic frameworks (MOFs),²³ and graphene oxide.²⁴⁻²⁶ While exhibiting excellent H₂/CO₂ separation properties, they are faced with challenges in the cost and reliability, scale-up of membrane production, and module fabrication. No commercial inorganic membrane system for industrial gas separations has yet been installed or is in sight.

Polymer-based membranes are much easier to implement than inorganic membranes, provided that the membrane materials demonstrate suitable separation properties.^{27, 28} Production scale-up and module fabrication using polymeric membranes have been widely practiced, creating substantial engineering know-how across the polymer membrane industry.^{27, 29} The goal of this project was to develop scalable membranes by engineering polymers to achieve superior H₂/CO₂ separation properties.

2.2. Current Membrane Technology

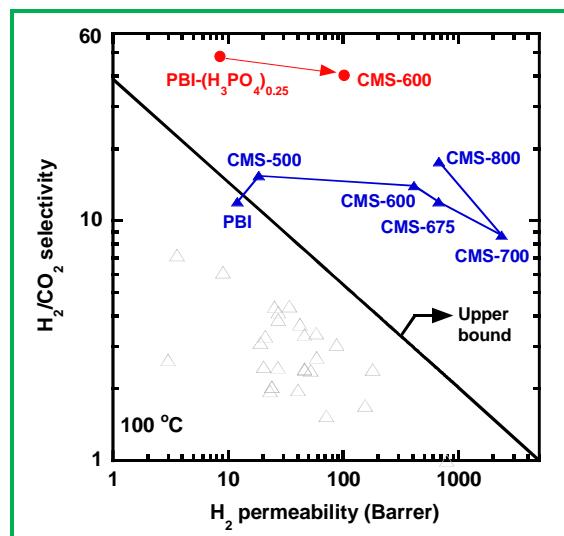
MTR had developed various process designs based on membranes for H₂ purification and CO₂ capture from coal-derived syngas. Fig. 1 shows an exemplar membrane design using an H₂-permeable, CO₂-rejecting membrane for H₂ production and a cryogenic unit for the production of liquid CO₂.^{2, 30} Similar processes have also been considered by LANL and SRI International.^{31, 32}

As shown in Fig. 1, the use of N₂ sweep with the H₂ separation unit based on an H₂-selective membrane partition the feed gas into a moderate-pressure H₂-rich gas and a high-pressure CO₂-rich retentate.^{2, 33} The H₂-rich gas can be directly used in a turbine to generate power. The dilution with N₂ in the membrane modules increases the H₂ partial pressure difference across the membrane (or driving force), and thus it reduces the membrane area required. Also, the N₂ diluent prevents overheating and reduces NO_x formation and is often required for H₂ before entering the turbine. The CO₂-rich retentate is sent to the CO₂ liquefaction/auto-refrigeration unit to achieve >95% purity. The liquefaction off-gas is either vented to remove the inert gas from the system or recycled to the CO₂-selective membrane for CO₂ recovery. The liquid CO₂ product stream can be easily pumped to the injection pressure required for enhanced oil recovery (EOR) or sequestration. The key limitation of the practice of the process shown in Figure 1 is a lack of high-performance H₂-selective, CO₂-rejecting membranes at the processing temperatures.



2.3. Our Approach and Rationale for Developing CMS HFM_s

Our approach to overcoming the inherent roadblocks to simultaneously attaining high permeability and selectivity in polymers consists of starting with strongly size-sieving polymers (i.e., polybenzimidazole or PBI doped with polyprotic acids) and carbonizing them to increase both permeability and selectivity into a range suitable for commercial deployment. As shown in Fig. 2, the PBI can be doped with polyprotic acids, yielding the strongest size-sieving ability and highest H₂/CO₂ selectivity among polymers known,³⁴ and the following carbonization creates microcavities to increase gas permeability and ultra-microporous necks to increase size-sieving ability. The rationale is discussed below.


Increasing the H₃PO₄ doping level in PBI (defined as the molar ratio of H₃PO₄ to the PBI repeating units) decreases the pure-gas permeability and drastically increases the H₂/CO₂ selectivity at 150 °C.³⁴ For example, PBI shows H₂/CO₂ selectivity of 16, while PBI-(H₃PO₄)_{1.0} exhibits a remarkable selectivity of 140, which is much higher than that of any previously studied polymers. H₃PO₄ can strongly interact with multi-PBI chains via proton transfer from the acid to imidazole rings of PBI and hydrogen bonding, and thus it cross-links the PBI.³⁵ These

acid-doped PBI are significantly above the 2008 upper bound for 35 °C or 150 °C.³⁶ However, in general, the acid doping decreases gas permeability, increasing the costs of membrane systems.

Carbon molecular sieving (CMS) membranes have attracted significant interest for gas separation because of their synergistic advantages over organic and inorganic membranes. CMS membranes contain microcavities and ultra-microporous necks, which can be tuned to simultaneously achieve high permeability and selectivity unattainable from polymers, and they have excellent thermal resistance and chemical stability in harsh environments.⁴¹⁻⁴⁶ We have prepared CMS membranes using PBI under the purge of ultrahigh purity N₂. The pyrolysis increases the porosity and generates a graphite-like structure (as confirmed by the Wide-Angle X-ray Diffraction patterns). As shown in Fig. 3, the carbonization of PBI dramatically increases H₂ permeability while retaining or slightly increasing H₂/CO₂ selectivity at 100 °C. All CMS samples exhibit H₂/CO₂ separation properties above the upper bound. For example, pure PBI exhibit an H₂ permeability of 12 Barrer and H₂/CO₂ selectivity of 14 at 100 °C, while the CMS prepared by pyrolysis of PBI at 800 °C shows an H₂ permeability of 670 Barrer (which is 50 times higher than pure PBI) and H₂/CO₂ selectivity of 18 at 100 °C.

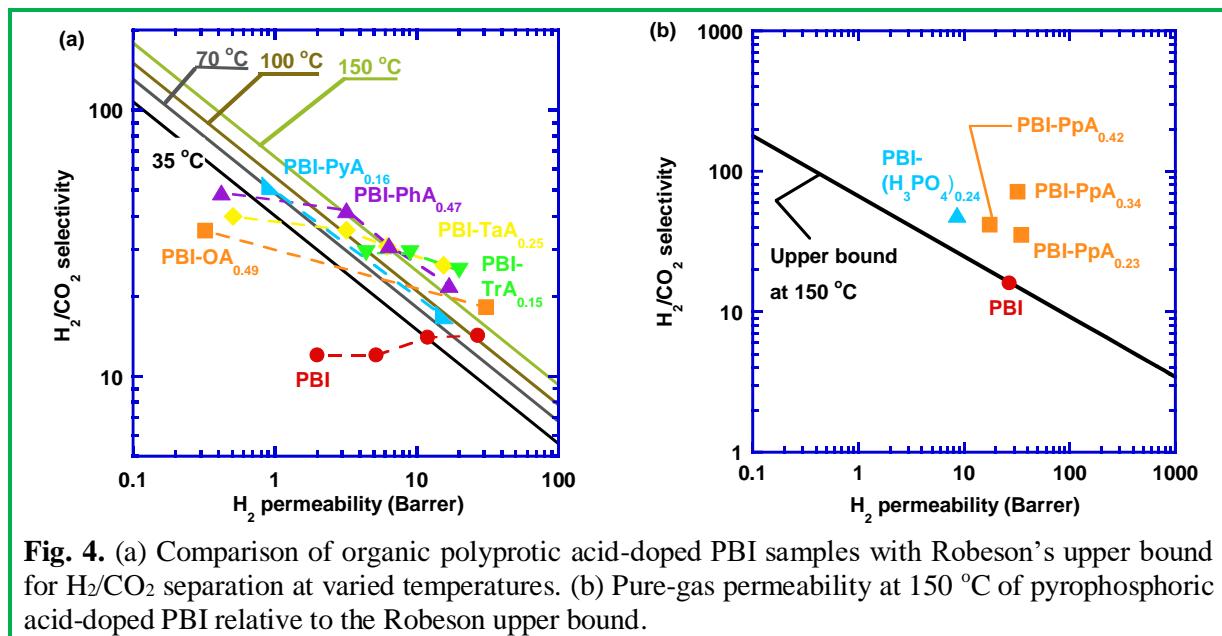
We hypothesized that the CMS membranes could meet the targeted separation properties (H₂ permeance of 1,000 GPU and H₂/CO₂ selectivity of 40) if the starting polymers are PBI doped with polyprotic acids with strong size-sieving ability. For example, PBI-(H₃PO₄)_{0.25} exhibits an H₂ permeability of 8.6 Barrer and H₂/CO₂ selectivity of 48 at 150 °C. **The pyrolysis at 600 °C increases the permeability to 100 Barrer while retaining H₂/CO₂ selectivity at 40 at 100 °C, as shown in Fig. 3.** During the pyrolysis, the H₃PO₄ gradually decomposes to polyphosphoric acid,⁴⁷ retaining the rigid chains and strong molecular size-sieving ability. By optimization of the acid type,

Fig. 3. Effect of pyrolysis temperatures on H₂/CO₂ separation properties in the PBI-derived CMS films at 100 °C.

composition, and pyrolysis temperature, the CMS can achieve H₂ permeability of 200 Barrer with H₂/CO₂ selectivity of 40, which can be used to prepare hollow fiber membranes with a selective layer thickness of 0.2 μm exhibiting H₂ permeance of 1,000 GPU and H₂/CO₂ selectivity of 40. This is feasible because carbonization has been demonstrated to increase H₂ permeability by 50 times, and LANL has successfully fabricated nearly defect-free PBI hollow fiber membranes with 0.2 μm selective layer.

3. PROJECT MANAGEMENT AND PLANNING

Our approach to developing high-performance membranes started with designing and optimizing CMS materials with superior intrinsic H₂/CO₂ separation properties, followed by fabrication and optimization of hollow fiber membranes based on the most promising CMS materials. Specifically, the proposed CMS hollow fiber membranes were prepared by doping PBI-based hollow fiber membranes with polyprotic acids, followed by pyrolysis. Both doping and pyrolysis were optimized separately with a goal of simplicity and high performance in the CMS hollow fiber membranes. Table 1 summarizes the milestones designed to evaluate the progress of the project. We had fully met the milestones and targets, and the timelines are also shown in Table 1. The detailed technical achievements are shown below.


Table 1. Overview of project milestone status.

Milestone Title/Description	Planned Completion Date	Actual Completion Date	Verification Method
Project Management Plan	10/30/2018	10/30/2018	PMP file
Project Kick-off Meeting	11/30/2018	11/30/2018	Presentation
Final Techno-Economic Analysis	9/30/2021	1/31/2022	Report
State Point Data Table	9/30/2021	1/31/2022	Report
Technology Maturation Plan	9/30/2021	1/31/2022	Report
Environmental Health and Safety Risk Assessment	9/30/2021	1/31/2022	Report
CMS films with an H ₂ permeability of 200 Barrer and H ₂ /CO ₂ selectivity of 40	12/31/2019	12/31/2019	Separation property data
Hollow fiber membranes based on PBI doped with polyprotic acids exhibiting H ₂ /CO ₂ selectivity of 40	3/31/2020	3/31/2020	Separation property data
CMS hollow fiber membranes with H ₂ permeance of 1,000 GPU and H ₂ /CO ₂ selectivity of 40	9/30/2021	9/30/2021	Membranes and report
Database of H ₂ /CO ₂ separation properties in the CMS hollow fiber membranes at various pressures, temperatures, and feed gas compositions	9/30/2021	9/30/2021	Data and report
Performance data of membrane reactors for the WGS reaction	9/30/2021	9/30/2021	Data and report

4. DEVELOPMENT OF MEMBRANE MATERIALS

4.1. PBI doped with polyprotic acids

During this BP period, we evaluated the PBI doped with several polyprotic acids with different amounts of acid groups, including 1,2-benzenedicarboxylic acid (phthalic acid or PhA), 1,3,5-benzenetricarboxylic acid (trimesic acid or TA), and 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid or PyA). Fig. 4a presents the H_2/CO_2 separation performance of five organic polyprotic acid-doped PBIs at varying temperatures in Robeson's upper bound plot. All acid-doped PBIs exhibit H_2/CO_2 separation performance near or above the upper bound at 35 °C and 70 °C. Especially, PBI-PyA_{0.16} ($x = 0.16$) shows a superior H_2/CO_2 selectivity of 52 with H_2 permeability of 0.9 Barrer at 35 °C. PBI-PhA_{0.47} exhibits impressive H_2 permeability of 3.2 Barrer and H_2/CO_2 selectivity of 42 at 70 °C, which is above Robeson's upper bound. Increasing temperatures to 100 °C and 150 °C increases the H_2 permeability but decreases H_2/CO_2 selectivity, though their performance is still better than that of pure PBI.

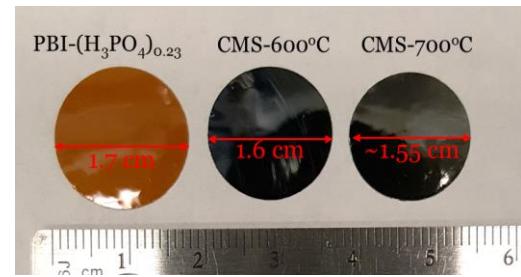

Fig. 4. (a) Comparison of organic polyprotic acid-doped PBI samples with Robeson's upper bound for H_2/CO_2 separation at varied temperatures. (b) Pure-gas permeability at 150 °C of pyrophosphoric acid-doped PBI relative to the Robeson upper bound.

Fig. 4b shows the superior H_2/CO_2 separation properties in pyrophosphoric acid (PpA)-doped PBIs. All PpA-doped PBIs exhibit better performance than phosphoric acid-doped PBI, as the PpA can transfer more hydrogen ions to PBI chains and form a more rigid structure. PBI-(PpA)_{0.34} shows the best performance with H_2/CO_2 selectivity of 72 and H_2 permeability of 32 Barrer at 150 °C, breaking the permeability/selectivity tradeoff and surpassing the upper bound.

In summary, more than 8 acids with different amounts of hydrogen, PKa values, and decomposition temperatures were used to dope PBI and achieve high H_2/CO_2 separation properties. These results provide a rich database for the selection and optimization of carbonized CMS materials.

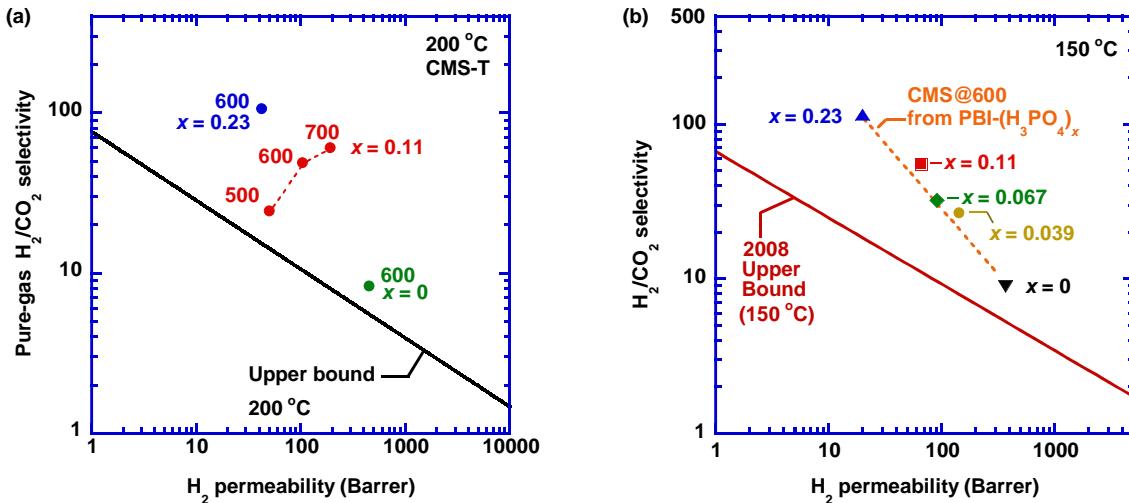

4.2. CMS membranes based on PBI/acids

Fig. 3 presents the H_3PO_4 doped PBI and its carbonized films. The molar ratio of the H_3PO_4 to the PBI repeating units (x) ranges from 0.11 to 0.28. Carbonized films with a thickness of $\approx 55 \mu\text{m}$ show good mechanical strength. Figure 6a shows the superior H_2/CO_2 separation properties in the carbonized PBI- $(\text{H}_3\text{PO}_4)_x$. The PBI- $(\text{H}_3\text{PO}_4)_{0.11}$ carbonized at 700 °C exhibits the H_2 permeability of 200 Barrer and H_2/CO_2 selectivity of 60 at 200 °C, which is above the upper bound. At the permeation testing temperature of 225 °C, the H_2 permeability increases to 240 Barrer, and H_2/CO_2 selectivity decreases to 54, which meets the targeted properties (H_2 permeability of 200 Barrer and H_2/CO_2 selectivity of 40).

Fig. 5. Photos of $\text{PBI-(H}_3\text{PO}_4\text{)}_{0.23}$ and carbonized ones.

Fig. 6b summarizes the effect of doping level (x : defined as the molar ratio of H_3PO_4 to the PBI repeating units) on the carbonized films (at 600 °C) on the mixed-gas H_2/CO_2 separation performance at 150 °C. Increasing the doping level decreases H_2 permeance but increases H_2/CO_2 selectivity. All of the samples exhibit the separation performance above Robeson's upper bound at 150 °C.

Fig. 6. (a) Pure-gas permeability at 200 °C for H_3PO_4 -doped PBI CMS ($x = 0 - 0.23$) pyrolyzed at 500 °C-700 °C relative to the Robeson's upper bound. (b) Mixed-gas H_2/CO_2 separation properties in the carbonized PBI- $(\text{H}_3\text{PO}_4)_x$ at 150 °C

In summary, we have demonstrated that the carbonization of the acid-doped PBI significantly increases the H_2 permeability and H_2/CO_2 selectivity, and the CMS materials have met the target, i.e., H_2 permeability of 200 Barrer and H_2/CO_2 selectivity of 40.

5. DEVELOPMENT OF HOLLOW FIBER MEMBRANES

We first prepared PBI hollow fiber membranes (HFM) and then doped them with polyprotic acids before pyrolysis. The influence of base HFM morphologies, including the porous structure of the support, dense layer thickness, and acid doping level, was evaluated on the mechanical and H_2/CO_2 separation properties of the subsequent PBI-CMS membranes.

5.1. Preparation of HFM

Fig. 7 shows photos of the PBI and carbonized PBI hollow fiber membranes. The CMS HFM carbonized at 650 °C show good mechanical properties.

Fig. 7. PBI and CMS pyrolyzed at 650 °C hollow fiber membranes.

Fig. 8 shows the SEM photos of the doped and carbonized HFM. As shown in Fig. 8a, the HFM shows a skin layer thickness of ~100 nm. The doping has essentially no effect on the skin and porous layers (cf. Fig. 8b), and the phosphorus element from the H_3PO_4 is evenly distributed in the skin and porous layers of the fibers. The carbonization of the doped PBI HFM increases the skin layer thickness to ~200 nm, while most pore structures are preserved (cf. Fig. 8d). Fig. 8e shows that the P element is still distributed in the matrix.

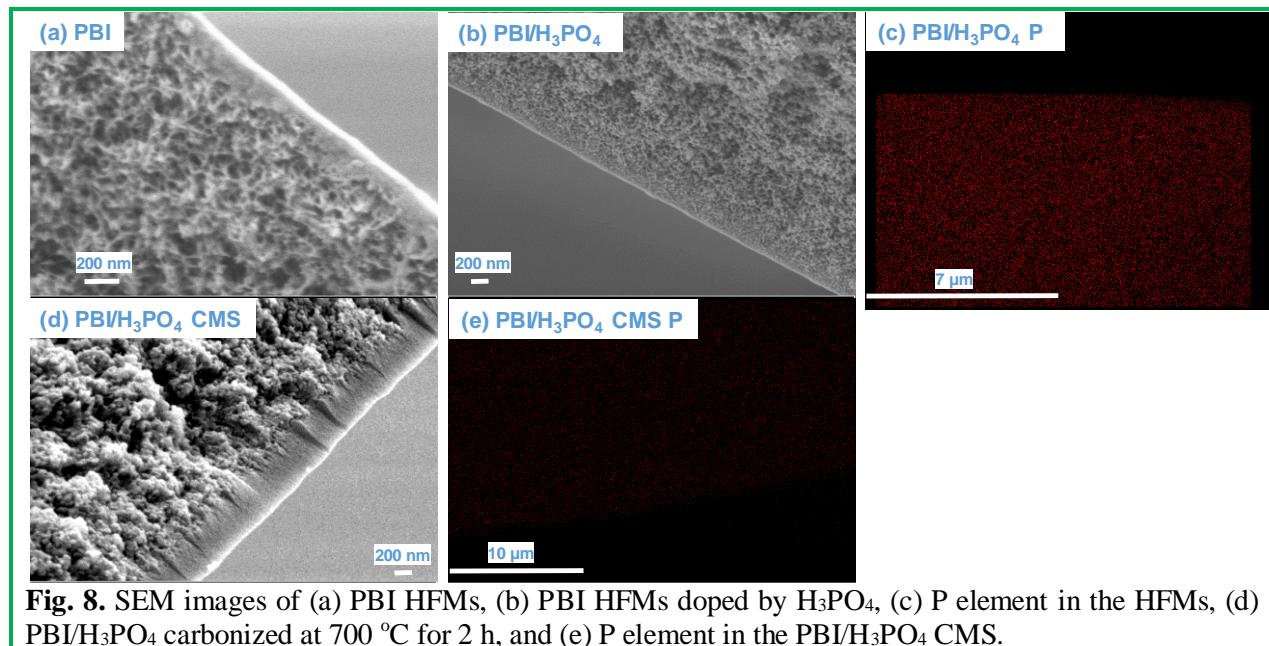
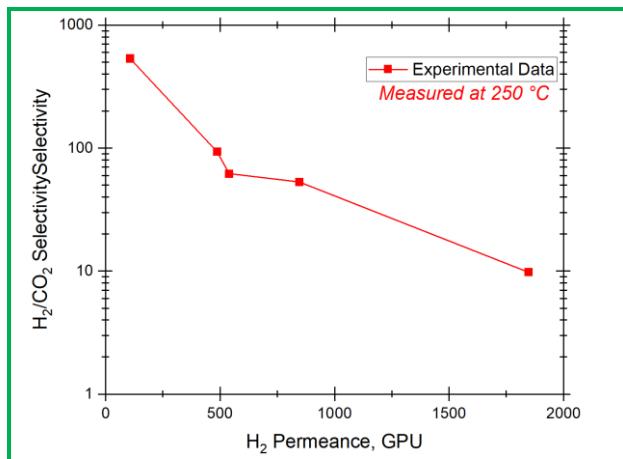
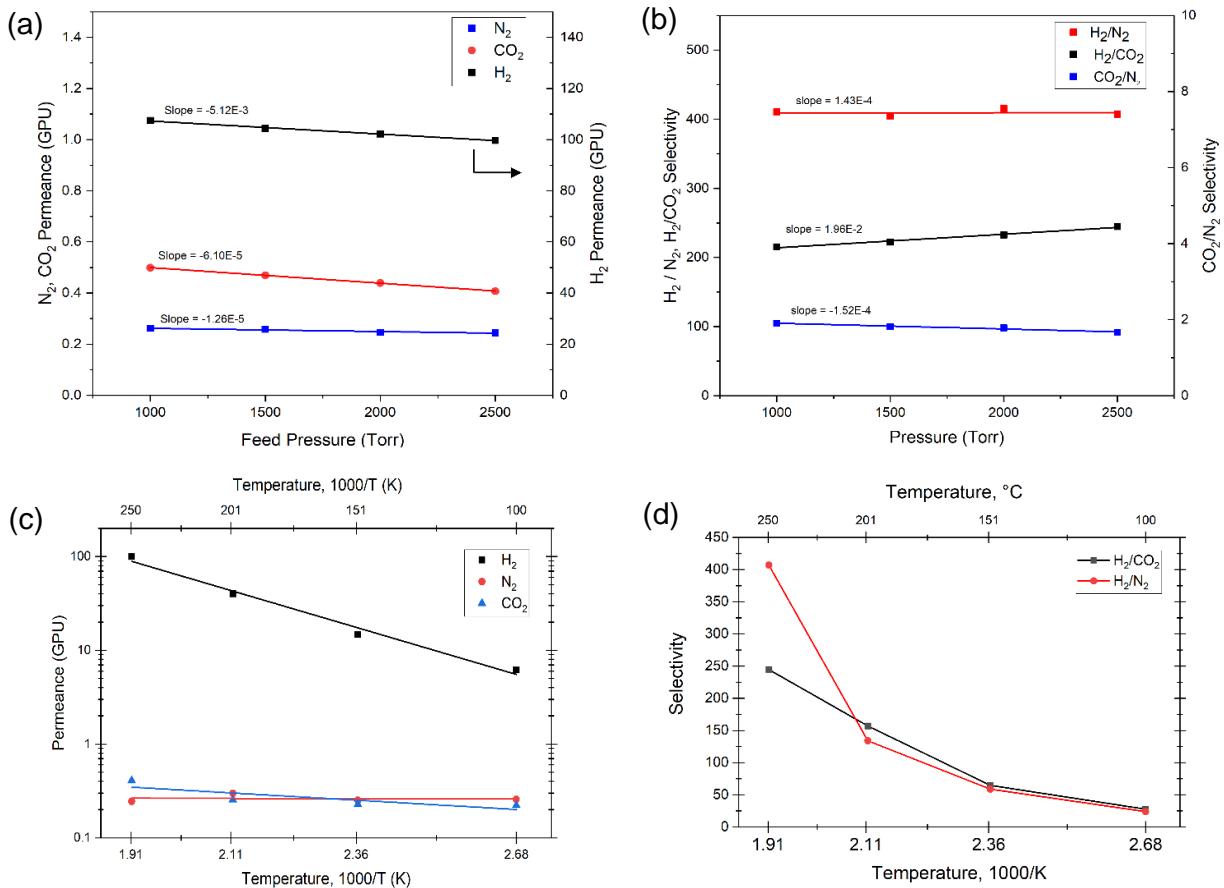
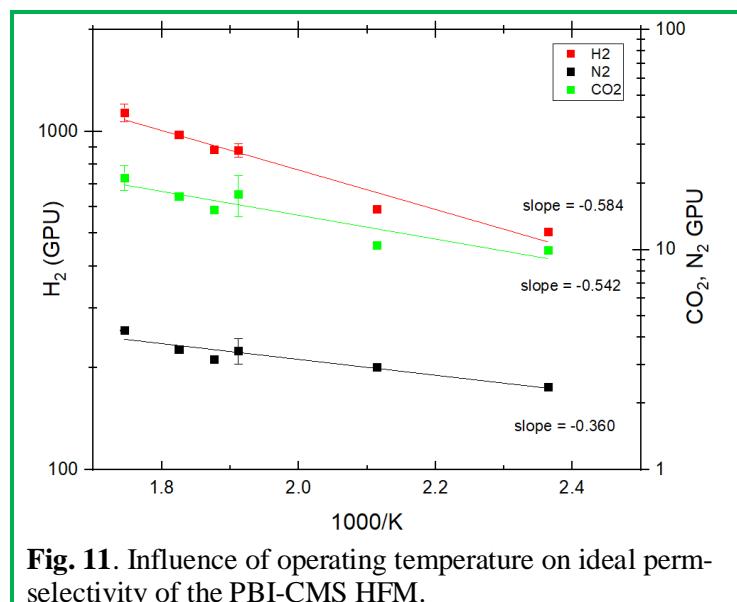



Fig. 8. SEM images of (a) PBI HFM, (b) PBI HFM doped by H_3PO_4 , (c) P element in the HFM, (d) PBI/ H_3PO_4 carbonized at 700 °C for 2 h, and (e) P element in the PBI/ H_3PO_4 CMS.


5.2. Parametric Tests of Membranes for H₂/CO₂ Separation

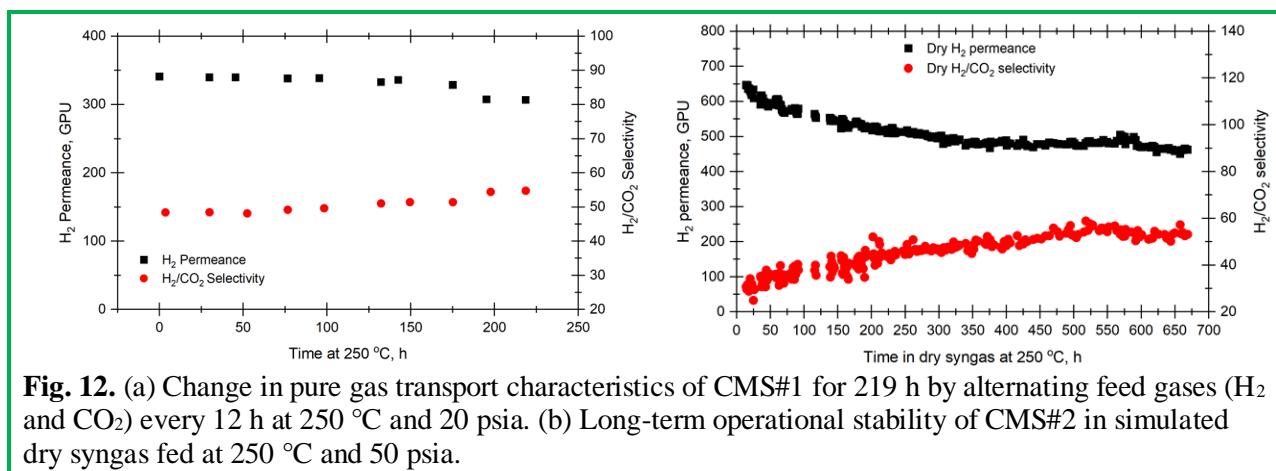
During this reporting period, the PBI-CMS HFM's fabrication process was manipulated to achieve control of their H₂/CO₂ separation performance. Fig. 9 shows the H₂ permeance and H₂/CO₂ selectivity data obtained on a series of PBI-CMS HFM's fabricated under varied conditions. The H₂ permeance and H₂/CO₂ selectivity varied from 100 to 1800 GPU, while H₂/CO₂ selectivity varied from 500 to 10, respectively. Besides, symmetric ceramic-supported PPA-doped PBI-CMS HFM's were prepared, and their pure-gas H₂/CO₂ separation properties were tested at 100 °C and 100 psig. One sample showed the highest H₂/CO₂ selectivity of 170 with a H₂ permeance of 20 GPU, and another sample showed a H₂ permeance of 55 GPU with a H₂/CO₂ selectivity of 60.


Fig. 9. Pure-gas H₂/CO₂ separation properties of a series of PBI-CMS HFM's.

Parametric evaluations of two representative PBI-CMS HFM's having combination of: 1) *high selectivity and moderate H₂ permeance* (Fig. 10), and 2) *moderate selectivity and high permeance* (Fig. 11) were conducted. Fig. 10 shows the influence of operating conditions on the H₂/CO₂ separation performance of asymmetric PBI-CMS HFM's. The pure gas perm-selectivity was measured as a function of temperature (100 to 250 °C) and feed pressure (20 to 50 psia). The permeance is stable as a function of pressure, indicating that the membrane is free of any defects. The H₂/CO₂ selectivity increased from ca. 28 to 250 as the temperature increased from 100 to 250 °C. The increase in selectivity is primarily due to an exponential increase in the H₂ permeance as a function of temperature. This observed trend in permeance as a function of temperature is consistent with the activated diffusion transport mechanism indicating the exceptional molecular sieving characteristics of the PBI-CMS membranes.

Fig. 10. Influence of feed pressure (a & b) and temperature (c & d) on ideal perm-selectivity of the PBI-CMS HFM having an asymmetric morphology.

Fig. 11 shows the influence of temperature on the H_2/CO_2 separation performance of asymmetric PBI-CMS HFM. The ideal H_2 , CO_2 , and N_2 permeance increases as the temperature increases from 150 to 300 $^{\circ}\text{C}$. The H_2/CO_2 selectivity was measured at ca. 55 for the same temperature range. **The highest H_2 permeance of ca. 1090 GPU and H_2/CO_2 selectivity of 57 was measured at 300 $^{\circ}\text{C}$, which exceeds the project goal of 1000 GPU and H_2/CO_2 selectivity of 40.**


Fig. 11. Influence of operating temperature on ideal perm-selectivity of the PBI-CMS HFM.

5.3. Long-term tests

Two PBI-derived CMS HFM (CMS#1 and CMS#2) were evaluated at syngas operating conditions. The explorations were performed in two different ways: i) long-term thermal stability of pure gas transport characteristics at 250 °C and 20 psia, and ii) long-term operational stability in simulated dry syngas fed at 250 °C and 50 psia, respectively.

The pure gas transport characteristics of CMS#1 were measured by alternating feed gases (H₂ and CO₂) every 12 h at 250 °C and 20 psia. As shown in Fig. 12a, the H₂ permeance of CMS#1 was reduced by ca. 10% from 341 GPU to 307 GPU in 220 h of continuous evaluation at 250 °C. The H₂/CO₂ selectivity of CMS#1 increased from 48 to 55 during this test period. The observed variation in the H₂ permeance and H₂/CO₂ selectivity is consistent with aging in microporous membranes.

CSM#2 was evaluated in dry simulated syngas having composition H₂:CO₂:CO:H₂S = 61.7%:37.0%:1.3%:25.3 ppm at 250 °C and 50 psia. CMS#2 maintained exceptional H₂/CO₂ selectivity over 669 h at syngas relevant process operating conditions and environments. The H₂ permeance of CMS#2 decreased from 647 to 480 GPU while H₂/CO₂ selectivity increased from 31 to 54 initially for 550 h under dry syngas feed stream. Afterward, from 550 to 669 h of evaluation, the H₂ permeance and H₂/CO₂ selectivity remained steady at 480 GPU and 54, respectively.

Fig. 12. (a) Change in pure gas transport characteristics of CMS#1 for 219 h by alternating feed gases (H₂ and CO₂) every 12 h at 250 °C and 20 psia. (b) Long-term operational stability of CMS#2 in simulated dry syngas fed at 250 °C and 50 psia.

6. EVALUATE CMS MEMBRANE REACTORS

UB conducted a traditional water-gas shift (WGS) reaction and membrane reactor-based WGS reaction. A membrane reactor containing a carbonized PBI hollow fiber membrane exhibiting mixed-gas H₂/CO₂ selectivity of 20 and H₂ permeance of 340 GPU at 250 °C was fabricated. The commercial low-temperature Cu/Zn/Al-based catalyst was used. The membrane reactor operates with a feed gas of 100 sccm CO/N₂ (10/90 vol%) at 100 psig and sweep gas of N₂ on the permeate side at 250 °C.

Table 2 compares the CO conversion of WGSR in a traditional fluid reactor and the membrane reactor. The use of the membrane increases the CO conversions, especially at the low loadings of the catalyst. Table 2 displays in-situ H₂/CO₂ separation performance in the membrane reactor. Increasing the catalyst loading increases both H₂ purity and recovery due to the increased H₂ partial pressure in the feed. Likewise, H₂ permeance and H₂/CO₂ selectivity increased with the catalyst loading. In conclusion, the membrane reactor increases CO conversion and improves the WGS reaction.

Table 2. CO conversion of the water-gas shift reaction (WGSR) with and without membrane reactor at 250 °C and 100 psig.

Catalyst/SiC (g)	CO conversion (%)	
	Only catalyst	Membrane reactor
1/2.5	77	82
2/1.5	89	92
3.5/0	97	98

Table 3. Parameters of WGSR in the membrane reactor at 250 °C and 100 psig.

Catalyst/SiC (g)	H ₂ recovery (%)	H ₂ purity (%)	H ₂ permeance (GPU)	H ₂ /CO ₂ selectivity
1/2.5	55	88	260	12
2/1.5	54	91	270	15
3.5/0	61	93	290	17

7. EVALUATE ECONOMIC POTENTIAL OF MEMBRANE PROCESS

Trimeric conducted a techno-economic analysis to compare the membrane process to the Case B5A (IGCC without CO₂ capture) and Case B5B (IGCC with CO₂ capture using a dual-stage Selexol unit) processes from the 2015 DOE Cost and Performance Baseline Report (Volume 1, Revision 2b).

The base case membrane developed by our team has H₂ permeance of 1,000 GPU and an H₂/CO₂ selectivity of 40 at 240°C, which represents an improvement in high-temperature H₂-selective membrane performance for CO₂ capture from IGCC syngas relative to a previous DOE report from Worley Parsons. The previous DOE report achieved H₂ permeance of 300 GPU and an H₂/CO₂ selectivity of 15 at 150°C. Our team developed more selective membranes that achieved an H₂/CO₂ selectivity of 60; their performance and impact on plant economics were explored in a sensitivity study contained in this report.

The base case membrane process reduced the COE, including Transportation, Storage, and Monitoring (TS&M), by 16% compared to Case B5B. The COE for the base case was 121.6

mills/kWh (including TS&M), representing an 18.5% increase in COE relative to the base IGCC generating plant without CO₂ capture and TS&M (Case B5A).

The main contributions towards COE reductions include lower auxiliary load and lower capital and operating costs for the base case membrane and liquefaction process relative to the baseline capture system Case B5B. Approximately 75% of the reduction in COE results from an increase in net power generation. The remaining cost savings are a result of reductions in the Total Plant Costs. Changes to the acid gas separation and CO₂ purification and compression steps result in a 30% reduction in Total Plant Costs for the base case membrane process compared to Case B5B. Significant changes to the CO₂ capture and processing area include:

- Acid Gas Separation: The membrane process removes sulfur from the membrane retentate gas using a selective MDEA treater. The DOE baseline Case B5B uses a Selexol unit to remove acid gases from the raw syngas. The Selexol unit produces separate CO₂ and H₂S product streams. The dual-stage Selexol unit is sized to process the entire syngas flow, whereas the MDEA unit processes only the retentate stream from the membrane. The MDEA unit supplies regeneration energy for H₂S desorption only. The Selexol process supplies regeneration energy for both CO₂ and H₂S desorption. The gas processing volume and acid gas capacity of chemical (MDEA) versus physical (Selexol) solvents result in a smaller acid gas removal process.
- CO₂ Purification and Compression: The membrane processes liquefy CO₂ at the syngas feed pressure and pumps the liquefied CO₂ up to pipeline pressure, as compared to the Selexol unit, which produces CO₂ at low pressure and is then compressed and dehydrated. Though refrigeration used for liquefaction represents a large auxiliary load, the power savings from pumping liquid CO₂ rather than compressing gaseous CO₂ result in lower total operating costs. Total operating costs for the membrane process are 7% lower relative to Case B5B.

Trimeric performed a sensitivity analysis on the impact of H₂/CO₂ selectivity on COE. Three H₂/CO₂ selectivity (40, 60, and 15) cases were developed. Key performance and economic metrics are summarized in Table 4 below. The baseline capture process Case B5B is included for comparison. The sensitivity study results show that increasing the membrane H₂/CO₂ selectivity reduces COE, but the rate of the decrease of COE also diminishes. COE for H₂/CO₂ selectivities of 40 and 60 was nearly the same. As the H₂/CO₂ selectivity increases, the inert recycling decreases, leading to smaller equipment, less auxiliary power requirements, and less heating, cooling, and refrigeration duty. The refrigeration system used to liquefy the CO₂ is the most expensive piece of equipment and consumes the most electricity within the CO₂ capture process. Increasing the CO₂ concentration in the recycle stream would improve the economics of the process by reducing the refrigeration duty requirement of the unit and also allow for higher liquefaction temperatures.

The high H₂-selective membrane developed by UB may be applicable in other separation processes where lower pressure H₂ retains value. Typically, hydrogen retains its pressure when it is separated from syngas components. Residual components may be used as low-quality fuel and then vented to the atmosphere. Applications might include control of H₂/CO ratios or mitigation of the water gas shift reaction by CO₂ recycling to the feed of a gasifier or steam methane reformer. More details on the TEA studies can be referred to in the TEA Report.

Table 4: Performance and Economic Summary for H₂/CO₂ Selectivity Sensitivity (Cost Basis: June 2011 USD).

	Case 1 (Base Case)	Case 2	Case 3	Case B5B
Process Parameters				
CO ₂ Capture Technology	Membrane	Membrane	Membrane	Dual-Stage Selexol
CO ₂ Processing Technology	Liquefaction / Distillation	Liquefaction / Distillation	Liquefaction / Distillation	Compression / Dehydration
Sulfur Removal Technology	MDEA / Claus	MDEA / Claus	MDEA / Claus	Dual-Stage Selexol / Claus
Membrane Parameters				
H ₂ Permeance (GPU)	1,000	1,000	1,000	N/A
H ₂ /CO ₂ Selectivity	40	60	15	N/A
Membrane Area (m ²)	15,184	23,677	8,000	N/A
CO₂ Product				
CO ₂ Capture (%)	90.0	90.0	90.0	90.2
CO ₂ Purity (mol%)	99.5	99.5	99.5	99.5
Power Generation				
Gross Power (kWh)	788,982	788,679	789,007	735,000
Auxiliary Load (kWh)	170,722	170,022	181,452	191,000
Net Power (kWh)	618,260	618,657	607,555	544,000
Economic Results				
Total Plant Costs (\$MM)	1,726	1,723	1,959	1,840
Total Overnight Costs (\$MM)	2,129	2,126	2,410	2,279
Total Annual Fixed Operating Costs (\$MM)	67	67	72	69
Total Annual Variable Operating Costs (\$MM)	160	160	165	164
COE (excluding TS&M) (\$/MWh)	113.5	113.3	125.9	135.5
TS&M (\$/MWh)	8.09	8.08	8.23	9.2
COE (Including TS&M) (\$/MWh)	121.6	121.4	134.1	144.7
% Reduction in COE (Including TS&M) Relative to Case B5B	16.0	16.1	7.3	--

8. PRODUCTS AND IMPACTS

At UB, two Ph.D. students (Ms. Maryam Omidar and Mr. Hien Nguyen), a postdoctoral associate (Dr. Leiqing Hu), one M.S. student (Mr. Sankhajit Pal), and one undergraduate researcher (Vinh Bui) have been working on this project. These researchers receive interdisciplinary training on materials science, membrane separation, and CO₂ capture. Maryam and Hien graduated with a PhD, Sankhajit graduated with an MS, and Vinh had decided to pursue PhD in our lab. At LANL, the project partially supported two postdoctoral research associates and one post-MS student. They all received training in membrane fabrication and evaluation. The post-MS student was converted to full time Research Technologist at the conclusion of his two year post-MS position.

The project leads to six peer-reviewed articles and a few more in preparation. The accepted versions of the published articles have been uploaded to the DOE website. The details are shown below.

1. M. Omidvar, H. Nguyen, L. Huang, C.M. Doherty, A.J. Hill, C.M. Stafford, X. Feng, M.T. Swihart, and H. Lin, Unexpectedly Strong Size-Sieving Ability in Carbonized Polybenzimidazole for Membrane H₂/CO₂ Separation, *ACS Applied Materials and Interfaces*, 11 (50), 47365-47372 (2019)
2. L. Hu, S. Pal, H. Nguyen, V. Bui, and H. Lin, Molecularly Engineering Polymeric Membranes for H₂/CO₂ Separation at 100 °C - 300 °C, *Journal of Polymer Science*, 58(18) 2467-2481 (2020)
3. L. Hu, Bui, V. T., L. Huang, R. Singh, H. Lin, Crosslinking of polybenzimidazole using polyprotic carboxylic acids for H₂/CO₂ separation, *ACS Appl. Mater. Interface*, 13(10), 12521-12530 (2021)
4. L. Hu, V. T. Bui, A. Krishnamurthy, W. Guo, S. Pal, X. Chen, G. Zhang, R. P. Singh, M. Lupion, and H. Lin. Tailoring Sub-3.3 Å Ultramicropores in Carbon Molecular Sieve Membranes for Blue Hydrogen Production, *Science Advances*, 8 (10), abl8160 (2022)
5. L. Hu, V. T. Bui, S. Fan, W. Guo, S. Pal, Y. Ding, and H. Lin. Supramolecular Assemblies of Polybenzimidazole and Aromatic Polycarboxylic Acids with Superior Mechanical and H₂/CO₂ Separation Properties, *J. Mater. Chem. A*, in press (2022)
6. L. Hu, V. T Bui, S. Pal, W. Guo, A. Subramanian, K. Kisslinger, S. Fan, C.-Y. Nam, Y. Ding, and H. Lin. In situ synergistic growth of crystalline and polymer-incorporated amorphous ZIF-8 in polybenzimidazole achieving hierarchical nanostructures for H₂/CO₂ separation, Submitted (2022)

The results from the project were also disseminated through various conferences. A few oral presentations shown below.

1. H. Lin, Development of Carbon Molecular Sieves Hollow Fiber Membranes Based on Polybenzimidazole Doped with Polyprotic Acids with Superior H₂/CO₂ Separation Properties, NETL CO₂ Capture Technology Project Review Meeting, Pittsburgh, PA, August 26, 2019.
2. H. Lin, “Refining Polybenzimidazole (PBI) for Membrane H₂/CO₂ Separation,” Air Liquide, America, September 16, 2019.
3. H. Nguyen and H. Lin, Polybenzimidazole-Derived Carbon Molecular Sieves with Microcavities and Ultra-Microporous Channels Achieving Superior Membrane H₂/CO₂

Separation Properties, Materials Research Society Conference, Boston, MA, December 4, 2019.

4. L. Hu, Synergistic Thermolabile Cross-linking and Low-temperature Carbonization to Create Sub-3.3 Å Ultramicropores for Membrane H₂/CO₂ Separation, North American Membrane Society Conference, Estes Park, CO, August 2021
5. B. T. Bui, L. Hu, H. Lin, In Situ Growth of ZIF Nanoparticles to Cross-link Polybenzimidazole and Achieve Superior H₂/CO₂ Separation Performance, North American Membrane Society Conference, Estes Park, CO, August 2021
6. H. Nguyen, M. Omidvar, L. Huang, C. Doherty, A. Hill, and H. Lin, Carbon Molecular Sieves with Superior H₂/CO₂ Separation Properties at Elevated Temperatures for Pre-combustion CO₂ Capture, North American Membrane Society Meeting, virtual meeting, May 18, 2020
7. H. Lin, Molecularly engineering polymeric membranes for pre-combustion CO₂ capture at 150 °C and above, AIChE Annual Meeting, November 18, 2020.
8. L. Hu, Carbonized pyrophosphoric acid-doped PBIs for high-temperature H₂/CO₂ separation, AIChE Annual Meeting, November 19, 2020.
9. L. Hu, H. Lin, Development of Carbon Molecular Sieves Hollow Fiber Membranes Based on Polybenzimidazole Doped with Polyprotic Acids with Superior H₂/CO₂ Separation Properties, Carbon Management and Natural Gas & Oil Research Project Review Meeting, August 2021
10. L. Hu, H. Lin, In-situ growth of ZIFs in polybenzimidazole to achieve superior H₂/CO₂ separation performance, 2021 AIChE Annual Meeting, Boston, MA, November 11, 2021.
11. L. Hu, H. Lin, Facilely cross-linking polybenzimidazole with polyprotic acids to enhance H₂/CO₂ selectivity, 2021 AIChE Annual Meeting, Boston, MA, November 9, 2021.
12. R. Singh, High selectivity and Throughput carbon molecular sieve hollow fiber membranes, Air Liquide, July 2021
13. R. Singh, Polybenzimidazole membrane technology for elevated temperature hydrogen separation, National Science Foundation – Center for Innovative and Strategic Transformation of Alkane Resources (CISTAR), August 2020.

STATE-POINT DATA FOR MEMBRANE BASED SYSTEMS

	Units	Measured/ Estimated Performance	Projected Performance
Materials Properties			
Materials of Fabrication for Selective Layer		Carbonized acid-doped polybenzimidazole	
Materials of Fabrication for Support Layer (if applicable)		Polybenzimidazole (PBI)	
Nominal Thickness of Selective Layer (μm)		0.2	0.2
Membrane Geometry		Hollow fiber	Hollow fiber
Max Trans-Membrane Pressure bar		20	50
Hours tested without significant degradation		120	500
Membrane Performance			
Temperature	°C	150	200 - 350
Pressure Normalized Flux for Permeate (H ₂)	GPU	1000	1000
Permeate/H ₂ O Selectivity	-	0.5	0.5
Permeate/N ₂ Selectivity	-	80	80
Permeate/H ₂ S Selectivity	-	80	80
CO ₂ /H ₂ Selectivity	-	0.025	0.017
H ₂ /CO ₂ Selectivity	-	40	60
Type of Measurement (Ideal or mixed gas)	-	Mixed-gas	Mixed-gas
Proposed Module Design			
Flow Arrangement	-	Counter-current	
Packing Density	m ² /m ³	~1,000	
Shell-Side Fluid	-	Retentate	

REFERENCES:

- (1) Bell, D. A.; Towler, B. F.; Fan, M., *Coal gasification and its applications*. Elsevier Inc.: Oxford, UK, 2010.
- (2) Merkel, T. C.; Zhou, M.; Baker, R. W., Carbon dioxide capture with membranes at an IGCC power plant, *J. Membr. Sci.* **2012**, *389*, 441-450,
- (3) Ramasubramanian, K.; Verweij, H.; Ho, W. S. W., Membrane processes for carbon capture from coal-fired power plant flue gas: a modeling and cost study, *J. Membr. Sci.* **2012**, *421*, 299-310, 10.1016/j.memsci.2012.07.029.
- (4) Ramasubramanian, K.; Zhao, Y.; Ho, W. S., CO₂ capture and H₂ purification: Prospects for CO₂-selective membrane processes, *AICHE J.* **2013**, *59* (4), 1033-1045,
- (5) Merkel, T. C.; Lin, H.; Wei, X.; Baker, R. W., Power plant post-combustion carbon dioxide capture: An opportunity for membranes, *J. Membr. Sci.* **2010**, *359* (1-2), 126-139,
- (6) Figueroa, J. D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R. D., Advances in CO₂ capture technology - The U.S. Department of Energy's Carbon Sequestration Program, *Int. J. Greenh. Gas Con.* **2008**, *2*, 9-20,
- (7) *DOE NETL Report: Cost and Performance Baseline for Fossil Energy Plants (V 1): Bituminous Coal and Natural Gas to Electricity*. 2019.
- (8) Lin, H.; Van Wagner, E.; Freeman, B. D.; Toy, L. G.; Gupta, R. P., Plasticization-enhanced H₂ purification using polymeric membranes, *Science* **2006**, *311* (5761), 639-642,
- (9) Lin, H.; He, Z.; Sun, Z.; Ng, A.; Baker, R. W.; Merkel, T. C., CO₂-selective membranes for hydrogen production and CO₂ capture. Part II: Techno-economic analysis, *J. Membr. Sci.* **2015**, *493*, 794-806,
- (10) Lin, H.; He, Z.; Sun, Z.; Vu, J.; Ng, A.; Mohammad, M.; Kniep, J.; Merkel, T. C.; Wu, T.; Lambrecht, R. C., CO₂-selective membranes for hydrogen production and CO₂ capture - Part I: Membrane development, *J. Membr. Sci.* **2014**, *457*, 149-161,
- (11) Bredesen, R.; Jordal, K.; Bolland, O., High-temperature membranes in power generation with CO₂ capture, *J. Membr. Sci.* **2004**, *43*, 1129-1158,
- (12) Ma, Y.; Mardilovich, I. P.; Engwall, E. E., Thin composite palladium and palladium/alloy membranes for hydrogen separation, *Ann. N.Y. Acad. Sci.* **2003**, *984*, 346-360,
- (13) Ma, Y. H., Hydrogen Separation Membranes. In *Advanced Membrane Technology and Applications*, Li, N. N.; Fane, A. G.; Ho, W. S.; Matsuura, T., Eds. John Wiley & Sons: Hoboken, New Jersey, 2008; pp 671-684.
- (14) ConsERV Online Catalog. <http://www.conserv.com/index.htm>.
- (15) Guazzone, F.; Catalano, J.; Mardilovich, I. P.; Kniep, J.; Pande, S.; Wu, T.; Lambrecht, R. C.; Datta, S.; Kazantzis, N. K.; Ma, Y. H., Gas permeation field tests of composite Pd and Pd-Au membranes in actual coal derived syngas atmosphere, *Int. J. Hydrogen Energ.* **2012**, *37*, 14557-14568,
- (16) Coulter, K. E.; Way, J. D.; Gade, S. K.; Chaudhari, S.; Alptekin, G. O.; DeVoss, S. J.; Paglieri, S. N.; Pledger, B., Sulfur tolerant PdAu and PdAuPt alloy hydrogen separation membranes, *J. Membr. Sci.* **2012**, *405*, 11-19, 10.1016/j.memsci.2012.02.018.
- (17) Gade, S. K.; DeVoss, S. J.; Coulter, K. E.; Paglieri, S. N.; Alptekin, G. O.; Way, J. D., Palladium-gold membranes in mixed gas streams with hydrogen sulfide: Effect of alloy

content and fabrication technique, *J. Membr. Sci.* **2011**, 378 (1-2), 35-41, 10.1016/j.memsci.2010.11.044.

(18) Hatlevik, O.; Gade, S. K.; Keeling, M. K.; Thoen, P. M.; Davidson, A. P.; Way, J. D., Palladium and palladium alloy membranes for hydrogen separation and production: History, fabrication strategies, and current performance, *Sep. Purif. Technol.* **2010**, 73 (1), 59-64, 10.1016/j.seppur.2009.10.020.

(19) Abdollahi, M.; Yu, J.; Liu, P. K. T.; Ciora, R.; Sahimi, M.; Tsotsis, T. T., Ultra-pure hydrogen production from reformate mixtures using a palladium membrane reactor system, *J. Membr. Sci.* **2012**, 390, 32-42, 10.1016/j.memsci.2011.10.053.

(20) Parsley, D.; Ciora, R. J.; Flowers, D. L.; Laukaitaus, J.; Chen, A.; Liu, P. K. T.; Yu, J.; Sahimi, M.; Bonsu, A.; Tsotsis, T. T., Field evaluation of carbon molecular sieve membranes for the separation and purification of hydrogen from coal- and biomass-derived syngas, *J. Membr. Sci.* **2014**, 450, 81-92, 10.1016/j.memsci.2013.08.008.

(21) Kniep, J.; Lin, Y. S., Effect of Zirconium doping on hydrogen permeation through Strontium Cerate Membranes, *Ind. Eng. Chem. Res.* **2010**, 49 (6), 2768-2774,

(22) Liu, P. K.; Sahimi, M.; Tsotsis, T., Process intensification in hydrogen production from coal and biomass via the use of membrane-based reactive separations, *Curr. Opin. Chem. Eng.* **2012**, 1, 342-351,

(23) Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S., Metal-organic framework nanosheets as building blocks for molecular sieving membranes, *Science* **2014**, 346 (6215), 1356-1359, 10.1126/science.1254227.

(24) Kim, H. W.; Yoon, H. W.; Yoon, S. M.; Yoo, B. M.; Ahn, B. K.; Cho, Y. H.; Shin, H. J.; Yang, H.; Paik, U.; Kwon, S.; Choi, J. Y.; Park, H. B., Selective gas transport through few-layered graphene and graphene oxide membranes, *Science* **2013**, 342 (6154), 91-95, 10.1126/science.1236098.

(25) Li, H.; Song, Z. N.; Zhang, X. J.; Huang, Y.; Li, S. G.; Mao, Y. T.; Ploehn, H. J.; Bao, Y.; Yu, M., Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation, *Science* **2013**, 342 (6154), 95-98, 10.1126/science.1236686.

(26) Yoo, B. M.; Shin, J. E.; Lee, H. D.; Park, H. B., Graphene and graphene oxide membranes for gas separation applications, *Curr. Opin. Chem. Eng.* **2017**, 16, 39-47, 10.1016/j.coche.2017.04.004.

(27) Galizia, M.; Chi, W. S.; Smith, Z. P.; Merkel, T. C.; Baker, R. W.; Freeman, B. D., 50th Anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities, *Macromolecules* **2017**, 50 (20), 7809-7843, 10.1021/acs.macromol.7b01718.

(28) Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D., Maximizing the right stuff: The trade-off between membrane permeability and selectivity, *Science* **2017**, 356 (6343),

(29) Baker, R. W., *Membrane Technology and Applications*. 3rd ed.; John Wiley and Sons, Ltd.: Chichester, UK, 2012.

(30) Merkel, T.; Zhou, M.; Thomas, S.; Lin, H.; Serbanescu-Martin, A.; Amo, K. D. In *Novel polymer membranes for pre-combustion CO₂ capture from coal-derived syngas*, NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 26, 2011; Pittsburgh, PA, 2011.

(31) Singh, R. P.; Berchtold, K. A.; Huckaby, E. D., High temperature polymer-based membrane systems for pre-combustion carbon dioxide capture. In *NETL CO₂ Capture Technology Meeting*, Pittsburgh, PA, 2016.

(32) Jayaweera, I. S., Development of pre-combustion CO₂ capture process using high-temperature polybenzimidazole (PBI) hollow-fiber membranes (HFM_s). In *NETL CO₂ Capture Technology Meeting*, Pittsburgh, PA, 2017.

(33) Ciferno, J.; Marano, J. In *Novel integration of gas separation membranes for CO₂ capture from IGCC power plants*, AIChE, New Orleans, New Orleans, 2008.

(34) Zhu, L. X.; Swihart, M. T.; Lin, H. Q., Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H₂/CO₂ separation, *Energy Environ. Sci.* **2018**, 11 (1), 94-100, 10.1039/c7ee02865b.

(35) He, R.; Li, Q.; Jensen, J. O.; Bjerrum, N. J., Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells, *J. Polym. Sci., Part A: Polym. Chem.* **2007**, 45 (14), 2989-2997,

(36) Rowe, B. W.; Robeson, L. M.; Freeman, B. D.; Paul, D. R., Influence of temperature on the upper bound: Theoretical considerations and comparison with experimental results, *J. Membr. Sci.* **2010**, 360 (1), 58-69,

(37) Hu, L.; Bui, V.; Fan, S.; Guo, W.; Pal, S.; Ding, Y.; Lin, H., Supramolecular Assemblies of Polybenzimidazole and Aromatic Polycarboxylic Acids with Superior Mechanical and H₂/CO₂ Separation Properties, *J. Mater. Chem. A* **2022**, in press, 10.1039/D1TA10968E.

(38) Hu, L.; Bui, V. T.; Huang, L.; Singh, R. P.; Lin, H., Facilely Cross-linking Polybenzimidazole with Polycarboxylic Acids to Improve H₂/CO₂ Separation Performance, *ACS Appl. Mater. Interfaces* **2021**, 13 (10), 12521-12530,

(39) Hu, L.; Bui, V. T.; Krishnamurthy, A.; Fan, S.; Guo, W.; Pal, S.; Chen, X.; Zhang, G.; Ding, Y.; Singh, R. P.; Lupion, M.; Lin, H., Tailoring Sub-3.3 Å Ultramicropores in Advanced Carbon Molecular Sieve Membranes for Blue Hydrogen Production, *Sci. Adv.* **2022**, 8, eab18160,

(40) Omidvar, M.; Nguyen, H.; Huang, L.; Doherty, C. M.; Hill, A. J.; Stafford, C. M.; Feng, X. S.; Swihart, M. T.; Lin, H., Unexpectedly Strong Size-Sieving Ability in Carbonized Polybenzimidazole for Membrane H₂/CO₂ Separation, *ACS Appl. Mater. Interfaces* **2019**, 11 (50), 47365-47372,

(41) Sanyal, O.; Zhang, C.; Wenz, G. B.; Fu, S. L.; Bhuwania, N.; Xu, L. R.; Rungta, M.; Koros, W. J., Next generation membranes -using tailored carbon, *Carbon* **2018**, 127, 688-698, 10.1016/j.carbon.2017.11.031.

(42) Zhang, C.; Koros, W. J., Ultraselcetive Carbon Molecular Sieve Membranes with Tailored Synergistic Sorption Selective Properties, *Adv. Mater.* **2017**, 29 (33), 1701631, 10.1002/adma.201701631.

(43) Vu, D. Q.; Koros, W. J.; Miller, S. J., High Pressure CO₂/CH₄ Separation Using Carbon Molecular Sieve Hollow Fiber Membranes, *Ind. Eng. Chem. Res.* **2002**, 41, 367-380,

(44) Xu, L. R.; Rungta, M.; Brayden, M. K.; Martinez, M. V.; Stears, B. A.; Barbay, G. A.; Koros, W. J., Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations, *J. Membr. Sci.* **2012**, 423, 314-323, 10.1016/j.memsci.2012.08.028.

(45) Kim, Y. K.; Park, H. B.; Lee, Y. M., Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties, *J. Membr. Sci.* **2004**, 243 (1-2), 9-17, 10.1016/j.memsci.2004.05.001.

- (46) Park, H. B.; Kim, Y. K.; Lee, J. M.; Lee, S. Y.; Lee, Y. M., Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes, *J. Membr. Sci.* **2004**, 229 (1-2), 117-127, 10.1016/j.memsci.2003.10.023.
- (47) Samms, S. R.; Wasmus, S.; Savinell, R. F., Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments, *Journal of the Electrochemical Society* **1996**, 143 (4), 1225-1232, 10.1149/1.1836621.