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Abstract—In high-performance computing (HPC) workflows,
data analytics is typically utilized to gain insights from scientific
simulations. Approaching the era of exascale, online analysis is
gaining popularity due to the savings of I/O to persistent storage.
As computing capability keeps growing, power consumption is
becoming critical to HPC facilities. Enforcing power limits is
emerging as a practical trend for power-constrained HPC facili-
ties. However, it remains unclear how to choose the appropriate
power limits for various HPC workflows and how to distribute
the power limit of a workflow between simulation and analysis. In
addition, given a power limit, it is unclear what the optimal scales
and power capping levels are for various workflows, especially
when taking reliability into account. In order to resolve these
issues in power-constrained HPC, in this paper, we propose a
reliability-aware model to determine the aforementioned platform
configurations for HPC workflows. We also validate our model
and present model-driven studies for a wide range of real-
system scenarios. Our study reveals interesting insights about
how platform configuration affects the performance and energy
efficiency of HPC workflows under power constraints.

I. INTRODUCTION

High-performance computing (HPC) workflows comprise of
large-scale scientific simulations and data analysis tasks, which
produce and consume data, respectively. Scientific simulations
run iteratively and produce raw data periodically [1]. In
order to gain scientific insights, a series of data analysis
tasks are performed on the raw data. Using offline analysis,
data go through the persistent storage systems within the
workflow, which incurs enormous overheads. By comparison,
online analysis (in-situ and in-transit) is gaining popularity in
extreme-scale scientific analysis, because it usually reduces
the volume of raw data by several orders of magnitude [2]. In
in-situ and in-transit workflows, analysis runs simultaneously
with scientific simulation in a pipelined manner.

Approaching the era of exascale computing, power con-
sumption becomes a critical concern to HPC facilities. As
a result, the U.S. Department of Energy has set a power
constraint of 20 MW to each exascale machine [3]. Enforcing
power limits at all layers is emerging as a practical trend
for power-constrained HPC facilities, especially for future
exascale systems. Enforcing power limits directly impacts the
performance and potentially impacts the energy efficiency.
However, it is not clear how to choose the appropriate power
limits for various HPC workflows. Furthermore, exascale stor-
age I/O requirement is projected to have an O(100) increase
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as compared with petascale computing [4], which requires
more powerful data analysis. In HPC workflows, assigning
too much power to one part (either simulation or analysis)
affects the other part negatively under power constraints.
However, it remains unclear how to distribute the power limit
between the simulation and analysis in a workflow. In addition,
facing power constraints, utilizing hardware over-provisioning
to improve performance is also gaining popularity [S]. Under a
power limit, it is essential to choose the appropriate power cap-
ping levels and scales for simulation and analysis respectively.
Both power capping and scaling affects the system reliability,
which follow inverse variation under power constraint. For
example, given a power limit, an increment in the power
capping level leads to a decrement in scale. Lower power
capping level can also lead to a higher MTBF (mean time
between failures) due to reduced temperature level of the
device. In addition, a smaller scale is always accompanied
by a larger MTBF. Therefore, it is essential to explore the
trade-off between power capping and scaling in order to
improve the system reliability which has significant impact on
application execution time and energy consumption. However,
under power limits, it is unclear what the optimal power
capping levels and scales are for HPC workflows.

To the best of our knowledge, no prior study has investigated
the optimal platform configuration for power-constrained HPC
workflows. In this paper, we propose a reliability-aware model
to determine the optimal platform configuration, which in-
cludes power allocation and distribution, power capping levels,
and scales for power-constrained HPC workflows. This work
is based on real-system measurements, statistical techniques,
data obtained from leadership computing facilities (i.e., su-
percomputers facilitated by the Department of Energy), and
analytical models.

Contributions: First, we study and quantify the impact of
power capping on execution time and energy consumption
for a variety of scientific simulation and analysis applications.
Second, we propose a reliability-aware model to predict the
optimal platform configuration for power-constrained HPC
workflows, considering both execution time and energy con-
sumption. Third, we validate our model and present model-
driven studies for a wide range of real-system scenarios. Our
study reveals several interesting and new insights about how
platform configuration affects the execution time and energy
consumption of HPC workflows under power constraints.

The remainder of this paper is organized as follows. We



discuss the related work and background in section II and
section III, respectively. The impact of power capping and
scaling on performance is studied in section IV. The optimal
platform configuration model is introduced in section V. We
present model validation and model-driven studies in section
VI. Section VII summarizes the paper.

II. RELATED WORK

The continuous growth in computing capability exacerbates
the I/O bottleneck issues in HPC. Online analysis draws con-
siderable interest in extreme-scale scientific analysis, since it
usually reduces the volume of scientific raw data significantly.
Deelman et al. [6] and Mandal et al. [7] proposed techniques
to perform performance modeling and diagnosis for HPC
workflows. Li et al. [8] and Zhang et al. [9] proposed to run
both simulation and analysis workloads using separate cores
on a chip. Besides, Bennett et al. [2] proposed to combine in-
situ and in-transit processing to achieve the trade-off between
performance and data movement cost.

The ever-increasing computing capability also significantly
escalates the power demand. Power constraints are becoming
a first-order concern for HPC facilities [10]. Existing research
on power-aware scheduling mainly focus on energy savings
of scientific simulations [11][12]. Bailey et al. [13] proposed
a predictive model to estimate the performance and power for
scientific simulations. It is alternative to the regression analysis
on power capping impact, which our model bases on. Langer
et al. [14] evaluated the performance and energy trade-off
for scientific simulations under power constraints. In exascale
computing, the O(100) increase in storage /O requirement [4]
gives prominence to the online analysis of HPC workflows.
This paper targets HPC workflows and investigates the impacts
of platform configurations on performance, energy, and energy
efficiency under power constraints.

Facing power constraints, on one side, researchers propose
to enforce power limits at all layers for power-constrained
HPC facilities. At the processor layer, power capping is gen-
erally achieved through either Dynamic Voltage and Frequency
Scaling [15], or throttling by idle cycle insertion [16]. Under
power capping, processor manufacturing variability causes
performance loss. Inadomi et al. [17] and Gholkar et al.
[18] proposed to address this issue through applying non-
uniform power capping. On the other side, hardware over-
provisioning draws considerable research interests in power-
constrained HPC. The common goals shared by many re-
searchers are maximizing the power utilization and maxi-
mizing the throughput (or minimizing the turnaround time)
[19][20]. These works are complementary to the optimal plat-
form configuration model proposed in this paper. Patki et al.
[5] examined the feasibility of hardware over-provisioning in
power-constrained HPC. They showed that over-provisioning
leads to an average speedup of more than 50% comparing
with the worst-case provisioning. However, the authors did
not propose a model to derive the optimal configurations. Re-
searchers have also investigated the power allocation schemes
between CPU and memory for power-constrained scientific

simulations [21][22][23]. These schemes are complementary
to our work which focuses on the power allocation between
different components of HPC workflows. Overall, none of
the existing research in power-constrained HPC involves HPC
workflows and system reliability.

III. BACKGROUND AND OVERVIEW

This work aims to model a pair of supercomputer and ana-
Iytics cluster where simulation part is run on accelerators (e.g.,
GPU) and analysis part is run on CPUs. One such example is
the Titan supercomputer and corresponding analytics cluster
Rhea. The Titan supercomputer consists of 18,688 compute
nodes, which is equipped with AMD Opteron 6274 CPUs
and Nvidia Tesla K20X GPUs. The analysis cluster Rhea is
equipped with Intel Xeon E5-2650 CPUs.

TABLE I: Benchmark domain and problem size (Psize).

Program Domain Psize

Kmeans Data Mining 256K

BFS (Breadth-First Search)  Graph Algorithms 8SM 2

NN (k-Nearest Neighbors) Data Mining M %’
2 | Bitree Search oM | &
5 | SC (Streamcluster) Data Mining 64K
& [LUD (LU Decomposition) Linear Algebra 2K

LavaMD Molecular Dynamics 4K 5

CFD (CFD Solver) Fluid Dynamics 97K 2
o | LU (Gauss-Seidel) é
o | SP (Scalar Pentadiagonal) Fluid Dynamics B 7
z BT (Block Tridiagonal)

It should be noted that performing power-related experi-
ments with HPC workflows directly on supercomputing pro-
duction machines is not viable, because power measurement
and power capping are currently not supported on the plat-
forms. To overcome the platform limitation, on hardware
side, we choose platforms that support power capping from
the same generation as Titan and Rhea. We have intensively
profiled simulation and analysis programs of HPC workflows,
and observed that simulation is more efficient on GPU and
analysis is more efficient on CPU in terms of both performance
and energy efficiency, because analysis programs typically
have more conditional branches and less floating-point op-
erations compared with simulation programs. For simulation
programs, we choose the same GPU platform, Nvidia Tesla
K20. For analysis programs, we choose Intel Xeon E5-2670
(8 cores, 2.6 GHz) and Xeon E5-2603 (4 cores, 1.8 GHz).
Both Xeon platforms and the GPU platform have 32 GB
main memory and run Linux 2.6.32 kernel with GCC 4.4.7
compiler. CUDA Toolkit 5.5 is installed on the GPU platform.
The host processor of the GPU platform is Intel Xeon ES5-
2630. Power and energy consumption for the GPU platform
include the host processor and main memory, unless otherwise
mentioned. On software side, these platforms cannot host
large-scale HPC workflows which depend on platform-specific
libraries. Therefore, we employ a wide variety of scientific
simulation and analysis applications from Rodinia benchmark
suite and NPB benchmark suite to mimic HPC workflows and
to study the impact of power capping and scaling on execution
time. Applications in Table I represent scientific simulation
and analysis tasks. We have also characterized the instruction



composition of these applications using TAU profiling tool
[24] and PAPI counters [25] to ensure that they represent
typical HPC workflows.

“Optimal Configuration” refers to the platform config-
uration that leads to the near-minimal workflow execution
time or energy consumption under specific power constraints.
The optimal platform configuration model takes scaling co-
efficients, power capping coefficients, and baseline figures of
merit (FOMs) as inputs. The scaling coefficients (in Eq. 1 and
Eq. 2) and power capping coefficients (in Eq. 3 and Eq. 4) are
introduced in section IV, which need to be profiled for each
workflow. Baseline figures of merit include execution time,
scale, and power consumption, which are obtained when power
capping is not enforced. The coefficients and baseline figures
of merit can be obtained through offline tests. Based on the
model inputs, solving Eq. 10 and Eq. 20 in section V, we can
derive the optimal platform configurations. The model outputs
the optimal power limits, node counts, power capping levels,
and platform types for simulation and analysis respectively.

Librapl [5] and NVML [26] are used to profile CPU and
GPU power consumption, respectively. Intel Power Governor
[27] is utilized to cap the package power consumption, and
is only supported on the Xeon platforms. Per-processor power
capping is uniform for an application. Power limit is set on a
per-application basis.

We recognize that our findings are bounded by the parame-
ter settings. To mimic real-world scenarios, our simulation and
model-driven studies employ parameters obtained from real-
system experiments and large-scale application characteristics
obtained from HPC facilities. We state our assumptions explic-
itly in an effort to increase reproducibility of the methodology,
and clarify the scope of the work and the type of the system
being modeled and evaluated. We believe that explicitly men-
tioning all (including hidden) assumptions can better serve the
academic research community. Furthermore, as noted in the
paper, these assumptions are realistic, grounded, and valid in
real-world scenarios.

IV. POWER CAPPING AND SCALING

In this section, we statistically quantify the impact of
power capping and scaling on execution time and energy
consumption for scientific simulation and analysis.

First, we study the computation behaviors of scientific
simulation and analysis under power capping. We evaluate the
execution time and energy consumption of scientific analysis
applications under different power capping levels on Xeon E5-
2670. We find that, the average power consumption of each
benchmark ranges from 63 to 78 watts. An effective power
capping level for all benchmarks should be lower than 63
watts. The minimum package power that the power governor
can enforce is 22 watts. Therefore, we choose power capping
levels of 60, 50, 40, and 30 watts. Similarly, we choose
effective power capping levels of 26, 24, 22, and 20 watts
on Xeon E5-2603.

The impact of CPU power capping on simulation applica-
tions has been previously studied [22]. In this paper, we quan-
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Fig. 1: Normalized execution time (solid lines) and normalized
energy consumption (dotted lines) for analysis applications
under power capping on Xeon platforms. X-axes are normal-
ized to the highest (left most) power capping levels which are
60 watts and 26 watts respectively for E5-2670 and E5-2603
platforms.

tify the power capping impact on analysis applications, which
typically have more conditional branches and less floating-
point operations compared with simulation applications. The
results show that the execution time of analysis applications
increases dramatically as power capping level decreases. For
example, the execution time on Xeon E5-2670 increases more
rapidly when the power capping level reduces from 40 watts
to 30 watts, as shown in Fig. la. The execution time of
analysis applications on Xeon E5-2603 (Fig. 1b) shows similar
increasing trends as on Xeon E5-2670, when power capping
level decreases. We quantify the trends utilizing regression
analysis, and observe that they can be fitted with exponential
functions, as shown in Eq. 1.

To(P)/T, = A x eB*Pi 41 (1)

T, is baseline execution time (without power capping), and
T.(P;) denotes the execution time under power capping level
P;. e is Euler’s number. A and B are coefficients of the
regression function. The average R-squared value of regression
functions for all the benchmarks is 0.96, which indicates
statistically sound fit. In Fig. 1, energy consumption under
various power capping levels are plotted as dotted lines. On
Xeon E5-2670, we observe that the optimal power capping
level optimized for minimal energy shifts from 50 watts
(Kmeans) toward 30 watts (SC), as shown in Fig. la. By
comparison, on Xeon E5-2603, the optimal power capping
level optimized for minimal energy stabilizes at the highest
power capping level for all benchmarks, as shown in Fig. 1b.
Consequently, we do not apply power capping to Xeon E5-
2603 for analysis applications.

Then, we evaluate the execution time and energy consump-
tion under various power levels on GPU. The minimum power
limit on GPU is 150 watts, which is too high to perform the
power capping experiments. Alternatively, we mimic power
capping based on frequency scaling, to obtain various exe-
cution time and power consumption pairs. As shown in Fig.
2a, execution time increases steadily as power consumption
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decreases. We quantify the trends with regression analysis,
and observe that they can be fitted with linear functions, as
shown in Eq. 2.

Ty(P,)/Ts = C x Pi+ D )

T, is execution time under maximum power consumption, and
T,(P;) denotes the execution time under power consumption
P; on GPU. C' and D are coefficients of the regression
function. The R-squared values of regression functions are
all above 0.99, which indicates statistically sound fit. Fig.
2b shows the energy consumption under various GPU power
levels. Energy consumption for only GPU is plotted as dotted
lines. As GPU power drops, GPU energy consumption de-
creases for lavaMD and SP, and keeps relatively steady for the
rest of benchmarks. However, in this paper, we also consider
the host CPU and memory as a part of the GPU platform.
The total energy consumption of the GPU platform is plotted
as solid lines in Fig. 2b, which keeps relatively steady for
lavaMD and SP, and increases for the rest of benchmarks.
Besides, we also study the impact of power capping on main

memory and host power consumption. As shown in Fig. 3a,
when processor power capping level decreases, the memory
power consumption of Xeon E5-2670 decreases slightly for
SC and remains steady for the other benchmarks. We profile
the memory throughput and find that SC is at least 5 times
the memory throughput of other benchmarks, which makes SC
memory power consumption more sensitive to power capping.
The power consumption of host CPU and memory keeps
steady for all benchmarks under various GPU power levels,
as illustrated in Fig. 3b.

Finding 1: On GPU platforms, host side (CPU and memory)
power consumption is independent of application characteris-
tics and GPU power levels. When taking host CPU and main
memory into account, running at lower power levels makes
GPU less energy-efficient.
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Fig. 4: Scaling results for simulation and analysis applications.
Simulation scaling results are measured on BlueGene/Q and
Cray XK7 with a maximum scale of 98,304 nodes, and are
normalized to the scale of 2,048 nodes. In (a), axes are plotted
in log scale for better illustration purpose. Analysis execution
time is normalized to the scale of 1.

Finally, we quantify the scalability of scientific simulation
and analysis. In terms of simulation applications, we exploit
the CORAL scaling results [28] as shown in Fig. 4a. Ac-
cording to Amdahl’s law, these data points can be fitted with
rational functions as shown in Eq. 3.

Ss(m):E/SC-i-F (3)

S¢(x) is normalized (to the scale of 2,048 nodes) execution
time and x is scale (i.e., number of nodes). £ and F' are
coefficients of the regression function. The R-squared values
of regression functions are all above 0.99, which indicates
statistically sound fit.

With respect to online analysis, a group of analysis pro-
cessors is usually assigned per unit of simulation nodes. We
assume strong scaling within the group when processing data
from one unit of simulation nodes, and weak scaling among
groups when processing global data from the entire simulation.
We admit that there are certain analysis stages that exhibit
data dependencies among groups. Analysis applications can be
decomposed into a massively parallel stage and a small-scale
parallel or serial stage [2]. We focus on the massively parallel
stage which is usually the main body of scientific analysis.



Afterwards, a small scale of processors can be utilized to
finish up the task. As shown in Fig. 4b, execution time
decreases in a sublinear manner for analysis applications when
parallelism increases. These data points can be fitted with
rational functions as in Eq. 4.

Sa(z) =G/ +H 4)

Sq(x) is normalized (to the scale of 1 process) execution time
and x denotes scale (i.e., number of cores). G and H are
coefficients of the regression function. R-squared values of
these regression functions are all above 0.996.

V. OPTIMAL PLATFORM CONFIGURATION

In section IV, we have quantified the impact of power
capping and scaling on execution time for both simulation and
analysis. Based on these relationships, we develop a reliability-
aware model to predict the optimal platform configurations for
HPC workflows, which include power limits, power capping
levels, and scales for scientific simulation and analysis respec-
tively. The variables used in our model are listed in Table II.

TABLE II: Variables in the analytical model. Subscript ‘s’
denotes simulation and subscript ‘a’ denotes analysis.

Variable  Description

€sla Variable energy consumption
Nyja Baseline scale

Ncores Number of cores per processor
Ngla Variable scale

Tn Ratio between n, and ng

Ty)a Baseline execution time

tsla Variable execution time

Psla Variable processor and memory power
Phost Host power consumption for GPU
Prem Main memory power consumption
P Workflow power limit

A. Base Model

In order to facilitate the derivation of the reliability-aware
model, first, we develop the base model in this subsection.
Facing power constraints, workflows always run with a power
limit (P). Workflow power consumption comes from pro-
cessor, memory, and network. Using optical links to replace
copper links has become a practical trend in exascale com-
puting, because power consumption of optical links remains
steady as bit-rate scales up [29]. Therefore, the network power
consumption remains constant and is excluded from power
limit P. The peak power consumption of workflows should
always be under the power limit, as defined in formula 5.

Ns X Ps + Mg X pg < P 5)

Analysis Dump Interval

Simulation |e* '{ Simulation } eee

T 0 wwond

[Analysis } [ Analysis ] soo { Analysis ] ses

{ Simulation

Fig. 5: Overview of workflow execution.

Simulation and analysis run in a pipelined manner, as
illustrated in Fig. 5. In HPC workflows, online analysis reduces

the amount of simulation data to persistent storage, which
in return expedites the simulation. Therefore, analysis should
finish earlier than simulation, rather than impeding simulation.
The overall execution time of a workflow (Tiyorkfiow) 18
dominated by the part (either simulation or analysis) that takes
longer time, as defined in Eq. 6.

Tworkflmu = MAX(ts‘a ta) (6)

t, is analysis execution time and 4 is simulation execution
time, which are defined in Eq. 7 and Eq. 8, respectively. ¢,
and ¢, are calculated based on the baseline execution time 7,
and T, respectively, after scaling and power capping. In the
optimal configuration sets, t, is always smaller than ¢,.

ta - Sa(""n chores)/sa(ncores) X Ta(pafpmem) (7)

Ppem denotes the main memory power consumption, which is
included in the energy calculation. Baseline analysis time (7})
is the per-processor (n.ores) €xecution time without power
capping, as shown in Eq. 1. Baseline analysis scale (IV,) is 1.
Scaling factor is calculated based on Eq. 4, where 7,, analysis
processors are utilized to perform the same task as the baseline
case.

ts = Ss(ns)/ss(Ns) X TS(pS_Phost) (8)

Pros: denotes the host power consumption on the GPU plat-
form, which consists of CPU and main memory power con-
sumption. Host power consumption is included in the energy
calculation. Baseline simulation time (7) is the execution time
under baseline scale (/N;) without power capping, as shown
in Eq. 2. Baseline simulation time and scale can be obtained
from large-scale runs. Scaling factor is calculated based on
Eq. 3.

The overall energy consumption of a workflow (Ey,ork fiow)
consists of energy consumption from the simulation (e,) and
analysis (eg), as shown in Eq. 9.

Eworkflow =esteq="Ns XPs Xts+Ng XPgXlqg (9)

To be noted that network energy consumption is not included
in Eyorkflow- As discussed earlier, power consumption of
optical links remains steady as bit-rate scales up [29], which
makes network energy consumption dependent on workflow
execution time (Tyorkfiow) As long as Tyorkfiow 1S mini-
mized, network energy consumption is optimal.

The objective function F'(n,,p,,rn,p.) to achieve the minimal
workflow execution time (T’york fiow) 1 given in Eq. 10.

F(nepsrnpa) = minimize(ts), ts>t, (10)

In order to solve the objective function, we should minimize
ts while ensuring that ¢, is smaller than ¢;. When analysis
variables r, and p, are treated as constants in ¢,, simulation
time (t5) is minimized when simulation scale (ng) reaches the
upper limit. According to formula 5, the upper limit of ns can
be expressed as a function of variable p,, as shown in formula
11.

Ng S?/(ps + 7 Xpa) (11)



Based on formula 11, the minimum ¢, is converted into a
quadratic function of the variable pg, as shown in Eq. 12.

ts = Ss(ﬁ/(Ps+Tn Xp,,,))/SS(NS) X Ts(Ps*Ph,ost) (12)

Solving the quadratic function (Eq. 12), the x coordinate of
the vertex (i.e., maximum t,) is defined in Eq. 13.

2 =—-05% (D/C = Prost +n X pa + F/E x P)  (13)

As a result, p; for minimal simulation execution time (¢,) is
defined in Eq. 14.

v~ {

P00 and P,,;,, denote the maximum and minimum effective
power capping level for simulation. In the solution above,
analysis variables r,, and p, are treated as constants at first, to
derive the p, for minimal ¢,. In resolving the objective function
F(ne,ps,rn,pa ), NEXt, we enumerate the combinations of r,, and
Pq to obtain the minimal ¢, that satisfies the condition ¢ > t,,.

if S (Pma;c + szn)/2a
if x > (P'm,a:t + Pmm)/2

PmaJm

B. Reliability-aware Model

In subsection V-A, we develop the base model to predict the
optimal platform configurations for a failure-free environment.
In reality, it is common to see failures happen, especially
in large-scale HPC facilities. In this subsection, first, we
revisit how the power-capping aware checkpointing model
[10] calculates failure rate, wasted time, and OCI (Optimal
Checkpointing Interval), as shown in Eq. 15 to Eq. 19. Then,
we propose a reliability-aware model based on the base model,
to consider failures in the real world.

Checkpointing Interval Wasted Time Analysis Dump Interval

[SimulationISimuIation Checkpoint] see| Sim | R [Simulation|Simulation Checkpoint] see

Raw Dataﬂ /7 Failuresd/

Fig. 6: Overview of workflow execution with failures, check-
point, and restart.

Taking failures, checkpoint, and restart into account, the
total execution time of scientific applications (Tiotai(P:))
includes computation time (Z,omp(P;)), checkpointing time
(Tenkp(P:)), and wasted time (Toyasie(P:)), as illustrated in
Fig. 6. Computation time is the time to perform scientific
simulation (¢;) and data analysis (f,). In order to tolerate
failures, simulation applications perform checkpointing peri-
odically with an interval . The analysis dump interval is
independent of the checkpointing interval. Time to checkpoint
(denoted as 9) is the time taken to store checkpoints into per-
manent storage systems. When failures occur, the simulation
application rollbacks to the latest checkpoint, or the analysis
application reprocesses the raw data. The lost work caused
by such rollback is wasted time. The checkpointing time and
wasted time are defined in Eq. 15 and Eq. 16, respectively.

Tcomp (Pi)
g

Tchk:p(Pi) = ( — 1) X 0 (15)

Mx(e#ﬁ‘m—l)

o (16)
(1 X (0 46)+7)

Twaste (Pi> =

T represents the fraction of lost work due to failures. o denotes
OCI, which is derived by solving %(T total(P;)) = 0, leading
to the minimal total execution time (T;,tq;(P:)). In this paper,
in order to accurately predict OCI under all conditions, we
utilize the MATLAB numeric solver “vpasolve” to calculate
OCL

In Eq. 16, MTBF(p;) represents the MTBF (Mean Time
Between Failures) at power capping level P;, which is defined
in Eq. 17.

MTBF(p,) = (MTT Fyse/ FA(TEMP(P;)) + ) X Ng/ns
a7
MTT Fyqse denotes the baseline mean time to fail. 7 is the
time to recover from failures. F4 (=) is the acceleration factor
of the Arrhenius Equation at temperature x, as defined in Eq.
18.
Fa(e) = o 7 X (1/TEM Pygse—1/2) (18)
k is Boltzmann constant (8.617 x 107° eV/°K) and E, is
activation energy (0.7eV). TEM Py,4. denotes the baseline
temperature. In Eq. 17, TEM P(p;) denotes processor tem-
perature at power capping level P;, which is defined in Eq.
19.
TEMP(p)=1IxP+J (19)
The sensitivity of processor temperature to changes in power
capping (i.e., coefficients I and J) is dominated by the cool-
ing infrastructure. Processor temperature increases linearly as
power capping level grows, as illustrated in Eq. 19. When
processor temperature gets higher, it becomes less reliable, as
illustrated in Eq. 17.

We propose the reliability-aware model to explore various
configuration sets and minimize the total execution time
(Ttota1(P;)). Rather than minimizing the simulation time ¢4 as
in the base model, the reliability-aware model minimizes the
total execution time of simulation, which includes computation
time, checkpointing time, and wasted time. Reliability plays
a major role in the trade-off between checkpointing time
and wasted time. In addition, under power constraints, power
capping level and scale affect both reliability and computation
time inversely. For example, an increment in power capping
level is accompanied by decreased reliability level and short-
ened computation time. Under a power limit, this causes a
decrement in scale, which occurs with increased reliability
level and prolonged computation time. The reliability-aware
model explores the various interplay among power capping
level, scale, reliability, computation time, checkpointing time,
and wasted time. The objective function is defined in Eq. 20.

ts > ta + 1
(20)

t, is the wasted time of analysis applications. In order to

avoid the interference between consecutive analysis tasks, the

F(ne,ps,rn.pa) = minimize(Tiotar(ps)),



summation of analysis time (¢,) and analysis wasted time (t;)
should not exceed the simulation time (¢;).

Total execution time (T}ozq;(p.)) is determined by Teomp(ps)
and o, both of which can be expressed as a function of power
capping level p;. In solving the objective function, we utilize
the same methodology as discussed in subsection V-A. The
difference lies in how to derive the optimal ps to achieve
minimal T},:q;(ps). Solving %S(Tmml(ps)) = 0 leads to the
optimal power capping level p,. In this paper, we utilize the
MATLAB numeric solver “vpasolve” to calculate the optimal
configurations.

VI. EVALUATION AND MODEL-DRIVEN STUDIES

In this section, we evaluate the model in terms of scale,
power capping level, and power limit. In addition, we also
study the sensitivity of our model to various parameters,
compared with the base model.

In real world, ns and r,, have facility-dependent boundaries.
ps and p, have platform-dependent boundaries. In solving the
objective function F'(n,ps,rm,p.), We enumerate the possible
values of r, and p, since they have small ranges. In this
way, the 4-tuple (ns, ps, Tn,Pa) can be converted into 2-tuple
(ns,ps), which can be further converted into 1-tuple p; based
on Eq. 11. Then we follow the steps as discussed above to
solve the objective function for each r,-p, pair. Finally, we
traverse the enumeration set to obtain the optimal solution.

In the baseline setup, power consumption and coefficients
are the average of measured data across all the applications
on real platforms. The baseline setup assumes a 120 hour job
(scientific simulation) running on a Titan-like supercomputer
using 20,000 nodes. We assume that this scientific simulation
produces raw data at 1 TB/s, which equals to the peak
I/0 bandwidth of the Spider Lustre filesystem at Oak Ridge
National Laboratory. This is a valid assumption since not all
the data will reach the Lustre filesystem after online analysis.
The job consumes 120 watts power on each GPU, with an
upper (Pp,q.) and lower (P,,;,) power limit of 120 watts
and 90 watts, respectively. Online analysis is performed on
a separate group of Xeon processors, whose baseline per-
processor analysis throughput is 140 MB/s. Per-processor anal-
ysis throughput is chosen based on the geometric mean instead
of arithmetic mean, due to the significant variation across
different applications. In the baseline setup, analysis time is
calculated as simulation time multiplied by the throughput
ratio between simulation and analysis.

When running simulation applications on CPUs, reducing
active cores relieves memory contention and improves per-
formance [5]. Unlike CPU applications, the parallelism of
GPGPU applications is orders of magnitude larger than the
available CUDA cores. GPGPU is designed to serve such huge
parallelism. Therefore, it is not viable to reduce the cores in
exploring the optimal configuration.

Fig. 7 shows the minimal total simulation time (T}otq7(P:))
which includes simulation computation time, checkpointing
time, and wasted time. Processor ratio refers to the number
of analysis processors used to process the data generated by

o o
=3 =3
5 -8-Total 5 —&-Total
i g —V—Simula.tion
OE" § g § AnaIyS|s
= =
c c
o3 o3
= N = N
] S | e
[w] [w]
Q Q
X X
w o w o
1/16 1/4 1 2 4 1/16 1/4 1 2 4

Processor Ratio (ry) Processor Ratio (ry,)
(a) Power limit 2 MW (b) Power limit 6 MW

Fig. 7: Minimal total simulation time (Tyotq;(P:)), and as-
sociated workflow computation time ¢ (simulation) and %,
(analysis), with various processor ratios and under analysis
power capping level 60 watts. They show similar trends under
different analysis power capping levels. X-axis is plotted in a
log scale to clearly show the data points when 7, < 1.

one simulation processor. Under a power limit of 2 MW, as
shown in Fig. 7a, both total simulation time and simulation
computation time increase as processor ratio increases. With
power under-provisioned, increasing the number of analysis
processors means decreasing the power limit of simulation,
which leads to the decreased simulation scale and increased
simulation time. The minimal total simulation time is marked
with a circle when analysis time (¢, + t,) becomes slightly
smaller than simulation computation time (¢5). Under a power
limit of 6 MW, as shown in Fig. 7b, although simulation
computation time increases slightly, the total simulation time
decreases as processor ratio increases. The reason is that, with
power over-provisioned, smaller simulation scale and lower
power capping level result in a higher reliability level (or
larger MTBF), which in return reduces the total checkpointing
time and wasted time. Consequently, the total simulation
time decreases as analysis scale increases. The minimal total
simulation time is achieved (marked with a circle) when
analysis time (¢, + tNa) becomes much smaller than simulation
computation time (ts), rather than the point where ¢, + t~a
becomes slightly smaller than ¢;. Running a workflow under
power constraints, it is intuitive to assign less power to analysis
(letting analysis match the simulation time), and distribute
more power to simulation in order to boost performance.
However, this can raise the checkpointing time and wasted
time, when reliability is taken into account.

Finding 2: Distributing excessive power to simulation can
prolong the total simulation time. Matching analysis and
simulation in terms of execution time does not always lead
to the minimal total time.

To be noted that, extending the upper limit of analysis
time from simulation computation time (¢5) to total simu-
lation time (Tyotq;(P:)) can reduce the total simulation time
by 1.1%, marked with a square in Fig. 7a. However, our
model does not treat such configuration as optimal for the
following two reasons. First of all, the performance gain is



limited. However, it may cause significant performance loss
as illustrated in Fig. 7b. In addition, extending the analysis
time causes interferences between consecutive analysis tasks.
For example, an application performs checkpointing every o
time, the time taken to store a checkpoint is J, and analysis
data dump frequency is o /n. If analysis takes up to (c+6)/n
time, when the second analysis dump starts at time o /n, the
analysis resources are still busy processing the first data dump.
To be worse, such delay propagates to the consecutive n — 1
analysis tasks.
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Fig. 8: Minimal workflow execution time and energy con-
sumption under various power limits. Solid lines represent the
reliability-aware model (R-Model) and dotted lines are for the
base model (B-Model). Solid dots are simulation results. Color
red is utilized to plot execution time (left y-axis) and blue is
used for energy consumption (right y-axis).

In Fig. 7, we show the minimal workflow execution time
under power limits 2 MW and 6 MW. Next, we validate the
reliability-aware model and explore the minimal execution
time and energy consumption under various power limits
(ranging from 1 MW to 8§ MW) for HPC workflows.

In order to validate the reliability-aware model, the model
results are compared against simulation results. We developed
an event-driven simulator which simulates different phases
(i.e., computation, checkpointing, and rollback) and failure
events of simulation and analysis in HPC workflows. The
simulator generates random failures which follow a Poisson
process, and the intervals between failures follow the exponen-
tial distribution. In the simulation, execution time is adjusted
based on the power capping level and scale in accordance with
the relationships derived in section I'V.

Simulation results for both execution time (red dots) and

energy consumption (blue dots) are shown in Fig. 8. We
observe that our model results (solid lines) closely match the
simulation results under various power limits and platform
configurations. We also show the results of the base model in
Fig. 8 to compare with the reliability-aware model. First, we
observe that these two models are close to each other when
power limit is small (smaller than 3 MW). As power limit
increases, applying the base model results in larger execution
time and energy consumption, and the gap is enlarging.
Finally, we observe that workflow execution time decreases
first, keeps steady, and then increases slightly as power limit
increases. Therefore, the optimal power limit for performance
is the starting point of the steady phase. Concerning workflow
energy consumption, it increases significantly as power limit
increases.
Finding 3: The reliability-aware model can accurately predict
the optimal platform configurations for minimal workflow
execution time and energy consumption. Energy consumption
increases as power limit increases, but an excessive high
power limit may degrade the workflow performance.

Although processor ratio strongly affects the workflow

execution time (as illustrated in Fig. 7), different (r,,p,)
pairs (e.g., (60,1/3), (50,1/3), (40,1/2) and (30,1) under
2 MW power limit) lead to similar minimal total execution
time, as shown in Fig. 8. However, using the lowest analysis
power capping level requires 3 times analysis processors as
using the highest power capping level. Moreover, as shown
in Fig. 8, employing a lower analysis power capping level
results in higher workflow energy consumption, especially
with a larger power limit. Although a lower power capping
level tends to improve the reliability level, it improves the
analysis scale, which in return reduces the overall MTBF.
However, in Fig. 1a, we observe that, to achieve the minimal
energy consumption, the optimal analysis power capping levels
for most applications are between 40 watts and 50 watts. In
contrast, when taking scalability and reliability into account,
a higher analysis power capping level typically leads to lower
energy consumption.
Finding 4: The combination of analysis power capping level
and scale offsets their individual impact on execution time
within a range. The optimal analysis power capping level
should be the highest effective level. Otherwise, it leads to
resource over-utilization and excessive energy consumption.

To be noted that, under power constraints, the platform

configuration for minimal execution time does not necessarily
lead to minimal energy consumption, as illustrated in Fig. 8.
Under power limits, execution time reflects the performance
per power limit. Conventionally, energy efficiency is measured
as performance per watt, which can be reflected by energy
consumption.
Finding 5: Execution time and energy consumption show
distinct trends as power limit changes. Under power con-
straint, performance per power limit does not reflect real
energy efficiency which is typically measured as performance
per watt.



While determining the optimal power limit, users usually
pursue minimizing execution time. In contrast, facility owners
typically want to minimize the electricity bills (energy con-
sumption). The different goals result in a dilemma in deciding
the optimal power limit. To resolve this, we can resort to the
metric, energy-delay product (or performance per joule), when
perform comparison among various workflow power limits, in
order to achieve the trade-off between different goals.
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In this paper, we propose a reliability-aware optimal plat-
form configuration model to determine the optimal combina-
tion of power limit, processor power capping level, and scale
for simulation and analysis respectively. Validation results
show that our model is accurate in predicting the optimal plat-
form configurations. Furthermore, we present model-driven
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configurations impact the reliability, execution time, and en-
ergy consumption of HPC workflows under power constraints.
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