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ABSTRACT

Neuromorphic computing is emerging as a promising Beyond Moore
computing paradigm that employs event-triggered computation
and non-von Neumann hardware. Spike Timing Dependent Plastic-
ity (STDP) is a well-known bio-inspired learning rule that relies on
activities of locally connected neurons to adjust the weights of their
respective synapses. In this work, we analyze a basic STDP rule and
its sensitivity on the different hyperparameters for training spiking
neural networks (SNNs) customized for a neuromorphic hardware
implementation with integer weights. We compare the classifica-
tion performance on four UCI datasets (iris, wine, breast cancer
and digits) that depict varying levels of complexity. We perform a
search for optimal set of hyperparameters using both grid search
and Bayesian optimization. Through the use of Bayesian optimiza-
tion, we show the general trends in hyperparameter sensitivity in
SNN classification problem. With the best sets of hyperparameters,
we achieve accuracies comparable to some of the best performing
SNNs on these four datasets. With a highly optimized STDP rule
we show that these accuracies can be achieved with just 20 epochs
of training.
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1 INTRODUCTION

Neuromorphic computing is a brain-inspired computing paradigm
that has the potential to develop energy efficient edge and high
performance computing (HPC) systems that perform intelligent
operations. Neuromorphic systems can carry out a learning pro-
cess based on local activity information. This ensures that synaptic
strengths between neurons are adjusted without waiting for data
from distant memory modules. Most of the emerging neuromor-
phic hardware and neural network accelerators make use of this
principle in their designs [16, 23]. There have been several plastic-
ity learning rules, including Hebb’s rule, spike-timing dependent
plasticity (STDP), etc., that have shown close to the machine learn-
ing state-of-the-art results on several machine learning benchmark
datasets [5, 27].

There have been a wide variety of local learning rules proposed
in the literature, including several variants of STDP (see Section 2).
It is not clear a priori how the different learning rules will perform
on a task, nor is it clear how the parameters of those learning rules
affect performance. In this work, we investigate the performance of
a basic STDP learning rule on four different datasets. We perform
both grid search and Bayesian optimization to observe the effect
of hyperparameters on performance of this learning rule and to
determine the optimal hyperparameters for each dataset.

The remainder of the paper is organized as follows. Section 2
presents the prior works that have utilized bio-inspired local plas-
ticity rules to train SNNs. We then introduce our framework and
approach to train SNNs with STDP in Section 3. Section 4 presents
the results on hyperparameter optimization and the classification
accuracies on four UCI datasets. We further present a discussion
on the convergence capability and insights from our experiments
in Section 5. Finally, Section 6 summarizes the paper and presents
the future outlook.

2 RELATED BACKGROUND

One of the earliest learning mechanisms based on neuro-biological
studies is Hebbian learning, where the synaptic strength is ad-
justed based on the correlated activities in the connecting neurons
[9]. An advancement over Hebb’s rule is the spike timing depen-
dent plasticity (STDP) rule, where the causality of pre- and post-
synaptic neuron spike timings plays an important role in adjusting
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the strength of the connecting synapse [3]. Typical operation of the
STDP rule in SNNs follows an increment in the weight value when
the post-synaptic neuron spike follows the pre-synaptic neuron
spike temporally (also called potentiation), and decrement in the
weight (depression) when the pre-synaptic neuron spike follows
the post-synaptic neuron’s spike temporally.

Various machine learning tasks such as image classification have
been solved by making use of STDP rule to train SNNs [5, 6, 10,
15, 27]. One of the STDP rules presented by Shrestha, et al. shows
approximations to the algorithm for hardware realization. They
carry out the weight update as bit shift, to reduce the overall com-
putation requirement and overcome the limited precision of the
hardware [27]. Some of the other works use STDP as a feature ex-
tractor in training deep spiking neural networks, while employing
error back-propagation to train the output classifier [12]

3 METHOD

The goal for this work is to investigate the effect of the hyperparam-
eters of STDP learning rules on the supervised training performance
on classification tasks. We focus specifically in the realm of neu-
romorphic hardware implementations in which the weights are
integer representations, but we expect that this would translate
to hardware implementations with low precision weight values as
well. To enable our investigation of this topic, we utilize several
existing software and hardware systems, each of which we will
describe briefly in the sections below. We utilize the Caspian neu-
romorphic development platform as our neuromorphic hardware
implementation with integer representations. We interface with the
Caspian system through the TENNLab neuromorphic computing
framework, which also performs input encoding from values in our
dataset to spikes. In addition to a simple grid search on a small sub-
set of potential hyperparameters for STDP, we also use a Bayesian
hyperparameter optimization approach to investigate larger search
spaces of potential hyperparameters. We summarize each of these
components briefly in the following subsections. Finally, we explain
in detail the precise STDP approach investigated here, including
details about how it is implemented within the broader framework,
as well as the hyperparameters we are investigating for that rule.

3.1 Caspian Neuromorphic Development
Platform

Caspian is a neuromorphic development platform that includes
both a software simulator component, as well as an FPGA-based
neuromorphic hardware implementation [14]. In this work, we use
the hardware-accurate software simulator for the Caspian neuro-
morphic hardware to run our experiments. The simulator is inte-
grated along with the TENNLab framework. Caspian uses leaky
integrate and fire spiking neuron model to realize the SNN, as well
as synapses that include synaptic delays. All of the SNN computa-
tion is done with an integer representation. The Caspian hardware
simulator allows for the ranges of values of thresholds, weights,
and delays to be specified. In this case, we use the range of values
for the weights and thresholds as a hyperparameter when training
the network.
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3.2 TENNLab Software Framework

The TENNLab neuromorphic software framework [22] implements
a software interface between neuromorphic hardware implementa-
tions and applications. The interface includes input encoding and
output decoding implementations that turn numerical data into
spikes and take output spikes from the neuromorphic implementa-
tion and turn them into classification labels or control decisions. The
TENNLab implementation also includes a variety of benchmark ap-
plications, including several control applications [21]; in this work,
however, we focus on classification tasks. The TENNLab frame-
work also supports a variety of backends, including the NEST and
Brian2 simulators [11], though we focus on Caspian here. Through
the TENNLab interface, users can load networks on neuromorphic
hardware or onto a simulation of the hardware, apply spikes as
input to the network, simulate the network activity, and extract
spikes from the network.

3.3 Input Encoding into Spikes

A key ongoing research question in the field of SNNs and neuromor-
phic computing is the best way to encode numerical data as spikes.
Though there are neuromorphic sensors such as event-based sen-
sors [8], where the data is already in spike-form, most datasets are
not natively spiking. There are several different approaches in the
literature for encoding real-valued inputs into spikes. The TENNLab
framework provides a variety of input encoding approaches, includ-
ing rate, temporal, and population/binning encoding; it also allows
for these approaches to be combined hierarchically to form more
complex encoding schemes [24]. In this work, we use rate encoding
and population encoding/binning. We briefly describe each of those
encoding approaches below.

o Rate encoding: Each value get encoded into a certain number
of spikes from the range [0, max_spikes]. Here max_spikes
is a hyperparameter.

o Binning or population encoding: Each input value gets mapped
across one or more neurons (bins), each of which is assigned
arange of values which may overlap. The input value per bin
is then mapped to the different neurons through an encoding
function (e.g., flip-flop, triangle, etc., which are described in
detail in [24]). The number of bins and the binning function
are both hyperparameters of these approaches.

3.4 Bayesian Hyperparameter Optimization

Bayesian optimization is well-suited for optimization problems
where the objective function is unknown and expensive to evaluate.
We chose the Hierarchical Pseudo Agent-based Bayesian Optimiza-
tion (HPABO) [18-20] approach to optimize the performance (test
accuracy) of STDP learning rules on various classification tasks.
HPABO is flexible, fast, easy to use, and accommodates step by
step analysis. This technique is built upon leveraging current belief
(prior distribution), observations (likelihood model), and estimating
an updated belief (posterior distribution) based on them.

Single objective optimization using HPABO starts with estimat-
ing a Gaussian distribution for initial observations (test accuracy
levels) for five sets of random hyperparameters. The search space
(all possible combinations of hyperparameters) is then explored
and exploited based on optimizing a surrogate model built upon
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the likelihood model (observations) and prior distribution. The op-
timum point of the surrogate model shows the best next set of
hyperparameters to explore in the next iteration. Each new obser-
vation is added to the likelihood model. The posterior distribution
is updated at every iteration based on the updated prior distribution
and likelihood model until the total number of Bayesian searches
is reached or the surrogate model is converged to zero. For our
experiments, we fixed the surrogate model to “expected improve-
ment" acquisition function [2] and Gaussian distribution kernel to
“Matern" function. For further details please refer to [19, 20].

3.5 Spike Timing Dependent Plasticity

Several neuro-biological studies have demonstrated the existence
of correlation between the timing and causality of spikes arriving
on a synapse with the rise in potential being observed in the post-
synaptic neuron [3]. This primary mechanism, called spike timing
dependent plasticity (STDP), has been abstracted mathematically to
adjust the synaptic conductance (or strength) based on a function
of the relative timings of pre- and post-synaptic neuron spikes [4].
Here, we use the most common form of STDP where the weight
change is exponentially dependent on the difference between the
pre and post neuron spike times (At = tpost — tpre), [4-6]. The
mathematical representation of this rule to update a given synaptic
weight is given as:

Ay exp (_T—ét), if At >0

Aw = (1)

A- exp(%), if At < 0.

Here, A, and A_ are the weighting factors for weight potentiation
and depression, respectively. The magnitude of weight change Aw,
for either case decays exponentially, with time constants 7, and 7_,
as the relative timing difference between the pre and post synaptic
spikes grows. The weighting factors and time constants are the
hyperparameters while training SNNs with this STDP rule.

3.6 Network Training

We make use of a feed-forward structured SNN, with the number
of inputs decided by the spike encoding scheme and the number of
outputs representing each class for a given dataset. We then study
the impact of hyperparameters on the STDP training behavior, and
discuss the convergence trend of our modified STDP rule in the
following sections. Our current study is focused on analyzing the
behaviour for a two-layered shallow SNN.

The weights of the network are updated the end of every epoch,
after the network has been simulated for a certain number of
timesteps for all of the training samples. However, we calculate
the incremental weight update Aw after simulating the SNN for
each sample based on the rule in Equation 1. The Aw computation
for each synapse in the network depends solely on the timing dif-
ference At, which is calculated from spike raster obtained at the
end of simulation time period. Similar to the approach by Shrestha,
et al. [27], we also introduce supervision to train the network to
correctly identify the class of the input. For every label neuron
in the output layer that is not issuing spikes, the corresponding
synapses receiving pre-synaptic spikes are strongly potentiated, by
setting At = +1. Once the correct output starts issuing spikes, the
amount of potentiation is reduced by setting At to the length of the
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Table 1: Network, STDP and input encoding hyperparame-
ters.

STDP Network Input encoding
T4 Leak Encoder type
T Initial weights | Binning function
Ap Simulation time Max_spikes
A No. of hidden Encoding interval
neurons
Learning rate | Synaptic delay | Overlap interval
Lr_decay Threshold No. of bins
Window

STDP window, W. Similarly, in scenarios where an incorrect output
neuron issues spikes, it is strongly depressed for every synapse
which is receiving a pre-synaptic spike, by setting At = —1. For all
the synapses not receiving pre-synaptic spikes, they are weakly
depressed by setting At = —W. As demonstrated by Mozafari, et
al., we also make use of reward based Aw accumulation to avoid
over-fitting [15]. The Aw for each synapse is accumulated for every
training sample i, rounded to integer representation, and finally
the weight at the end of an epoch is adjusted as:

w(n+1) = w(n) + round (17. Z Awi) (2)

Here, 1 is the learning rate, also a hyperparameter. The output of
the network is decided based on the winner-take-all rule, i.e., the
output layer neuron that spikes the most represents the class of the
input [13].

4 RESULTS

We now present our results on four of the UCI datasets: iris, wine,
breast cancer and digits [1]. We focus on these simple datasets
in this work so that we can run large-scale searches in a reason-
able amount of time, but in future work, we will extend to more
complicated tasks. The networks trained for each of these datasets
have just the input and output layers. We study the sensitivity
of our STDP training approach on the combinations of different
hyperparameters. The STDP training approach discussed in the
previous section adjusts only the synaptic weights to get the maxi-
mum classification accuracy on each of these datasets. There are
also a number of hyperparameters associated with input encoding,
network initialization and the STDP rule itself that need to be set
prior to running the training SNN (see Table 1). In the following
subsection, we discuss our results on hyperparameter optimization.

4.1 Hyperparameter Optimization

As seen in Table 1, there are a total of 19 hyperparameters we need
to initialize before training. However, based on our preliminary
hyperparameter sensitivity studies we fixed the values for terms
such as threshold, delay, encoding and overlap intervals, to be the
same for all the four datasets. Also, the number of hidden neurons
is currently kept to 0, which in future studies will be expanded to
train multi-layer networks. The remaining hyperparameters varied
across the four datasets, motivating our study on optimizing their
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Table 2: Network, STDP and input encoding hyperparame-
ters and their range of values giving a total of 16,128 combi-
nations.

STDP Network Input
encoding
Encoders  {‘rate’,
T4 {20, 30} Leak {3, 4} types “spikes’}
T {20, 30} | Init_wts {10, 100} Bins {2, 4,8}
Max

Ay {1,2} pikes 812
A -0.1, 1}

Learning
rate 2.4

Lr decay {0.9, 1}

Window {2, 8, 16}

values for each problem. Our search space has 16, 128 combinations
of hyperparameter values which are listed in Table 2. We applied
both grid search and Bayesian optimization to arrive at the optimal
hyperparameter values from this table.

For the Iris dataset, the smallest dataset among the four, we first
performed grid search to determine the test accuracy level for all
possible 16,128 combinations of hyperparameters given in Table 2.
Then, we performed Bayesian optimization search to derive the
optimal set of hyperparameters only with 50 different runs. Fig-
ure la shows the prominent impact hyperparameter combinations
have on test accuracy of the trained network. For the grid search
experiment, the network is trained with all 16,128 combinations
of hyperparameters, and the median test accuracies are plotted in
descending order as seen in Figure la.

Figure 1b shows that Bayesian search is able to predict close
to the maximum performance in terms of test accuracy with only
50 iterations. Figure 1c demonstrates the box plots for test accu-
racies with Bayesian optimization on iris dataset as the search
iterations progress. Note that both the Figures 1b and 1c show the
same data, with the former one being sorted based on the median
test accuracies and the latter showing the results as they were col-
lected throughout the Bayesian optimization. This shows although
the technique starts from random performances in the beginning,
toward the end of the Bayesian search, we already know the re-
gion (sets of hyperparameters) that lead to maximum performance
(exploitation), and we still search for areas for possible better per-
formance (exploration).

We further carried out the search to find the set of hyperparam-
eters leading to optimum performance (in terms of test accuracy)
for the remaining three datasets with Bayesian optimization. Fig-
ure 2 presents the box plots for test accuracies with their respective
hyperparameter combinations sorted in descending order. It can be
seen that as we progress from iris, which is the simplest in terms of
number of inputs and outputs (4 and 3, respectively), to the more
complex digits dataset, which has 64 inputs and 10 outputs, the
correct choice of hyperparameter initialization highly impacts the
STDP training.

Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Catherine D. Schuman

10
309
Il
5 0.8 {Gmax = 0.98
I HP: W=8, T+=30, T-=20, leak=3, Init_wt=
£ 0.7 {A+=2, A-=-1, Ir=4, Ir_decay=0.9
c encoder="spikes', #bins=4, fen="triangle’,max_spikes=12
806
2 Gmin = 0.32
= 05 HP: W=16, T+=30, T-=30, leak=3, Init_wt=100
04 0.1, Ir=2, Ir_decay=1.0
es', #bins=8, fcn='bins',max_spikes=
o 4000 8000 12000

Accuracy sorted hyper-parameter combinations

(a) Sorted median accuracy plot for the 16128 hyperparameter com-
binations based on grid search.

>09 LR
3 cesee
o ‘e
e .. Bmin=0.58
HP: W=16, tau+=30, tau-=30

Sos =20, tau-=20, leak=4, init_wts=10 ks, Ik a0, AdelO
< 2 1, Ir=4, Ir_decay=0.9 coe ot g b Ao |
c encoder="spikes', #bins=8, max_spikes=12 ®ey, =01 Ir=2Irdecay=0.9
[ ncoder=spikes’, ¥bins=8, max_splkes=12 * encoder='rate’', max_spikes=12
S .
@ PP
=

0.6 *eseee

10 20 30 40 50
Accuracy sorted hyper-parameter combinations

(b) Sorted median accuracy plot for the hyperparameters explored
by the Bayesian optimization process.

10 3 -

.3 _‘15 88 e 8?'}31 2

| 1 g| 23

o
=
»
—r-

Fe- 1311 E 13
8 fetagc’)

I

)
o
|
1®
® o
=

Test Accuracy

0 10 20 £l 40
Hyper-parameter combinations

(c) Bayesian optimization carried out for 50 iterations.

Figure 1: Variation of the classification accuracy for the iris
dataset as different hyperparameters are selected and evalu-
ated with both grid search and Bayesian optimization. Each
box plot here represents the results from 50 repeats of train-
ing simulation for a given set of hyperparameters.

We also present the impact of individual hyperparameters on the
classification performance in Figures 3, 5 and 4. In the input encod-
ing hyperparameters, the ‘spikes’ encoding scheme is the preferred
choice. However, as seen in Figure 3a, the box plot for digits has a
higher tail end accuracy at 80% with ‘rate’ encoding scheme, even
though the median is higher for ‘spikes’ encoding scheme. This
indicates that the ‘rate’ encoding scheme along with other com-
binations of hyperparameters results in the best performance for
digits. Note that the ‘rate’ encoding scheme does not use binning in
the input layer. For the cases that use the ‘spikes’ encoding scheme,
the optimal choice of binning function is ‘triangle’, and a higher
number of input bins and input spike rate is preferred across all
datasets.

Figure 4 shows the boxplots for training sensitivity with respect
to the STDP parameters. For each of these hyperparameters, the
search space was restricted to the best possible discrete values
based on our initial simulations. For the STDP weighting factors, a
higher magnitude of excitatory value, A; and lower magnitude of
inhibitory value A_ is preferred across all datasets (see Figure 4a
and 4b). For both the time constant of the learning window z,,
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Figure 2: Test accuracy across different datasets, as the hy-
perparameters are varied by running Bayesian optimization
for 50 iterations. Each iteration bar on the plots represents
50 repeats of training simulation. The hyperparameter sets
are ordered based on the descending test accuracy.
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and the length of the STDP window W, a higher value among their
respective options is a preferred choice (see Figure 4c and Figure 4d).

All of the SNN parameters such as neuron threshold, leak, synap-
tic delay, and the dynamic range of weight values in Caspian use
integer representation, whose range can be configured in the be-
ginning. Note that all of these parameters have purely numerical
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Figure 4: Sensitivity of test accuracy to STDP hyperparame-
ters.

representation without any units. In all of our experiments we set
the threshold of the spiking neurons to be 255 and the synaptic
delay to be 1, which was found to be most suitable for all four
datasets used. We included the initial weights and neuron leak in
our list of hyperparameters to be optimized. Figure 5 shows the
training sensitivity to network initialization. For the neuron leak, a
higher value is always preferred (as seen in Figure 5a). We randomly
initialize the network weights with integer values distributed uni-
formly between [—x, +x], with ‘x’ being a hyperparameter shown
in Figure 5b. A small range of values for weights’ initialization was
sufficient for the simpler datasets - iris, wine and breast cancer.
However, we observed that digits required a higher initialization
to achieve accuracies above 70%.
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Figure 5: Sensitivity of test accuracy to network initializa-
tion parameters - spiking neuron leak and range of values
for initial weights.

4.2 Classification Performance

Using the best hyperparameters obtained from Bayesian optimiza-
tion, we train the networks for each dataset with 100 different
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initializations. Figure 6 shows the evolution of the training across
multiple epochs. It can be observed that the highly optimized STDP
training approach with integer representation progresses well start-
ing from a small accuracy to over 80% across all the datasets. It
is worth noting that for iris, wine, and breast cancer we observed
the training to converge within 20 epochs. However, for digits we
had to increase the number of training epochs to 40 for the STDP
training to converge.
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Figure 6: Test accuracy as training progresses through multi-
ple epochs. For iris, wine and breast cancer we observed the
training converge within 20 epochs. However, for digits, the
convergence was seen after 20 epochs, hence, we trained it
for 40 epochs.

It can be seen in Figure 6d, compared to other datasets, training
curve for digits has a higher variation. One difference in the case
of digits is the higher range of values used in initialization of the
synaptic weights. This resulted cases where the resulting weight
updates (Aw) became zero after the first 2 or 3 training epochs and
did not improve as the epochs progressed. Figure 7a shows the
actual line plots for test accuracy while training the digits dataset.
While majority of the cases converged to accuracies above 70%,
there were 3 cases out of the 100 runs which failed to train.

To mitigate the training failure, we added small random noise to
the accumulated weight update term ‘), Aw’ (refer to equation 2),
every epoch. The random noise added per synaptic weight are
integers chosen randomly in [-y, y], where y was set at 10% of
the weight initialization range. With this modification, the failure
cases were altogether avoided. Figure 7b shows the results from
100 runs of STDP training for the digits with the additive integer
noise in the weight update process. As the other datasets had a
smaller range of weight initialization, we did not encounter such
similar scenarios. Several works on ANNs have studied the impact
of additive noise to improve learning and generalizability [17]. As
a future work we would also be exploring in detail the impact of
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Figure 7: Training performance and the impact of adding
noise. The training plots in (a) correspond to the same accu-
racy data shown in Figure 6d, which have been re-plotted as
lines to indicate that the larger accuracy variation is caused
by a few cases (at the bottom) with classification accuracy
remaining at ~ 10%. In (b) we can see the full convergence
with very small variation starting after around 20 epochs of
training.

noise on the training behavior for a larger class of problems, and
other causes that prevent SNNs from training.

5 DISCUSSION

Table 3 compares the mean test accuracy of the four datasets with
some of the other spike based training approaches previously ex-
plored [25]. It can be seen that the mean accuracy for the relatively
simpler datasets with our STDP approach are competitive with
the other approaches. Our approach uses native spike-based local
plasticity mechanism of STDP to train the SNN, unlike the other
approaches such as decision tree or Whetstone method which were
mapped from their respective non-spiking versions [26]. Our ap-
proach had a lower accuracy on the digits compared to the best
reported that used mapping or evolutionary approaches [7, 25]. It is
worth noting that our training approach resulted in improvements
in accuracy with a simple two-layered SNN topology. In the future,
we intend to extend this approach to more complex SNN topologies
that can potentially benefit datasets with larger dimensionality.
Moreover, the weight update process is local, which makes it highly
suitable to realize it on neuromorphic and other edge platforms for
real-time, on-chip training.

Table 3: Mean test accuracy across four datasets

Datasets Supervised Other spike-based
STDP (this work) | approaches [25]
ris 979% 96% (Spike-based
Decision Tree)
Wine 93% 90% (Reservoir)
91% (Spike-based
Breast cancer 94% L
Decision Tree)
Digits 79% 93% (Whetstone)




Training Spiking Neural Networks with Synaptic Plasticity under Integer Representation

6 CONCLUSION AND FUTURE OUTLOOK

In this work we have proposed a training approach for SNNs with
the basic STDP rule and tailored it for implementation on a neu-
romorphic hardware with integer representation. This approach
also uses supervision to adjust the weights of output neurons. We
also show the importance of the right choice of hyperparameters in
our study using Bayesian Optimization and grid search techniques,
while training SNNs with limited precision supervised STDP ap-
proach. Each of these hyperparameters greatly impacts the STDP
training behavior based on the problem complexity and our current
results can serve as a guide for future more complex problems.

With integer representation of the SNN’s parameters and with
the optimum selection of hyperparameters, our training approach
shows good learning ability and convergence within the first 20
epochs of training. The use of small additive noise during the weight
update helps improve training, especially for the cases stuck in local
minima.

Going forward, there are several opportunities to study and
apply the different local plasticity-based learning rules for SNNs to
different real world problems. As discussed in earlier sections, the
use of noise to improve SNN training and generalizability without
incurring additional overheads is an interesting area we intend to
explore. Further, the extension of our simple STDP style rules to
train multi-layer or random topology of SNNs will be beneficial in
realizing on-line training of networks on neuromorphic hardware
for diverse sets of problems.
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