

High temperature high strength austenitic steel fabricated by laser powder-bed fusion

Sebastien Dryepondt, Peeyush Nandwana, Kinga A. Unocic, Rangasayee Kannan, Patxi Fernandez Zelaia, Fred A. List III

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States

Abstract

Extremely fast cooling rates during laser powder-bed fusion (LPBF) can result in materials with unique microstructures. For LPBF 316L stainless steel, the formation of sub-grain cellular structures with high dislocation density has been linked to superior tensile properties at room temperature. This cellular structure offers also a new route for the development of high temperature LPBF steels with the nucleation of nano-size strengthening carbides in the cell walls. HK30Nb steel (Fe-25Cr-20Ni-Nb-C) was, therefore, fabricated by LPBF to evaluate its potential for high temperature applications. Optimization of the fabrication parameters yielded material with density greater than 99.7%, with nano Nb-rich precipitates in the cell walls. Annealing at 800 °C for 5h resulted in the nucleation and growth of additional precipitates mainly in the cell walls and at grain boundaries. The high dislocation density led to yield strength at 20-900 °C two to three times higher than yield strength for cast HK30Nb and the nano carbides in the cell walls significantly improved the cellular structure stability at 800 °C.

Keywords: Laser powder bed fusion (LPBF), Austenitic steel, Nano carbides, HK30Nb, tensile, cellular structure

Notice of Copyright. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevo-

1. Introduction

2 The fabrication and characterization of 316L steel by laser powder-bed
3 fusion (LPBF) has attracted a lot of attention due to unique microstruc-
4 tural features leading to great room temperature tensile properties [1, 2, 3,
5 4, 5, 6, 7, 8, 9, 10]. Of particular significance is the presence of cellular
6 structures with high dislocation density [11]. Dislocation in the sub cellu-
7 lar structure enhances the alloy yield strength while interactions between
8 deformation twins and dislocations in the cell walls result in superior room
9 temperature ductility [3, 4, 5, 8, 9, 12]. Recent work revealed, however, that
10 the tensile properties of the LPBF 316L stainless steels at 400-700 °C are
11 only moderately better than the properties of wrought 316L [13]. The main
12 reason is a change of deformation mechanisms at $T > 200$ °C, also observed
13 for wrought 316L, from twinning at low temperature to dislocation motion
14 at higher temperatures [14, 15]. Dynamic strain aging with strong interac-
15 tion between solute atoms and moving dislocations is also known to reduce
16 316L ductility at 500-700 °C [16, 17, 18]. In addition, the stability of the
17 cells was found to be limited at temperature above 600°C, from a signifi-
18 cant decrease of dislocation density to a complete disappearance of the cell
19 structure at $T > 800$ -900°C after annealing from 15min to 4h [7, 13, 19]. One
20 promising way to stabilize the microstructure and increase the alloy strength
21 at high temperature is to nucleate precipitates in the cell walls to pin dis-
22 locations. Several authors have shown, indeed, that for 316L fabricated by
23 LPBF, chemical segregation of Mo and Cr and (Si, O)-rich precipitates were
24 observed in the cell walls [1, 4, 20], leading to consider chemical segregation
25 and nano precipitates as viable solutions for higher strength stainless steels
26 [3, 11]. Almangour et al. [21, 22] laser melted 316L powder with either TiC or
27 TiB₂ powder and showed a significant improvement of the yield strength in
28 compression at both room temperature and 650 °C compared to a reference
29 LPBF 316L steel. Strengthening of the steel was attributed to a refinement
30 of the grain structure, a refinement of the cellular structure and/or chemical
31 segregation in the cell walls. At high temperatures, a decrease of dynamic
32 recovery and recrystallization due to the presence of fine precipitates was also

cable, world-wide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes. The Department of Energy
will provide public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).

33 postulated. Zhong et al. mixed 316L powder with nano Y_2O_3 powder be-
34 fore melting to fabricate an oxide dispersion strengthened (ODS) 316L steel.
35 They observed the formation of (Y,Si,O) nano oxides but the impact on the
36 LPBF 316L steel tensile properties was limited [23]. Another route for the
37 design of high temperature high strength LPBF austenitic steels is to take
38 advantage of the high dislocation density in the cell walls to nucleate fine
39 carbides or carbonitrides as observed in advanced 310 or 347-type austenitic
40 steels [24, 25, 26]. In this work we will describe the fabrication by LPBF and
41 characterization of 310-type cast HK30Nb steel. The alloy was selected due
42 to its use in the automotive industry for turbocharger manifold and housing
43 [27], good castability and for its high C, Cr and Nb concentration to form
44 NbC and $M_{23}C_6$ precipitates [28].

45 2. Experimental Procedure

46 2.1. Alloy fabrication

47 The HK30Nb powder, with a particle size of 15-45 μm , was purchased
48 from Powder Alloy Corporation in two separate batches. As can be seen
49 in Table 1, the powder chemical composition from the two gas atomization
50 runs and the composition of the resulting LPBF alloy were very similar. The
51 LPBF deposited part chemistry was consistent with the ASTM A297 spec-
52 ification except for a relatively low C. The 0.2 wt % Mn concentration was
53 below the 2 wt % maximum specified in ASTM A297 but this value was lower
54 than typically reported for cast HK30Nb [27]. The LPBF HK30Nb builds
55 fabricated using a Renishaw AM250 are shown in Figure 1. Small rectangular
56 cubes and thin walls were first fabricated to determine the optimum fabri-
57 cation parameters (Figure 1a). A design of experiments was implemented to
58 correlate the alloy density with the volumetric heat input (VHI). The power
59 was set to 200 W, the layer thickness to 30 μm and the hatch spacing, point
60 distance and exposure time was varied to obtain a range of VHI from 45 to
61 220 J/mm^3 . A plot of the cube density measured by gas pycnometry versus
62 the VHI is shown in Figure 2a. A plateau was observed with a maximum
63 density of 7.83 g/cm^3 for VHI values between 70 and 110 J/mm^3 . Based on
64 these results, the following parameters were used to fabricate the cylindrical
65 rods, rectangular blocks and thin plates shown in Figure 1b: hatch spac-
66 ing =125 μm , exposure = 135 ms and point distance =103 μm . Later on,
67 the LPBF HK30Nb cubes were sectioned and examples of cross-sections are
68 shown in Figure 2b and 2c. Density measurement by image analysis using

69 both a Python code and ImageJ confirmed that a surface fraction density
70 superior to 99.7% was observed for VHI values between 70 and 110 J/mm³.

HK30Nb	Fe	Cr	Ni	Si	Nb	C	Mo	Mn
Powder1	Bal.	25	21	1.1	1.32	0.22	0.3	0.2
Powder2	Bal.	25	20	1	1.25	0.21	0.3	0.2
LPBF alloy	50.66	25.36	20.53	1.14	1.37	0.2	0.27	0.2

Table 1: Chemical composition in wt% of the HK30Nb powders provided by the powder manufacturer and the LPBF alloy measured by inductively coupled plasma (ICP), combustion, and inert gas fusion (IGF)

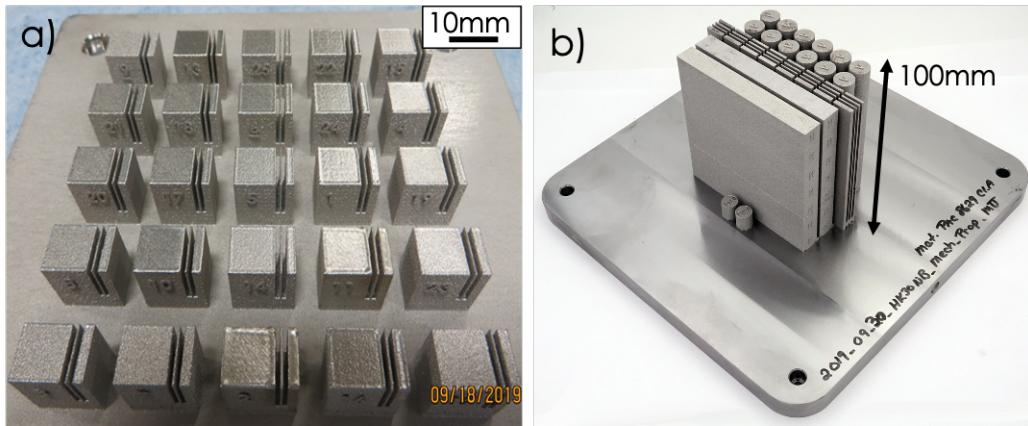


Figure 1: LPBF HK30Nb builds using a Renishaw AM250, a) Cubes and thin walls for parameter optimization, b) Cylindrical rods and rectangular bars for microstructure characterization and mechanical testing

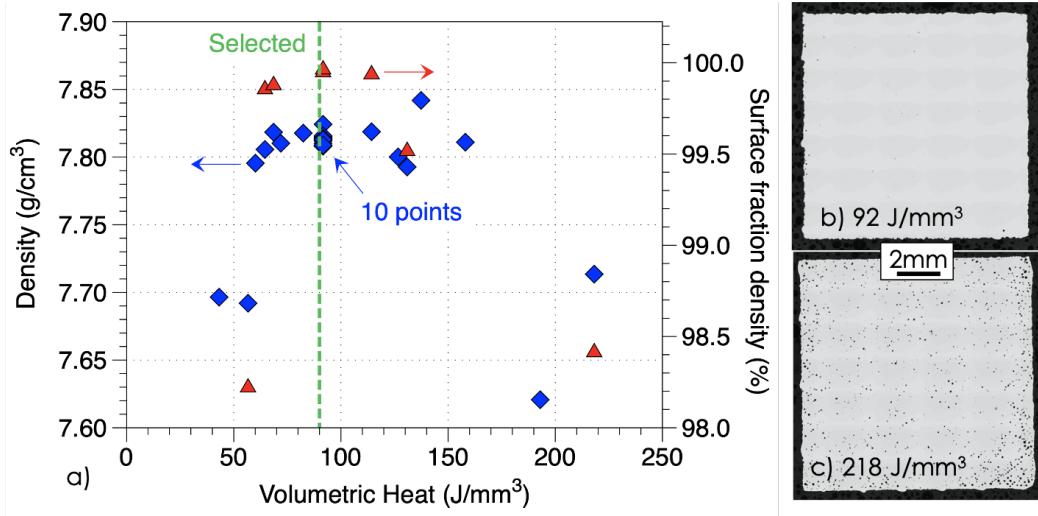


Figure 2: a) LPBF HK30Nb cube density measured by gas pycnometry or image analysis versus the volumetric heat input, b) and c) Example of cube cross-sections used to measure the surface fraction density

71 *2.2. Tensile testing*

72 Subsize SS3-type tensile specimens [29] with a gauge section of $2 \times 2 \text{ mm}^2$
73 and a gauge length of 7.62 mm were machined along the build direction
74 from the top or center of the cylindrical rods and perpendicular to the build
75 direction from the top of one rectangular block. In both cases, the top 5mm
76 of the build was discarded as the microstructure is expected to change in
77 the final build layers due to variation in thermal profiles. Tensile testing was
78 conducted at 20-900°C on an Instron electro-mechanical machine equipped
79 with a three zone radiation furnace and the cross-head displacement was
80 controlled to achieve a strain rate of 10^{-3} s^{-1} . The gauge section was too
81 small to insert an extensometer so the uniform and total plastic elongations
82 were estimated from the cross head displacement curve. Three thermocouples
83 spot welded on the specimen grips ensured control of the temperature within
84 $\pm 2^\circ\text{C}$. Tests were also conducted at room temperature and at 700°C using
85 standard size threaded cylindrical specimens with a gauge length of 32 mm
86 and a gauge diameter of 6.3mm. An MTS 632.11B-20 extensometer equipped
87 with ceramic extension rods was used to measure the specimen deformation
88 and three thermocouples were attached on the top, middle and bottom of
89 the gauge length to control the temperature over the specimens within 3°C.
90 Testing was conducted according to ASTM E21 with an initial strain rate

91 of 10^{-4} s^{-1} and an increase to 8.10^{-4} s^{-1} past the yield strength. Both the
92 SS3-type and standard specimens were maintained at temperature for 30 min
93 before testing.

94 *2.3. Microstructure characterization*

95 Standard metallographic techniques were used to mount samples of the as
96 fabricated and annealed LPBF HK30Nb steel along and perpendicular to the
97 build direction. Samples were extracted in the vicinity of the rod center in
98 each case. For the as printed material, a second section from the top portion
99 of another rod was also mounted to verify material homogeneity. Annealing
100 of the LPBF HK30Nb rod was conducted for 5h at 800°C in flowing Ar fol-
101 lowed by natural cooling in air outside the furnace. Tensile specimens tested
102 at 20°C, 600°C, 700°C and 800°C were also characterized after rupture in
103 different locations from the necking zone to the shoulder. Grain texture was
104 evaluated using a Zeiss Crossbeam 550 field emission scanning electron mi-
105 croscope equipped with an Oxford electron backscattered diffraction (EBSD)
106 detector. To reveal the cellular structure, some samples were electrolytically
107 etched with a solution containing 10% oxalic acid and then imaged using an
108 Hitachi S4800 scanning electron microscope (SEM) equipped with a cold field
109 emission gun. Measurement of the cell size from random cellular colonies
110 along and perpendicular to the build direction was conducted using these
111 SEM images and the intersect method for a total of 115 measurements. For
112 elongated cells, only the width of the cell was estimated. Scanning trans-
113 mission electron microscopy (STEM) imaging and energy dispersive x-ray
114 spectroscopy of HK30Nb were conducted on a FEI Talos F200X S/TEM op-
115 erated at 200kV and equipped with an extreme field emission gun (X-FEG)
116 electron source, high-angle annular dark-field (HAADF) detector and Super-
117 X energy dispersive X-ray spectroscopy (EDS) system with 4 silicon-drift
118 detectors (SDD). TEM specimens were prepared by following standard thin-
119 ning/polishing procedure for TEM sample preparations of 3 mm in diameter
120 discs. Afterwards, pre-thinned 100 μm thick 3 mm discs were electropol-
121 ished using A3 Struers solution (600ml Methanol, 360ml 2- Butoxyethanol,
122 60ml Perchloric Acid) at -20 °C. As for the samples prepared by standard
123 metallography, samples were extracted from the center of the rods.

124 *2.4. Thermodynamic calculations*

125 All the thermodynamic calculations were performed using TCFE9 database
126 of ThermoCalc. Kinetic calculations to capture the precipitation evolution

127 with temperature and time were carried out with PRISMA, precipitation sim-
128 ulation tool working in conjunction with thermodynamic database TCFE9
129 and mobility database MOBFE4.

130 **3. Results**

131 *3.1. LPBF HK30Nb Microstructure*

132 As can be seen in Figure 3, pole and inverse pole figures of the LPBF
133 HK30Nb steel along and perpendicular to the build direction showed no sig-
134 nificant texture for the austenitic matrix with grains exhibiting the chevron-
135 type shape often observed in LPBF alloys. The grain aspect ratio was 2-2.6:1
136 with the grain size ranging from 1 to 90 μm . A large number of small grains
137 were detected leading to an overall grain size average of 10-12 μm . Etched
138 optical images (Figure 4a) revealed that the main defects were lack of fusion
139 voids at melt pool boundaries. In addition, SEM micrographs with (Figure
140 4b) or without (Figure 4c) etching highlighted the presence of the cellular
141 structures reported for various alloys fabricated by LPBF, and in particular
142 316L steel. [3, 4, 5, 8, 9, 11, 13, 30, 31, 32]. Both elongated and "equiaxed"
143 cells were observed but there is a growing consensus that all the cells are in
144 fact more or less elongated, their appearance being dependent on the cross
145 sectional plan [11]. Measured cell sizes for both the equiaxed and elongated
146 cells (width) along and perpendicular to the build direction are summarized
147 in Table 2. Results were very similar for the equiaxed and elongated cells in
148 both directions, with average cell size varying from 0.52 to 0.56 μm . Mea-
149 surements in random locations led to 16 measurements for equiaxed cells
150 versus 48 for the width of the elongated cells along the build direction, while
151 these numbers were 42 versus 20, respectively, perpendicular to the build
152 direction. Quantitative estimate of the cell orientation is beyond the scope
153 of this paper, but clearly a much higher ratio of elongated cells was observed
154 along the build direction. The Cr map (representative of all elemental maps)
155 in Figure 4d corresponds to the SEM micrograph in Figure 4c and highlights
156 the absence of chemical segregation or precipitates easily detectable by EDS.

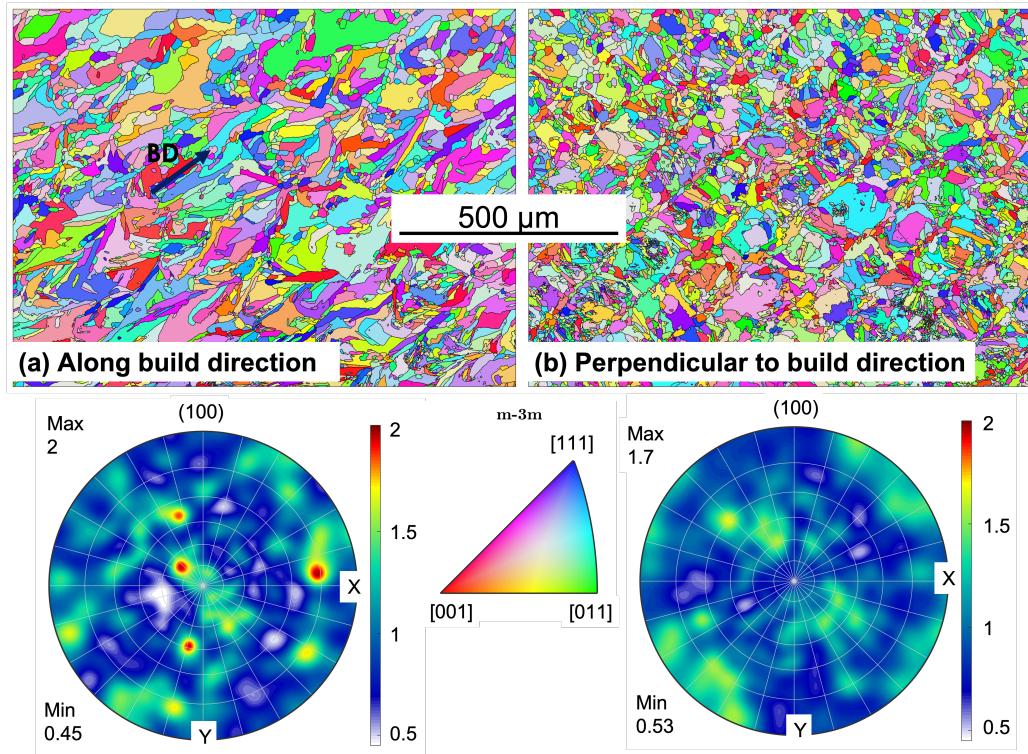


Figure 3: Inverse pole figure (IPF) maps and corresponding $\{001\}$ pole figure for the as-printed LPBF HK30Nb rod, a) Along the build direction, b) Perpendicular to the build direction

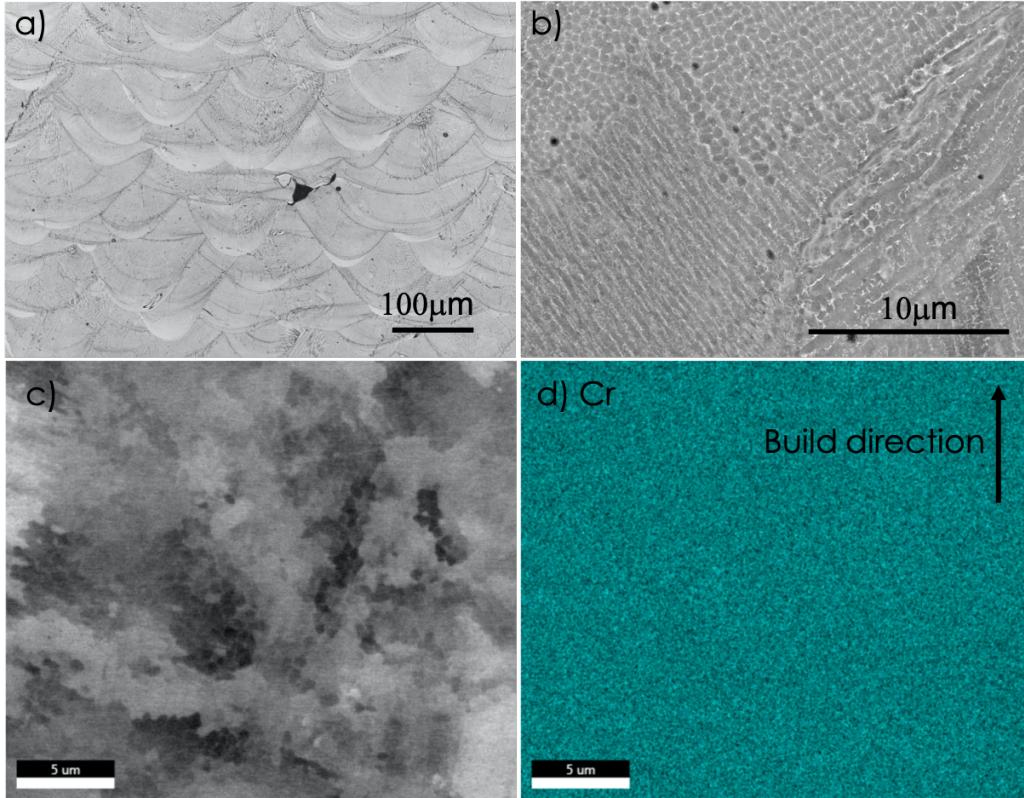


Figure 4: As printed LPBF HK30Nb along the build direction, a) Etched optical micrograph showing lack of fusion at melt pool boundaries, b) Etched BSE-SEM micrograph highlighting equiaxed and elongated cellular structures, c) BSE-SEM micrograph showing a similar cellular structure, d) corresponding EDS Cr map

157 The TEM images shown in Figure 5a and 5b confirmed the presence of
 158 $0.55 \mu\text{m}$ cellular structure, with a high dislocation density in the cell walls.
 159 The Nb and Cr chemical maps (Figure 5c) revealed the presence of fine Nb-
 160 rich carbides as well as Cr segregation and/or Cr-rich precipitates in the
 161 cell walls. Figure 5d also highlights the presence of small elongated Nb-rich
 162 carbides at grain boundaries. A few Cr-rich and Al-rich oxides were also
 163 observed at grain boundaries or inside grains, respectively.

Figure 5: a) BF-STEM image of as-printed LPBF HK30Nb rod, b) and c) higher magnification BF-STEM images of the cellular structure with corresponding EDS elemental maps of Nb and Cr and d) higher magnification BF-STEM images of a random grain boundary with corresponding EDS elemental maps of C, Nb, O, Al and Cr

164 *3.2. Tensile Properties*

165 The tensile properties of the LPBF HK30Nb along the build direction
 166 for the SS3 and standard-size specimens are compared in Figure 6 with the
 167 tensile properties generated perpendicular to the build direction with SS3
 168 specimens. The tensile curve examples presented in Figure 6a show that
 169 the key difference between the SS3 and standard specimens lies on the erro-
 170 neous elastic portion of the SS3 curves due to the compliance of the tensile

171 machine. This is the reason why uniform and total plastic elongations are
172 reported here. In addition, the arrow in Figure 6a highlights that serrated
173 tensile curves were observed at 600°C, indicating that dynamic strain aging
174 took place. At $T < 600^\circ\text{C}$, the yield strength and UTS of the LPBF HK30Nb
175 steel perpendicular to the build direction were slightly higher than the yield
176 stress and UTS in the longitudinal direction, with a more significant differ-
177 ence for the yield stress at room temperature. Both the yield strength and
178 UTS values were comparable at $T > 700^\circ\text{C}$. In both directions, the total plas-
179 tic deformation decreased progressively with increasing temperature, and the
180 ductility was higher at all temperatures perpendicular to the build direction.
181 The uniform elongation remained the same at 20-400°C, decreased slightly at
182 600°C and then drastically decreased at $T > 700^\circ\text{C}$. Data generated at 20°C
183 and 700°C with standard specimens were very consistent with the results
184 generated on small SS3-type dog bone specimens except for the lower du-
185 tility at 700°C. Lower ductility for standard specimens in comparison with
186 SS3-type specimens were previously reported by Dryepondt et al. [13] for
187 316L fabricated by LPBF. Gussev et al.[29] studied in details the effect of
188 scale factor on tensile testing and attributed higher ductility for SS3-type
189 specimens to a change of stress state in the necking zone.

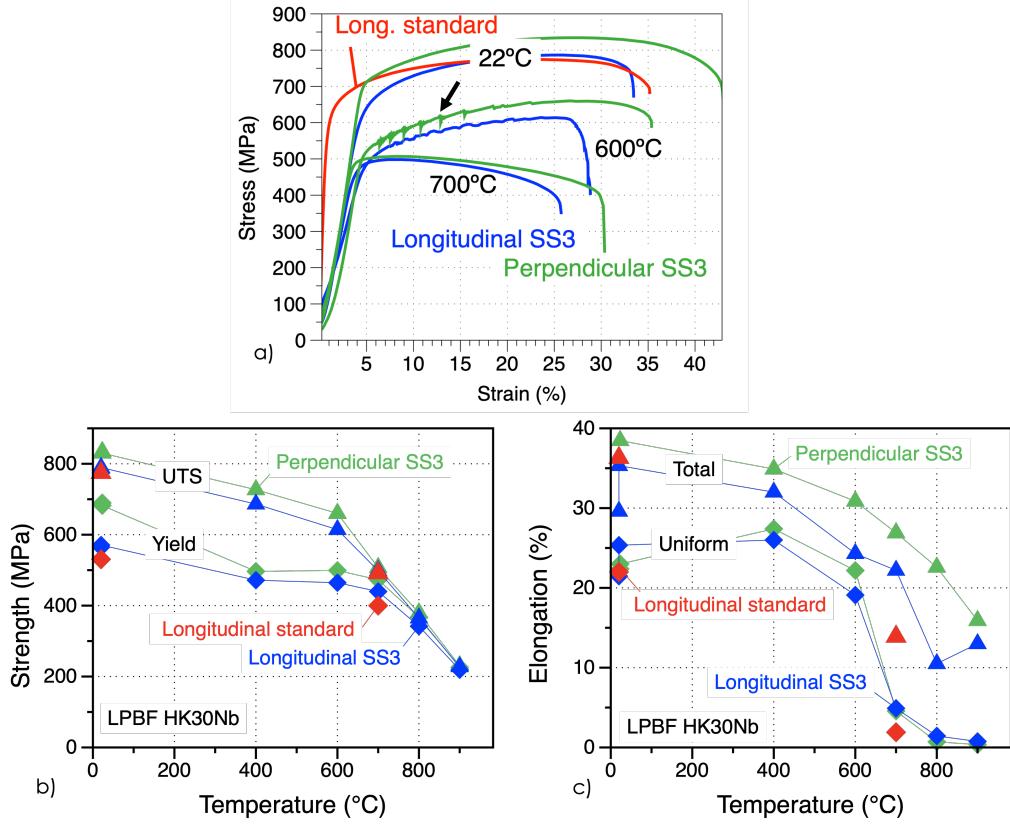


Figure 6: Tensile properties of LPBF HK30Nb along and perpendicular to the build direction, a) Examples of tensile curves at 22°C, 600 °C, 700 °C. Black arrow highlights serrated curves at 600 °C b) Yield and ultimate tensile strength, c) Uniform and total elongation. Two tests were conducted at room temperature along the build direction

190 The tensile properties of the LPBF HK30Nb steel along the build direction
 191 are compared in Figure 7 with the tensile properties of cast HK30Nb
 192 [33, 34], wrought 310 [35, 36] and wrought 310HCbN/HR3C [37, 38]. Grain
 193 sizes were estimated to be 70-75 μm for the HK30Nb, 100 μm and 25 μm
 194 for the 310 in the Shi et al. and VanEcho et al. studies, respectively, and
 195 50-60 μm for the 310HCbN. The yield strength values for the cast HK30Nb
 196 and wrought 310-type steels were significantly lower compared to the yield
 197 values for LPBF HK30Nb at 20-900°C, with notable variations between the
 198 wrought 310 data reported by Shi et al. and VanEcho et al.[35, 36]. The
 199 UTS of the LPBF HK30Nb steel was also superior to the UTS of HK30Nb
 200 and 310 steels at all temperatures. Finally, the wrought 310-type steels ex-

201 hibited superior ductility with elongation at rupture varying from 35% to
202 75% . The ductility of the cast HK30Nb was similar to the ductility of the
203 LPBF HK30Nb steel at $T = 600^{\circ}\text{C}$ and 700°C but superior at 800°C and
204 900°C . To further analyse the relationship between ductility and strength,
205 the total elongation versus yield strength at room temperature for the LPBF
206 HK30Nb steel is compared in Figure 8 with literature data for LPBF 316L
207 [4, 20, 39] and wrought / cold rolled (WCR) 310 [35, 36, 40]. The LPBF
208 HK30Nb data generated along the build direction at room temperature are
209 consistent with the trend observed for WCR 310 while data generated per-
210 pendicular to the build direction matched the trends for the LPBF 316L.
211 Finally, pole and inverse pole figures in the necking zone and head of tensile
212 specimens tested at 20°C and 600°C are displayed in Figure 9. As reported
213 by Dryepondt et al.[13] for LPBF 316L, deformation twins were observed in
214 the necking zone of the specimen tested at 20°C but were not observed for the
215 specimen tested at 600°C . It is apparent from the necking zone IPF maps as
216 well as pole figures that at both room temperature and 600°C there are two
217 distinct texture contributions from $\{001\}$ and $\{111\}$ in the tensile direction.
218 Prior works have made similar observations in other austenitic stainless steels
219 [41, 42]. This texture evolution is fundamentally driven by the crystal-scale
220 plasticity which favors specific slip planes and directions for accommodating
221 plastic deformation. Grains poorly oriented for slip will either re-orient, or
222 if the stacking fault energy is sufficiently low, accommodate deformation via
223 deformation twins [42]. Elevated temperatures can significantly affect the re-
224 sulting deformed textures as slip is a thermally activated process which may
225 explain subtle differences between observed textures at room temperature
226 and 600°C .

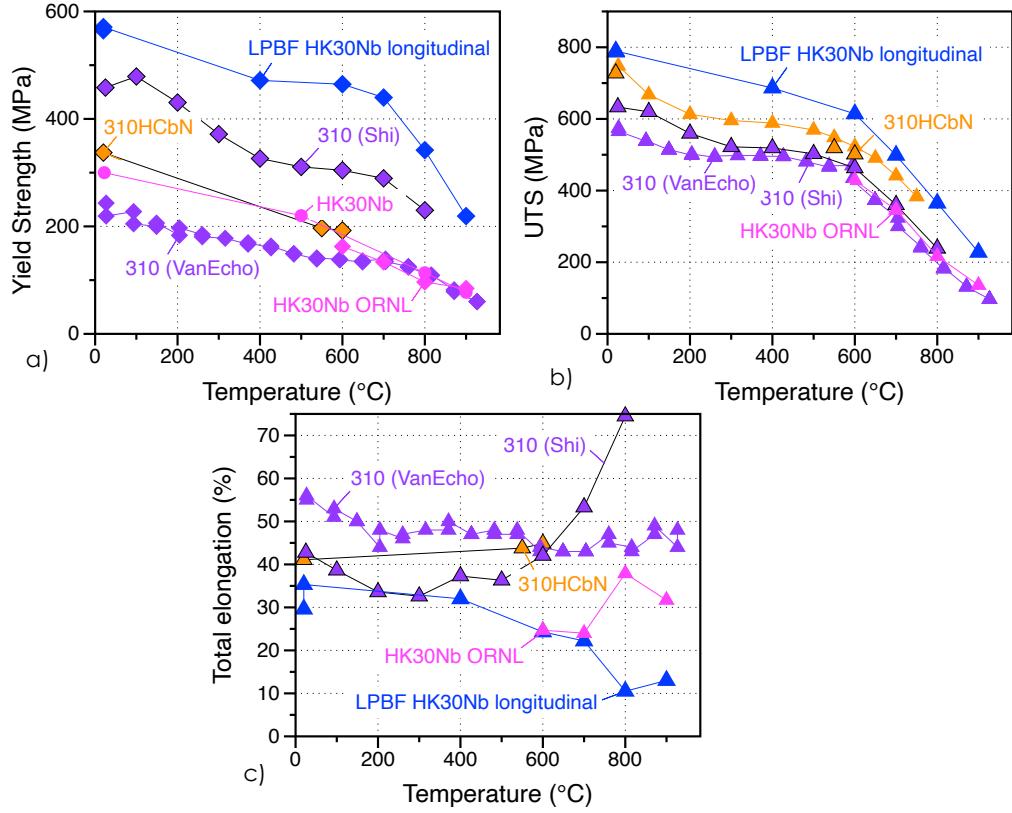


Figure 7: comparison of the tensile properties of LPBF HK30Nb, cast HK30Nb and wrought 310-type steels at 20-900°C, a) Yield and ultimate tensile strength, b) plastic deformation

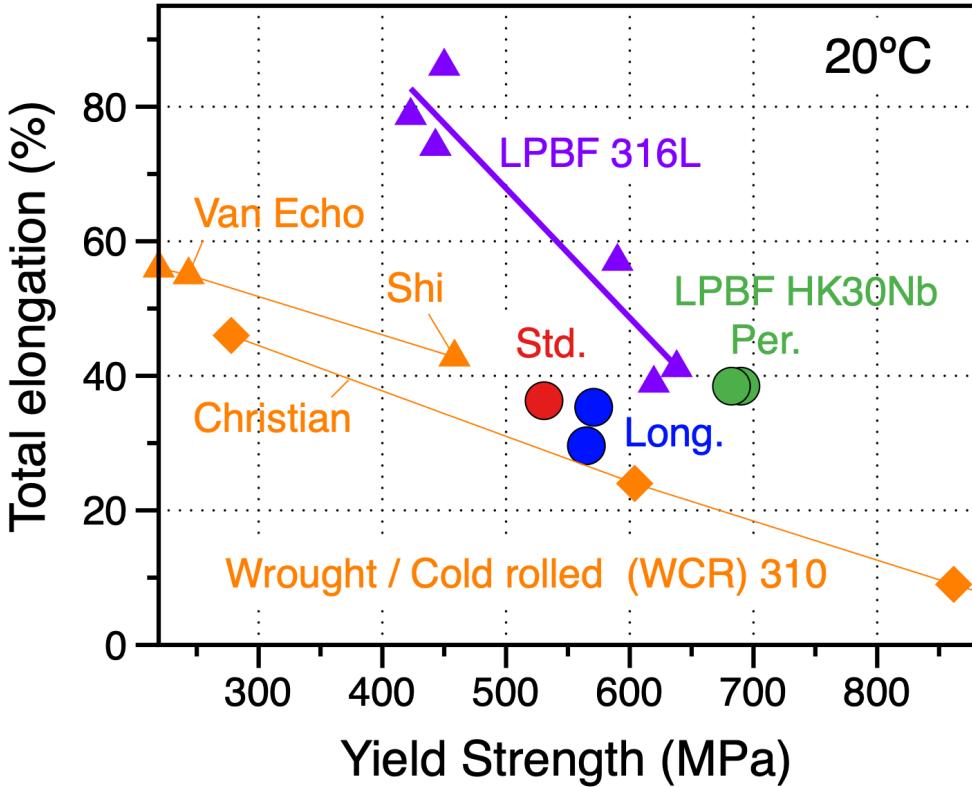


Figure 8: Comparison of the total elongation versus yield strength for the LPBF HK30Nb along (Long. and Std. for the standard size specimen) and perpendicular (Per.) to the build direction, wrought/cold rolled 310 and LPBF 316L at 20°C

227 *3.3. LPBF HK30Nb microstructure stability*

228 Initial assessment of the alloy microstructural and mechanical stability
 229 was conducted by annealing the LPBF HK30Nb steel for 5h at 800°C and
 230 then performing tensile testing at 20-900°C. The annealing temperature was
 231 selected because of its relevance for stress relief. Comparison of Figure 10a-
 232 10c with Figure 5a-5b highlights a similar cellular structure before and after
 233 annealing. EBSD maps (not shown) also revealed that the grain structure
 234 was unaffected by the heat treatment. The cellular structure size was es-
 235 timated along the build direction to confirm that the average width of the
 236 cell, about 0.5 μ m, was not affected by the 5h at 800°C anneal (Table 2).
 237 Precipitates along grain boundaries were noticed in the SEM micrographs

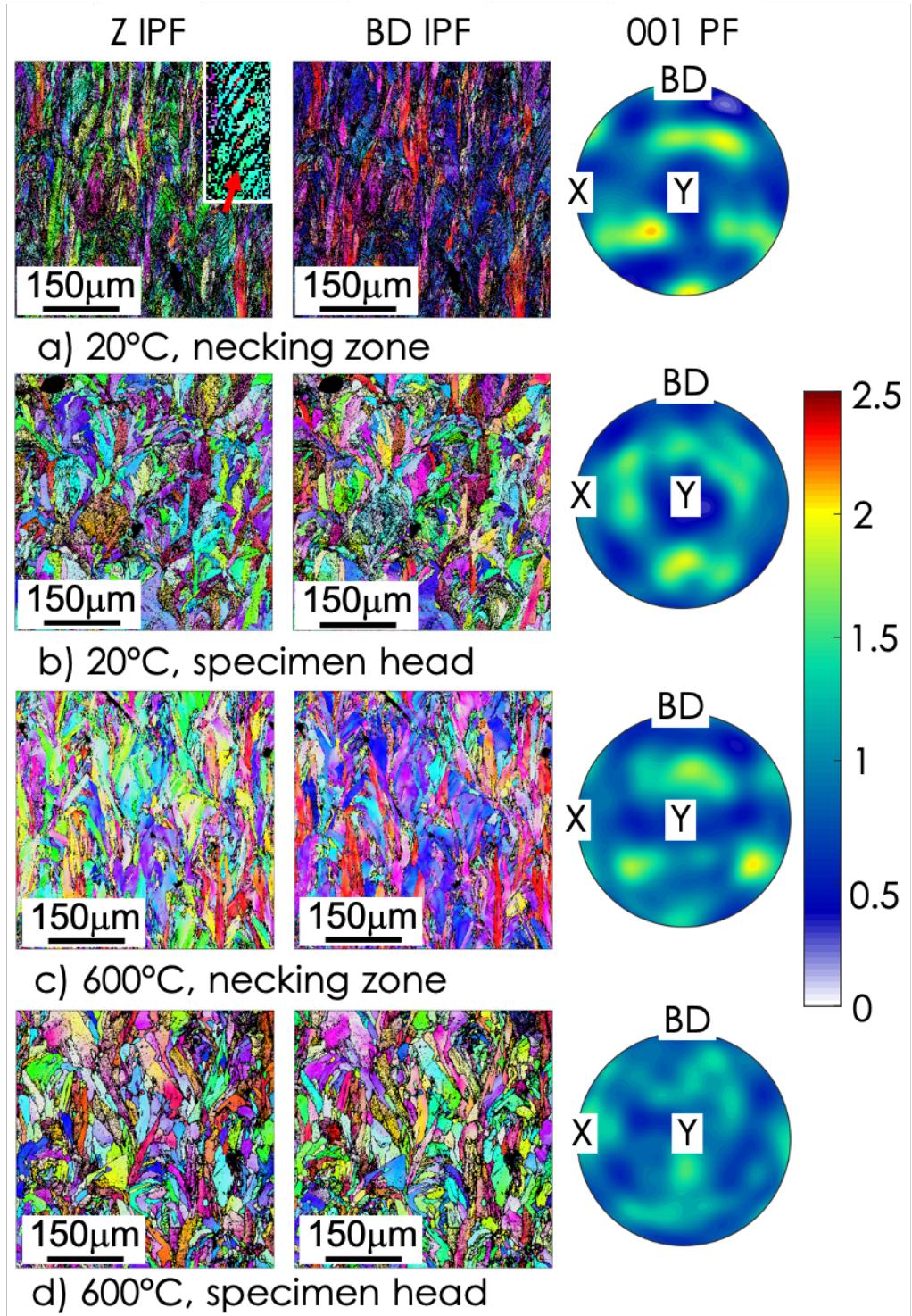


Figure 9: Inverse pole maps (left) out-of-plane sample direction (middle) vertical tensile direction and (right) 001 pole figure, a) 20 °C test, necking zone, b) 20 °C test, specimen head, c) 600 °C test, necking zone, d) 600 °C test, specimen head. Insert in a) highlights the presence of deformation twins.

238 of Figure 10a (black arrows) and TEM characterization showed that these
239 precipitates were either (Ni,Si)-rich, Cr-rich or Nb-rich (Figure 10d). As
240 observed in the as fabricated steel, many Nb-rich precipitates were present
241 in the cellular structure walls. The higher magnification STEM-EDS maps
242 shown in Figure 11 revealed in fact various precipitates in the vicinity of the
243 cell walls; (Fe,Cr,Ni)-rich precipitates, Cr-rich carbides and Nb-rich precip-
244 itates. Si segregation was observed but did not seem to be directly related
245 to any of the precipitates. At even higher magnification (Figure 12), many
246 Nb-rich carbides less than 5 nm in size could be observed in the cell interior.
247 A precise measurement of the dislocation density by TEM was difficult due
248 to the inhomogeneity of the cellular structure, but, comparing Figure 5b and
249 10b, dislocation density might be slightly reduced after 5h at 800°C.

250 Finally, the tensile properties along the build direction before and after
251 annealing for 5h at 800°C were compared in Figure 13 for the LPBF HK30Nb
252 steel and a 316L steel also fabricated by LPBF [13]. Annealing for 5h at
253 800°C led to a decrease of the yield strength at all temperatures for the
254 316L steels, while the yield strength at $T < 600^\circ\text{C}$ was higher for the HK30Nb
255 steel after annealing and similar before and after annealing at $T > 600^\circ\text{C}$. The
256 opposite was observed for the deformation at rupture with an increase at all
257 temperatures after annealing for the LPBF 316L and a decrease of ductility
258 after annealing for the LPBF HK30Nb at $T < 600^\circ\text{C}$.

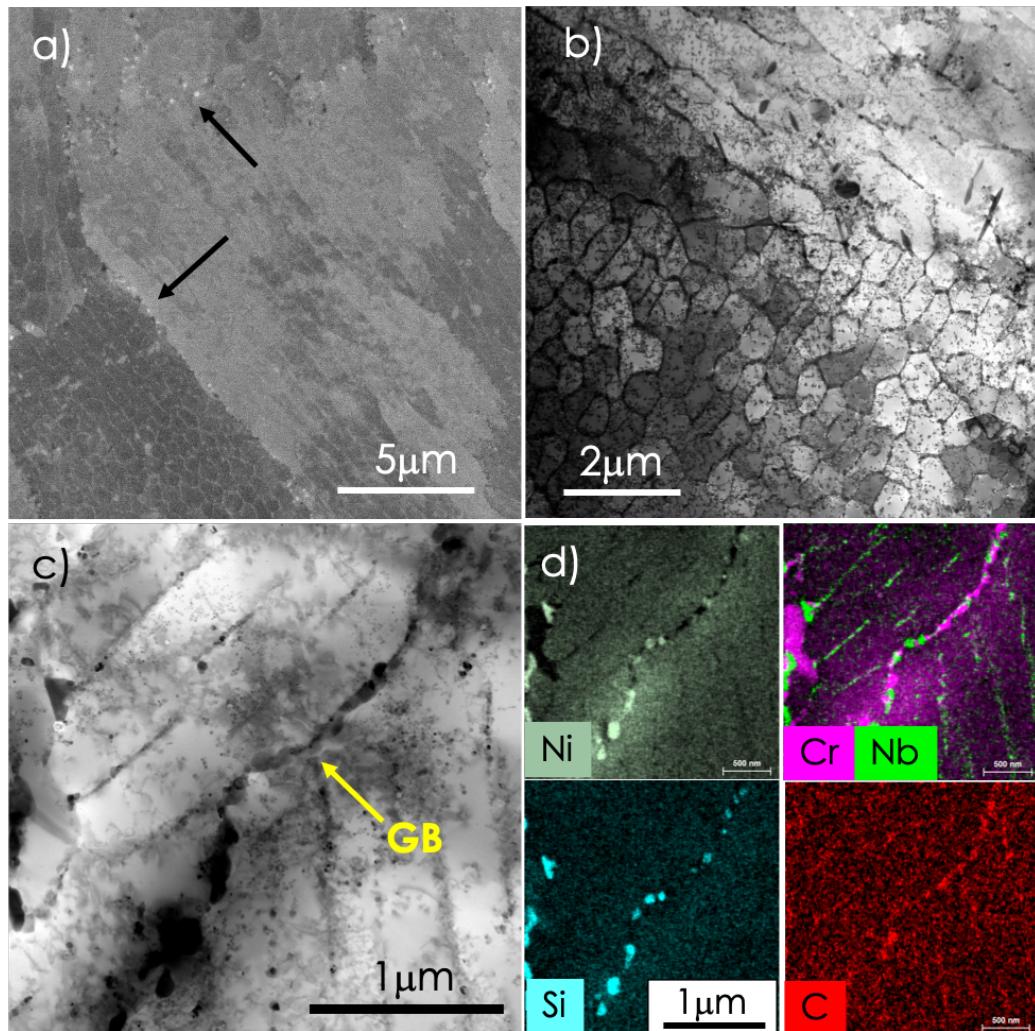


Figure 10: LPBF HK30Nb microstructure after annealing for 5h at 800°C. a) BSE-SEM image with black arrows highlighting precipitates at grain boundary. b) and c) BF-STEM images, d) EDS elemental maps of Ni, Si, Cr and Nb corresponding to Fig. 10c.

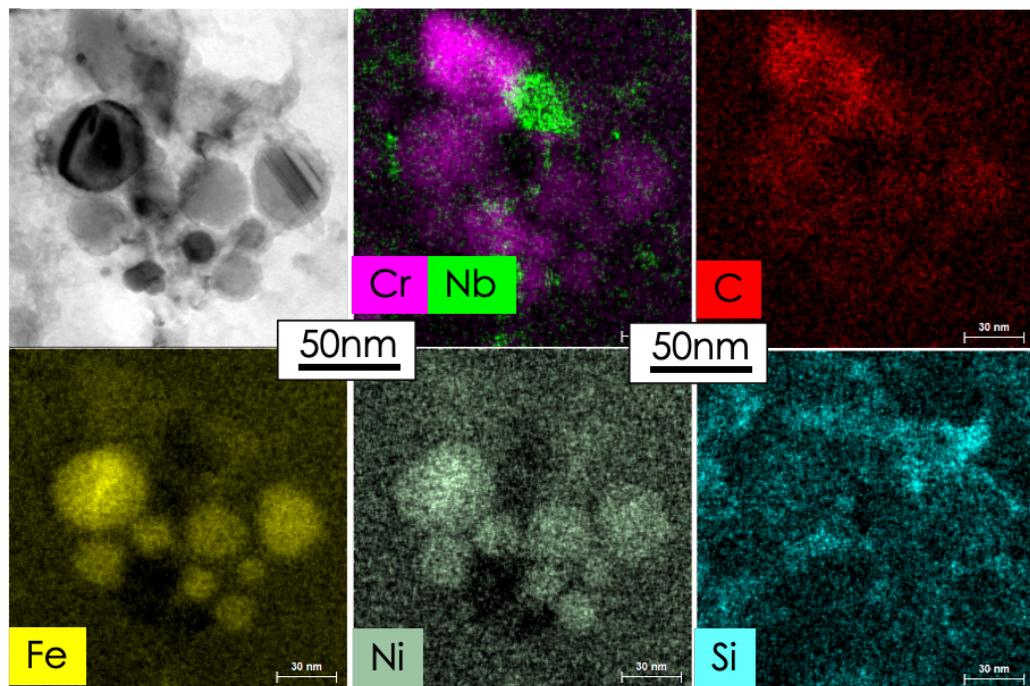


Figure 11: BF-STEM image with corresponding EDS elemental maps showing the LPBF HK30Nb microstructure in the cell wall after annealing for 5h at 800°C

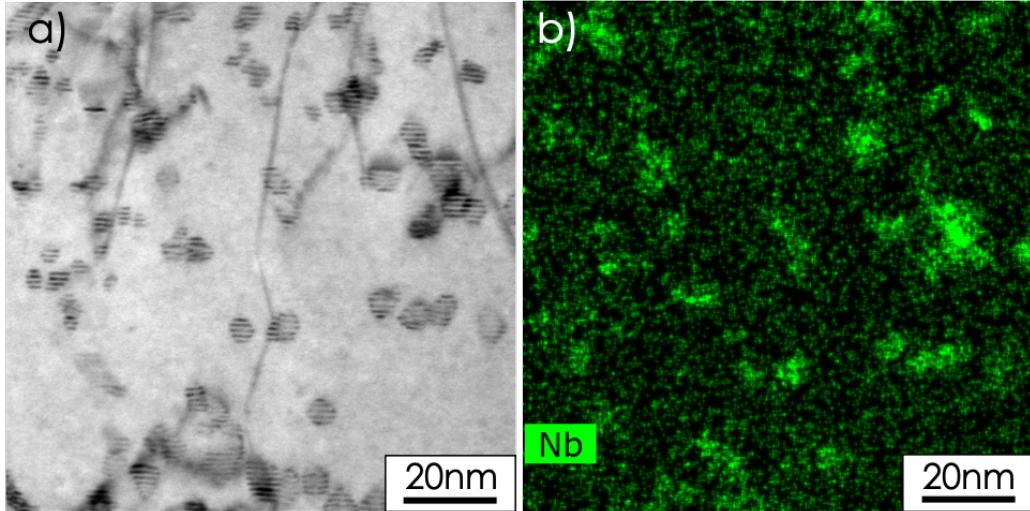


Figure 12: Nb-rich nano precipitates in the cell interior of the LPBF HK30Nb steel after annealing for 5h at 800°C, a) BF-STEM image, b) EDS Nb map

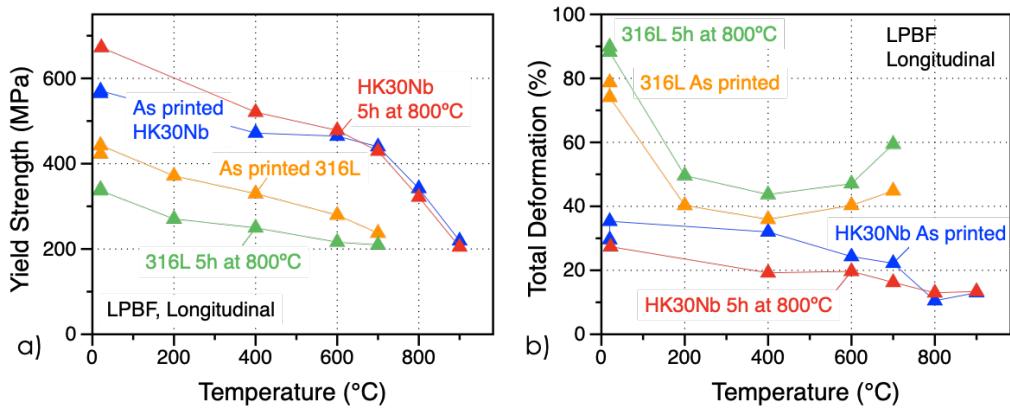


Figure 13: Comparison of the tensile properties between LPBF HK30Nb and 316L steels before and after annealing for 5h at 800°C, a) Yield strength and b) Total deformation at rupture

259 **4. Discussion**

260 *4.1. Precipitate formation*

261 The entire microstructure consists of inter cellular regions, cell wall re-
262 gions, and grain boundaries. For a given control volume, the smaller cell

263 size in comparison with grain size results in a higher fraction of cell bound-
264 aries compared to grain boundaries and thus a higher fraction of nucleation
265 sites for precipitates. The cell walls and grain boundaries can be assumed
266 to be the last to solidify and the inter-cellular regions the first to solidify.
267 The compositional gradients generated during solidification were, therefore,
268 calculated using Scheil solidification simulation considering back-diffusion of
269 solutes for the cooling rates indicative of laser powder bed fusion (10^4 K/s)
270 using the 2020a version of ThermoCalc. Table 3 shows drastic increase in C
271 and Nb and moderate increase in Cr, Mo and Si concentrations in the cell
272 walls in comparison with the inter cellular regions. Precipitation simulations
273 were conducted using thermal profiles representative of the LPBF process and
274 tensile testing conditions (Figure 14). Rapid cooling from the solidification
275 regime was first considered (10^4 K/s) followed by slow heating (10°C/min)
276 up to 900°C, the maximum tensile testing temperature. Similar simulations
277 were also conducted with the addition of a 5h anneal at 800°C step after
278 rapid cooling. For all the precipitation simulations, a representative disloca-
279 tion density of $10^{15} m^{-2}$ was chosen for the cell walls [9, 43] and the following
280 interface energies of precipitation were used: $0.25 J.m^{-2}$ for MX/austenite,
281 $0.27 J.m^{-2}$ for $M_{23}C_6$ /austenite and $0.18 J.m^{-2}$ for G-phase/austenite [43, 44].
282 A great similarity in terms of precipitates formation was predicted between
283 the cell walls and grain boundaries, and comments below for the cell walls are
284 applicable to grain boundaries. As can be seen in Figure 14, only MX were
285 predicted in the cell walls in the as printed condition, and annealing at tem-
286 perature above 600°C was required for the G-phase and $M_{23}C_6$ carbides to
287 form. The predicted fractions of G-phase and $M_{23}C_6$ increased then rapidly to
288 maximums after reaching 650°C. The fraction of $M_{23}C_6$ then plateaued while
289 a slight decrease of the G-phase fraction was observed at higher temperature.
290 For the inter cellular region, no precipitates were predicted after printing and
291 a small amount of $M_{23}C_6$ was predicted to form at $T > 600^\circ C$. Annealing for
292 5h at 800°C before heating the specimens to the tensile testing temperature
293 led to predicted precipitate fractions in the two regions similar to the maxi-
294 mum fractions previously predicted after ramping up to $T > 650^\circ C$. All these
295 simulations are in good agreement with the observed precipitates in the as
296 printed and 5h 800°C anneal conditions. The MX precipitates are consistent
297 with the Nb-rich precipitates within the cell walls and grain boundaries in
298 the as printed and annealed conditions (Figure 5 and Figure 10 to 12), and
299 the predicted $M_{23}C_6$ and G-phase precipitates after 5h at 800°C agree with
300 the Cr-rich carbides and the Ni or Si-rich precipitates observed, respectively

301 (Figures 10 and 11). A precise determination of the nature of all the precip-
302 itates present in the material before and after annealing is beyond the scope
303 of this paper and will be the topic of a subsequent article. Although relevant
304 to LPBF conditions, rapid cooling does not capture the full thermal profile
305 during printing. Repetitive laser exposure will result in thermal cycling, and
306 Sabzi et al. [45] predicted four cycles with peak temperatures of 2675 K,
307 2119 K, 1563 K and 1006 K. The simulations shown in Figure 14c revealed
308 that the final volume fraction of MX precipitates was similar whether ther-
309 mal cycling was considered or rapid cooling (10^4 K/s) from the solidification
310 regime was simply assumed. Phase predictions based on rapid cooling are,
311 therefore, relevant. In addition, previous simulations did not integrate the
312 30min hold time before tensile testing. As can be seen in Figure 14d for the
313 fraction of $M_{23}C_6$ carbides, calculations were also performed considering the
314 30min hold time before testing at 600 °C and 900 °C to highlight the limited
315 impact of the 30min hold time on microstructure evolution. Finally, to assess
316 the stability of these precipitates, equilibrium phase fractions were compared
317 in Figure 15 for the powder, cell wall, and inter cellular region using Table
318 1 and 3 chemical compositions. These results were also initially used to help
319 determine the relevant phases to be considered in the previous calculations.
320 As can be seen in Figure 15, $M_{23}C_6$ carbides and G-phase are expected to be
321 the most stable precipitates in the cell walls, with fractions similar to what
322 was calculated previously using PRISMA after 5h at 800°C. Small fraction
323 of MX precipitates above 800°C and sigma phase between 700°C and 800°C
324 were also predicted. As expected, very low fractions of precipitates were pre-
325 dicted in the inter cellular region, with a noticeable peak for sigma phase at
326 700°C. Intermediate fraction of $M_{23}C_6$ and G-phase are expected when con-
327 sidering the powder chemistry, but the fractions fell drastically above 700°C.
328 A significant fraction of sigma phase is expected at temperature above 450°C
329 with a progressive decrease as temperature increases until the phase dis-
330 pears above 900°C. Interdiffusion between the cell wall and the inter cellular
331 region will of course take place at high temperature, leading to chemical con-
332 centrations closer to the powder chemistry over time, but retardation of the
333 sigma phase formation will likely be beneficial as will be discussed in the
334 next section.

Region	C	Nb	Cr	Mo	Si	Mn	Ni
Cell wall	0.45	3.4	33.5	1.33	1.98	0.45	28.5
Inter-cellular	0.06	0.35	30.9	0.78	1.53	0.41	29.5

Table 3: Estimate of the chemical composition in wt% in the cell wall and inter-cellular regions using Scheil solidification simulation

335 *4.2. Effect of LPBF microstructure on tensile strength*

336 *4.2.1. Impact of the dislocations within cell walls*

337 Many papers on 316L steel fabricated by LPBF highlighted the strength-
 338 ening effect of the cellular structure, with two key mechanisms being pro-
 339 posed. [4, 8, 9, 13]. Several authors simply estimated that the cellular struc-
 340 ture resulted in a strengthening effect similar to the Hall-Petch effect for
 341 grains [4, 5]:

$$\sigma_Y = \sigma_0 + kd^{-0.5} \quad (1)$$

342 where d is the average grain size

343 On the other side, Yin et al. considered that the high dislocation density
 344 within the cell walls was key, and X-ray diffraction measurements in LPBF
 345 316L steel were used to determine the dislocation contribution to the alloy
 346 yield strength according to equation [9]:

$$\sigma_Y = M\alpha\mu b\sqrt{\rho} \quad (2)$$

347 where M is the Taylor factor, α an empirical constant, μ the shear mod-
 348 ulus, b the Burgers vector and ρ the dislocation density. It is worth noting
 349 that if we consider that all the dislocations are located in the cell walls and
 350 the dislocation density in the cell walls is independent of the cell size, then
 351 the average dislocation density in the steel will be proportional to the ratio
 352 between the surface and the volume of the cell. For a cell shape based on
 353 an hexagonal prism with the height h proportional to the base edge a, the
 354 cell volume is proportional to a^3 and the cell surface to a^2 so this ratio is
 355 inversely proportional to a. Equation 1 can therefore be approximated by:

$$\sigma_Y = M\alpha\mu b C a^{-0.5} \quad (3)$$

356 Again, a linear relationship between the yield strength and $a^{-0.5}$ is pre-
 357 dicted, which could explain why a Hall Petch relationship can provide an

	Cell size in μm		
	As Printed	5h at 800°C	Longitudinal
Equiaxed	0.52 ± 0.1	0.56 ± 0.07	0.45 ± 0.05
Elongated	0.53 ± 0.08	0.52 ± 0.1	0.54 ± 0.12

Table 2: Average cell size in μm along and perpendicular to the build direction in the as printed and 5h at 800°C anneal conditions. Only the width of the elongated cells was estimated.

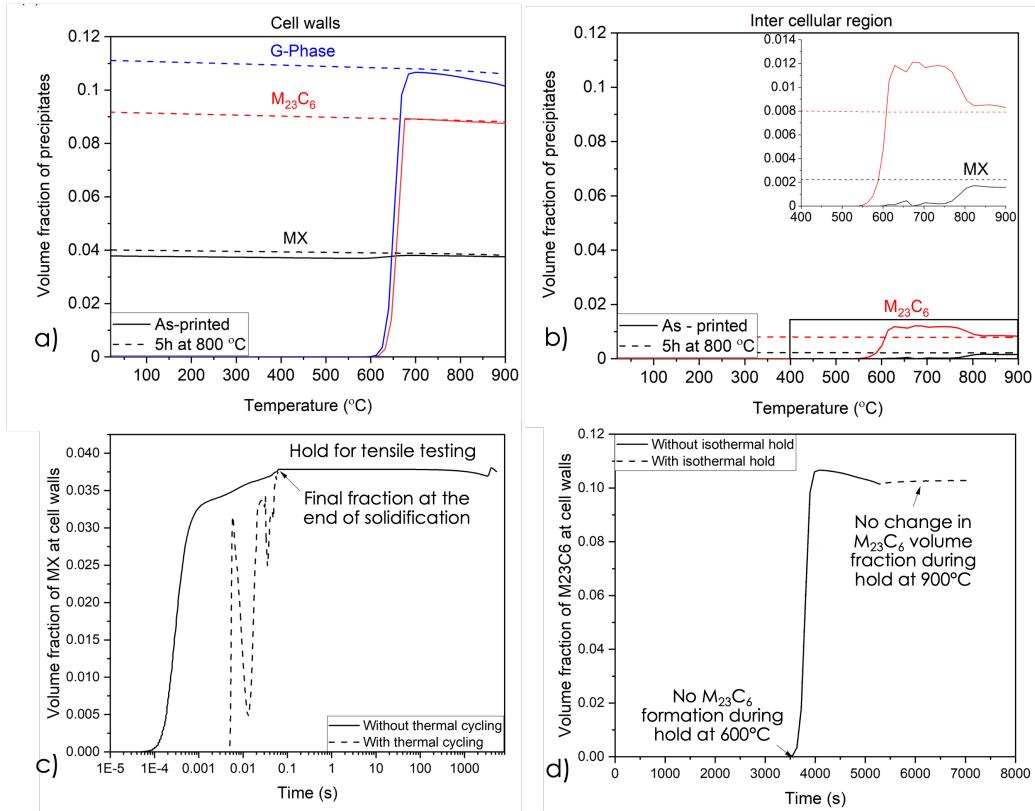


Figure 14: Precipitate evolution at a) cell walls, b) inter-cellular regions computed using PRISMA. It should be noted that G-Phase does not form in the inter-cellular regions and hence not represented in the figure. The solid line represents precipitate evolution post fabrication upon heating to tensile testing. The dotted lines represent precipitate evolution after isothermal aging at 800°C for 5 hours and heating the aged sample to tensile testing temperature. c) Volume fraction of MX precipitates considering either the thermal profile proposed by Sabzi et al. [45] or rapid cooling, d) Calculation showing the limited impact of a 30min hold time at 600 °C or 900 °C on the volume fraction of $M_{23}C_6$

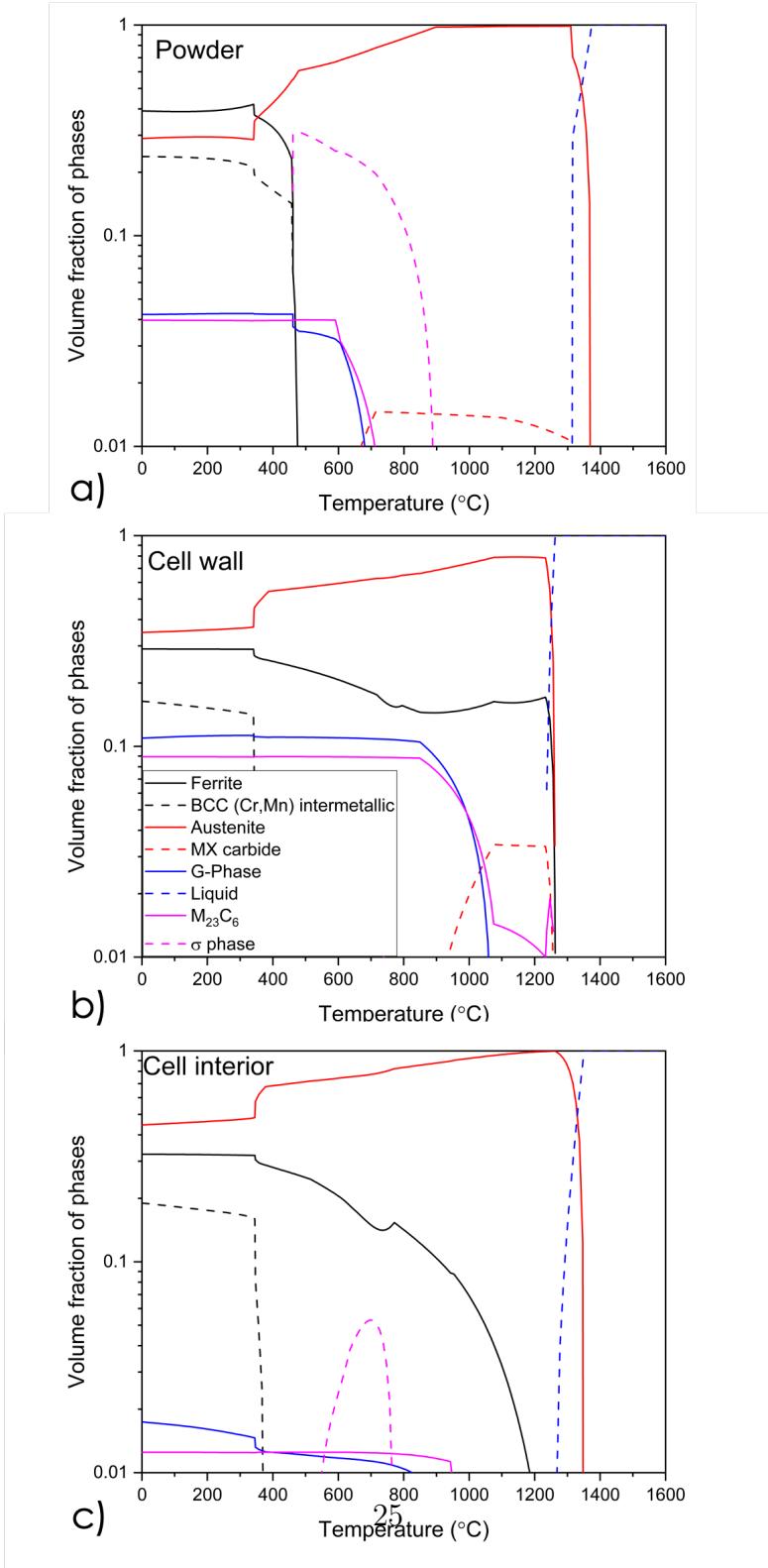


Figure 15: Equilibrium phase fraction evolution a) for the nominal powder chemistry, b) for the inter-cellular region, and c) for the intra-cellular region based on the composition summarized in Table 1 and 3. Legend is the same in a), b) and c)

358 adequate estimate of the LPBF 316L alloy yield strength. Wang et al. esti-
359 mated σ_0 and k in equation (2) to be equal to 183 MPa and 254 MPa $\mu\text{m}^{-0.5}$,
360 respectively, for wrought 316L based on literature data and they measured a
361 quite similar relationship for the LPBF 316L when considering the cell size
362 instead of the grain size. The Hall-Petch parameters have not been deter-
363 mined for wrought or cast 310-type steels and they should differ from the
364 316L parameters, in particular σ_0 , since the alloy chemistry and therefore
365 the solid solution strengthening [46], are different. As a first approximation,
366 we used the 316L Hall Petch relationship with our cell size value of 0.53 μm ,
367 and calculated a yield strength of 532 MPa for the LPBF HK30Nb steel,
368 compared to a measured value of 568 MPa. This result indicates that, as
369 for LPBF 316L, the cellular structure is likely playing a key role in the high
370 yield strength values observed for the LPBF HK30Nb steel. Significantly
371 higher yield strength values were measured for the LPBF HK30Nb in com-
372 parison with wrought or cast 310-type steels (Figure 7) but Figure 8 shows
373 that these yield strength values are consistent with a cold rolled 310 steel
374 with high dislocation density. The specific chevron-like grain structure of
375 the LPBF HK30Nb alloy with numerous small grains led to an average grain
376 size of 10-12 μm , significantly lower value than the average grain sizes for
377 the 310-type cast and wrought alloys, estimated to be between 25 and 100
378 μm . This value of 10-12 μm is still 20 times larger than the 0.5 μm average
379 cell size, resulting in minor effect of the grain size on the tensile strength in
380 comparison with the cellular structure impact.

381 *4.2.2. Impact of precipitates in the cell walls*

382 Strengthening of LPBF 316L steels due to the presence of nano precip-
383 itates, mainly SiO_2 , has been proposed by a few authors [11] but others
384 concluded that this effect was likely minimal [4, 39]. In the as printed con-
385 ditions, Figure 8 shows that the yield strength at room temperature of the
386 LPBF HK30Nb steel is similar to the yield strength of LPBF 316L steels
387 with similar cellular structure size (0.5 μm). Assuming that the solid so-
388 lution strengthening is not significantly different between LPBF 316L and
389 HK30Nb alloys, then we can conclude that the nano Nb-rich carbides do not
390 impact drastically the LPBF HK30Nb steel strength. In addition, Ekstrom
391 et al.[33] reported that NbC precipitates in an HK30Nb alloy only slightly
392 increased the yield strength of the alloy in comparison with a similar Nb-
393 free HK30 alloy. Interestingly, the higher yield strength values observed at
394 20-600°C after annealing for 5h at 800°C can be attributed to the nucleation

395 and growth during annealing of new precipitates such as $M_{23}C_6$ and G phase
396 precipitates. This is particularly remarkable when considering that a small
397 decrease of the yield strength would be expected due to reduction of the
398 dislocation density after annealing. At testing temperature $> 600^\circ\text{C}$, these
399 precipitates will form during the 30min soak time and similar yield strength
400 values were observed before and after annealing at $T > 600^\circ\text{C}$. In conclu-
401 sion, the precipitates do increase the LPBF HK30Nb yield strength but this
402 effect is quite moderate in comparison with the dislocation/cell structure ef-
403 fect. In addition, precipitates in the cell walls are likely to play a key role
404 in stabilizing the cellular structure by pinning dislocations within the walls.
405 Figure 10 shows, indeed, that the cellular structure in the LPBF HK30Nb
406 steel was stable after annealing for 5h at 800°C contrary to what has been
407 reported by others for LPBF 316L at 800-900°C [10, 19, 13]. The cellular
408 structure stability at 800°C explains the similar or higher yield strength mea-
409 sured after annealing for 5h at 800°C when a significant decrease of the yield
410 strength was observed for the LPBF 316L (Figure 13a). It is worth noting
411 that dislocation pinning by fine carbides or carbonitrides is key to the creep
412 performance of advanced 310-type or 347-type steels and the high density of
413 carbides in the LPBF HK30Nb cell walls will likely have a positive impact
414 on the steel creep performance [25, 26, 47]. Based on these initial high tem-
415 perature tensile results, creep tests were initiated and will be reported in a
416 subsequent publications.

417 4.3. Effect of LPBF HK30Nb microstructure on ductility

418 LPBF 316L steels have attracted remarkable attention due to the combi-
419 nation of high strength and high ductility at room temperature in compari-
420 son with wrought 316L [3][4][5][8][9]. Figure 8 shows, indeed, that for a given
421 yield strength, the ductility of LPBF 316L is superior to the ductility of cold
422 rolled wrought 316L at yield strength below 650MPa. The great ductility of
423 the LPBF 316L steel was attributed to a strong interaction between defor-
424 mation twins and dislocations in the cell walls[4, 8, 6]. Dryepondt et al. [13]
425 showed, however, that the ductility of LPBF 316L decreased significantly at
426 temperature above 200°C due to a change in deformation mechanisms, i.e.
427 without deformation twins at $T > 200^\circ\text{C}$. Reduction of the steel ductility was
428 also attributed to dynamic strain aging (DSA), with serrated curves observed
429 at 600°C . Figure 9 shows similar microstructural observations for the LPBF
430 HK30Nb steel, with deformation twins being present in the specimen tested
431 at room temperature but not in the specimen tested at 600°C . In addition,

432 a serrated tensile curve was observed at 600°C (Figure 6a) indicating that
433 DSA is also decreasing the LPBF HK30Nb steel ductility at high tempera-
434 ture. Figure 8 shows that the LPBF HK30Nb ductility is consistent with the
435 ductility of LPBF 316L with similar yield strength indicating that the initial
436 high density of Nb-rich precipitates in the cell wall and at grain boundaries
437 do not significantly affect the steel ductility. Of course, the presence of NbC
438 precipitates is not the only difference between the two alloys, but Figure 7
439 also shows that the ductility of the Nb(C,N)-containing 310HCbN steel [26]
440 is in the ductility range of the Nb-free 310 steels. Formation of $M_{23}C_6$ and
441 G-phase precipitates led only to a slight reduction of the steel ductility at
442 temperature below 600°C, but long-term annealing is required to character-
443 ize precipitate evolution and its impact on the alloy ductility. $M_{23}C_6$, sigma
444 and G-phase precipitates have been reported to form at grain boundaries
445 after creep testing at 750°C in an HK30Nb alloy [28] and all these phases are
446 known to embrittle grain boundaries in 310-type steel [48, 49, 50]. Neverthe-
447 less, the cell structure in LPBF open new opportunities for alloy design with
448 the formation of nano precipitates in the cell walls to improve the alloy high
449 temperature mechanical properties.

450 **5. Conclusion**

451 An advanced austenitic steel, HK30Nb (Fe-25Cr-20Ni-Nb-C), was suc-
452 cessfully fabricated by laser powder bed fusion. An alloy density superior to
453 99.7% was achieved with no cracks and a 500nm cellular structure similar to
454 what has been reported for LPBF 316L. A key difference was the presence
455 of nano Nb-rich carbides in the cell walls in the as printed conditions. After
456 annealing for 5 at 800°C, various precipitates formed, mainly in the cell walls,
457 in agreement with kinetic/thermodynamic calculations which predicted the
458 formation of $M_{23}C_6$ and G-phase precipitates. As expected, the high disloca-
459 tion density in the cell walls led to a significant increase of the steel yield and
460 ultimate tensile strength at 20-900°C in comparison with wrought and cast
461 310-type steels. The high density of precipitates likely played only a mod-
462 erate role in the alloy strength but helped stabilize the cellular structure up
463 to 800 °C. Modification of the alloy chemistry to nucleate nano precipitates
464 in the cell walls is a very promising strategy to develop unique high strength
465 high temperature alloys.

466 **6. Acknowledgements**

467 The authors would like to thank K. Carver, K. Hedrick, C.S. Hawkins,
468 T. M. Lowe and V. Cox for assistance with the experimental work, and M.
469 Romedenne and J. Jun for reviewing the manuscript. This research was
470 sponsored by the US Department of Energy, Office of Energy Efficiency and
471 Renewable Energy (EERE), Vehicle Technologies Office, Propulsion Materi-
472 als Program, under contract DE-AC05-00OR22725 with UT-Battelle LLC
473 and performed in partiality at the Oak Ridge National Laboratory's Manufac-
474 turing Demonstration Facility, an Office of Energy Efficiency and Renewable
475 Energy user facility.

476 **References**

477 [1] K. Saeidi, X. Gao, Y. Zhong, Z.-J. Shen, Hardened austenite steel with
478 columnar sub-grain structure formed by laser melting, *Materials Science*
479 and *Engineering A* 625 (2015) 221–229.

480 [2] R. Casati, M. Lemke, M. Vedani, Microstructure and fracture behavior
481 of 316l austenitic stainless steel produced by selective laser melting,
482 *Journal of Materials Science and Technology* 32 (2016) 738–744.

483 [3] Y. Zhong, M. Liu, S. Wikman, D. Cui, Z. Shen, Intragranular cellular
484 segregation network structure strengthening 316l stainless steel prepared
485 by selective laser melting, *Journal of Nuclear Materials* 470 (2016) 170–
486 178.

487 [4] Y.-M. Wang, T. Voisin, J.-T. McKeown, D. Cui, Z. Shen, Intragranular
488 cellular segregation network structure strengthening 316l stainless steel
489 prepared by selective laser melting, *Journal of Nuclear Materials*, *Journal*
490 of *Nuclear Materials* 470 (2016) 170–178.

491 [5] M.-S. Pham, B. Dovgyy, P.-A. Hooper, Twinning induced plasticity in
492 austenitic stainless steel 316l made by additive manufacturing, *Materials*
493 *Science and Engineering A* 704 (2017) 102–111.

494 [6] C. Qiu, M. Al Kindi, A.-S. Aladawi, I. Al Hatmi, A comprehensive
495 study on microstructure and tensile behaviour of selectively laser melted
496 stainless steel, *Scientific report* 8:7785 (2018) 1–16.

497 [7] P. Krakhmalev, G. Fredriksson, K. Svensson, I. Yadroitsev, I. Yadroitseva,
498 M. Thuvander, R. Peng, Microstructure, solidification texture, and
499 thermal stability of 316 l stainless steel manufactured by laser powder
500 bed fusion, *Metals* 8 (2018) 1–18.

501 [8] L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.-L. Chiu, J. Li, Z. Zhang,
502 Q. Yu, Z. Shen, Dislocation network in additive manufactured steel
503 breaks strength–ductility trade-off, *Materials Today* 21 (2018) 354–361.

504 [9] Y.-J. Yin, J.-Q. Sun, J. Guo, X.-F. Kan, D.-C. Yang, Mechanism of
505 high yield strength and yield ratio of 316 l stainless steel by additive
506 manufacturing, *Materials Science and Engineering A* 744 (2019) 773–
507 777.

508 [10] E. Tascioglu, Y. Karabulut, Y. Kaynak, Influence of heat treatment
509 temperature on the microstructural, mechanical, and wear behavior of
510 316l stainless steel fabricated by laser powder bed additive manufacturing,
511 *The International Journal of Advanced Manufacturing Technology*
512 (2020).

513 [11] D. Kong, C. Dong, S. Wei, X. Ni, L. Zhang, R. Li, L. Wang, C. Man,
514 X. Li, About metastable cellular structure in additively manufactured
515 austenitic stainless steels, *Additive Manufacturing* 38 (2021) 101804.

516 [12] Z. Li, B. He, Q. Guo, Strengthening and hardening mechanisms of
517 additively manufactured stainless steels: The role of cell sizes, *Scripta
518 Materialia* 177 (2020) 17–21.

519 [13] S. Dryepondt, P. Nandwana, P. Fernandez-Zelaia, F. List, Microstructure
520 and high temperature tensile properties of 316l fabricated by laser
521 powder-bed fusion, *Additive Manufacturing* 37 (2021) 101723.

522 [14] N. Byun, T.S.and Hashimoto, K. Farrell, Temperature dependence of
523 strain hardening and plastic instability behaviors in austenitic stainless
524 steels, *Acta Materialia* 52 (2004) 3889–3899.

525 [15] X. Wu, X. Pan, J. Mabon, M. Li, J. Stubbins, The role of deformation
526 mechanisms in flow localization of 316l stainless steel, *Journal of Nuclear
527 Materials* 356 (2006) 70–77.

528 [16] S. Hong, S. Lee, The tensile and low-cycle fatigue behavior of cold
529 worked 316l stainless steel: influence of dynamic strain aging, International
530 Journal of Fatigue 26 (2004) 899–910.

531 [17] B.-K. Choudary, Influence of strain rate and temperature on tensile
532 deformation and fracture behavior of type 316l(n) austenitic stainless
533 steel, Metallurgical and Materials Transactions A 45 (2014) 303–316.

534 [18] S.-L. Mannan, K.-G. Samuel, P. Rodriguez, Influence of temperature
535 and grain size on the tensile ductility of aisi 316 stainless steel, Materials
536 Science and Engineering 68 (1984) 143–149.

537 [19] K. Saeidi, X. Gao, F. Lofaj, L. Kverkova, Z.-J. Shen, Transformation of
538 austenite to duplex austenite-ferrite assembly in annealed stainless steel
539 316l consolidated by laser melting, Journal of Alloys and Compounds
540 633 (2015) 463–469.

541 [20] D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, L. Kui,
542 X. Li, Mechanical properties and corrosion behavior of selective laser
543 melted 316l stainless steel after different heat treatment processes, Journal
544 of Materials Science and Technology 35(7) (2019) 1499–1507.

545 [21] B. Almangour, M.-S. Baek, D. Grzesiak, K.-A. Lee, Strengthening of
546 stainless steel by titanium carbide addition and grain refinement during
547 selective laser melting, Materials Science and Engineering A 712 (2018)
548 812–818.

549 [22] B. Almangour, M.-S. Baek, D. Grzesiak, K.-A. Lee, Novel tib2-
550 reinforced 316l stainless steel nanocomposites with excellent room- and
551 high-temperature yield strength developed by additive manufacturing,
552 Composites Part B 156 (2019) 51–69.

553 [23] Y. Zhong, L. Liu, J. Zou, D. Cui, S. Z., Oxide dispersion strengthened
554 stainless steel 316l with superior strength and ductility by selective laser
555 melting, Materials Science and Technology 42 (2020) 97–105.

556 [24] T. Sourmail, Precipitation in creep resistant austenitic stainless steels,
557 Materials Science and Technology 17 (2001) 1–14.

558 [25] J.-P. Shingledecker, P.-J. Maziasz, N.-D. Evans, M.-J. Pollard, Creep
559 behavior of a new cast austenitic alloy, International Journal of Pressure
560 Vessels and Piping 84 (2007) 21–28.

561 [26] S. Vujic, R. Sandstrom, C. Sommitsch, Precipitation evolution and
562 creep strength modelling of 25cr20ninbn austenitic steel, Materials at
563 High Temperatures 32 (2015) 607–618.

564 [27] D. Pierce, A. Haynes, J. Hughes, R. Graves, P. Maziasz, G. Muralid-
565 haran, A. Shyam, B. Wang, R. England, High temperature materials
566 for heavy duty diesel engines: Historical and future trends, Progress in
567 Materials Science 103 (2019) 109–179.

568 [28] C. Oberg, B. Zhu, S. Jonsson, Creep behaviour, creep damage and
569 precipitation in the austenitic cast steel hk30 at 750c, Materials Science
570 and Engineering A 797 (2020) 140253.

571 [29] M. Gussev, J. Busby, K. Field, M. Sokolov, S. Gray, Role of scale
572 factor during tensile testing of small specimens, in: Small Specimen
573 Test Techniques: 6th Volume, ASTM International, 2015.

574 [30] M.-L. Montero-Sistiaga, S. Pourbabak, J.-V. Humbeeck, D. Schryvers,
575 K. Vanmeensel, Microstructure and mechanical properties of hastelloy
576 x produced by hp-slm (high power selective laser melting, Journal of
577 Materials Science and Technology 165 (2019) 107598.

578 [31] Y.-S. Yoo, T.-A. Book, M.-D. Sangid, J. Kacher, Identifying strain local-
579 ization and dislocation processes in fatigued inconel 718 manufactured
580 from selective laser melting, Materials Science and Engineering A 724
581 (2018) 444–451.

582 [32] M. Liu, N. Takata, A. Suzuki, M. Kobashi, Microstructural character-
583 ization of cellular alsi10mg alloy fabricated by selective laser melting,
584 Materials and Design 157 (2018) 478–491.

585 [33] M. Ekström, M. Jonsson, High-temperature mechanical and fatigue
586 properties of cast alloys intended for use in exhaust manifolds, Materials
587 Science and Engineering A 616 (2014) 78–87.

588 [34] P.-J. Maziasz, M. Wilson, Crada final report for crada number nfe-
589 08-01671 materials for advanced turbocharger designs, ORNL report
590 TM-2014/632 (2014) 1–17.

591 [35] L. Shi, D.-O. Northwood, The mechanical behavior of an aisi type 310
592 stainless steel, *Acta Materialia* 43 (1994) 453–460.

593 [36] J.-A. VanEcho, D.-B. Roach, A.-M. Hall, Short-time tensile and long-
594 time creep-rupture properties of the hk-40 alloy and type 310 stainless
595 steel at temperatures to 2000 f, *Basic Engineering* 89 (1967) 465–478.

596 [37] R.-W. Swindeman, Stainless steels with improved strength for service
597 at 760^oc and above, in: *Proceedings of the ASME Pressure Vessels and*
598 *Piping Conference*, San Diego, California, 1998, pp. ORNL/CP–97555.

599 [38] G. Golanski, A. Zielinski, M. Sroka, J. Slania, The effect of service on mi-
600 crostructure and mechanical properties of hr3c heat-resistant austenitic
601 stainless steel, *Materials* 13 (2020) 1297.

602 [39] Z. Li, T. Voisin, J.-T. McKeown, J. Ye, T. Braun, C. Kamath, W.-
603 E. King, Y.-M. Wang, Tensile properties, strain rate sensitivity, and
604 activation volume of additively manufactured 316l stainless steels, *Interna-*
605 *tional Journal of Plasticity* 120 (2019) 395–410.

606 [40] J.-L. Christian, J.-D. Gruner, L.-D. Girton, The effects of cold rolling
607 on the mechanical properties of type 310 stainless steel at room and
608 cryogenic temperatures, *NASA report CR-54614* (1965) 1–25.

609 [41] J. A. Jiménez, G. Frommeyer, Analysis of the microstructure evolution
610 during tensile testing at room temperature of high-manganese austenitic
611 steel, *Materials Characterization* 61 (2010) 221–226.

612 [42] S. Dancette, L. Delannay, K. Renard, M. Melchior, P. Jacques, Crystal
613 plasticity modeling of texture development and hardening in twip steels,
614 *Acta Materialia* 60 (2012) 2135–2145.

615 [43] V. Thampy, A. Y. Fong, N. P. Calta, J. Wang, A. A. Martin, P. J.
616 Depond, A. M. Kiss, G. Guss, Q. Xing, R. T. Ott, et al., Subsurface
617 cooling rates and microstructural response during laser based metal ad-
618 ditive manufacturing, *Scientific reports* 10 (2020) 1–9.

619 [44] N. Fujita, H.-K. D.H.Bhadeshia, Modelling precipitation of niobium car-
620 bide in austenite: multicomponent diffusion, capillarity, and coarsening,
621 Materials Science and Technology 17 (2001) 403–408.

622 [45] E. H. Sabzi, N.-T. Aboulkhair, X. Liang, X. Li, M. Simonelli, H. Fu, P. E.
623 Rivera-Diaz-del Castillo, Grain refinement in laser powder bed fusion:
624 The influence of dynamic recrystallization and recovery, Materials and
625 Design 196 (2020) 109181.

626 [46] H. Sieurin, J. Zander, R. Sandstrom, Modelling solid solution hardening
627 in stainless steels, Materials Science and Engineering A 415 (2006) 66–
628 71.

629 [47] F. Abe, M. Murata, H. Miyazaki, Effect of tic and nbc carbides on creep
630 life of stainless steels, Materials at High Temperatures 36 (2019) 37–45.

631 [48] R. Sandstrom, M. Farooq, B. Ivarsson, Influence of particle formation
632 during long time ageing on mechanical properties in the austenitic stain-
633 less steel 310, Materials at High Temperatures 29 (2012) 1–7.

634 [49] X. Bai, J. Pan, G. Chen, L. J., W. J., Z. T., T. W., Effect of high
635 temperature aging on microstructure and mechanical properties of hr3c
636 heat resistant steel, Materials Science and Technology 30 (2014) 205–
637 210.

638 [50] S. N. Dryepondt, J. Lehmusto, B. A. Pint, Effect of annealing and
639 supercritical co₂ exposure at 750c on the tensile properties of stainless
640 steel and ni-based structural alloys, Materials and Corrosion (2021)
641 1–16.