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Abstract

Connected and automated vehicles (CAVs) can bring safety, mobility,
and energy benefits to transportation systems. Ideally, CAV applica-
tions would be fully evaluated and validated prior to real-world im-
plementation. However, there are many technical challenges in both
software and hardware that hinder the process. To comprehensively
evaluate all aspects of CAV applications, an integrated evaluation en-
vironment is needed with various simulation tools from different do-
mains. In the current literature, there lacks a well-developed interface
to enable multi-resolution simulation of vehicle, traffic, virtual envi-
ronment, and hardware-in-the-loop (HIL) simulation. In this work, a
modular and flexible interface is developed to enable multi-resolution
vehicle and traffic co-simulation for CAV applications. This interface
is built upon Oak Ridge National Laboratory’s Real-Sim approach,
can support various simulation tools and real-time X-in-the-loop (XIL)
simulations, and is based on network communication protocols. The
network communication delays are analyzed for simultaneous connec-
tion of up to 20 simulators. Then, two example applications are studied
to demonstrate the potential usage of the Real-Sim interface: (1) a cen-
tralized merging scenario where the dynamics of two ego vehicles are
emulated with detailed vehicle and powertrain dynamics models; and
(2) a signal-controller-in-the-loop (SCIL) evaluation where one inter-
section of the simulated traffic scenario is controlled by a physical sig-
nal controller. This Real-Sim interface is a tool that allows researchers
to bring real, tangible hardware and software into simulated environ-
ments to comprehensively evaluate and support a wide variety of CAV
applications.

Keywords: connected and automated vehicle, hardware-in-the-loop,
evaluation, simulation, co-simulation

Introduction

The connected and automated vehicle (CAV) is an emerging technol-
ogy that has the potential to improve the safety, energy efficiency, and
mobility of transportation systems [1]. Vehicles equipped with vehicle-
to-X (V2X) communication and perception sensors can obtain new
traffic information regarding surrounding vehicles’ position and speed,
signal phase and timing (SPaT), driving situation (e.g., work zones,
accidents, congestion), and other information in real-time. This in-
formation can greatly improve CAVs’ awareness of both current and
future traffic conditions. Leveraging vehicle automation, various CAV
applications can be developed to control a vehicle in an intelligent way
to benefit transportation systems. For example, energy-efficient vehi-
cle speed control strategies can be developed for CAVs by focusing
on minimizing energy consumption. These strategies require future
traffic prediction and an optimization algorithm [2]. Traffic predic-

tion is enabled by the new information from connectivity and sensors,
and an optimal control problem is then formulated and solved for a
look-ahead horizon to minimize vehicle energy consumption [3, 4]. To
ensure safety, the vehicle is subjected to traffic constraints such as safe
following distance, traffic lights, speed limits, and other traffic rules
and regulations. Coupled with vehicle speed optimization, powertrain
operation can be further optimized to increase the benefits [2, 5]. This
optimization includes methods such as optimizing power-split between
the engine and battery for hybrid electric vehicles [6, 7, 8] or optimiz-
ing shift schedules for conventional internal combustion engine-based
vehicles [9, 10]. The literature has shown that 10%-20% energy and
mobility benefits can be achieved by co-optimization of vehicle speed
and powertrain operation [2, 11]. When coordinating the motion of
multiple vehicles in proximity of each other, cooperative driving au-
tomation (CDA) applications can be developed, which further enable
benefits at the traffic level. Described in details in SAE J3216 [12]
and separated into Class A, B, C, and D, sample applications include
coordinated merging [13, 14], cooperative intersection [15], and coop-
erative situational awareness [16].

Before actual implementation in the real world, CAV applications
should be fully evaluated and validated. However, many inherent tech-
nical challenges exist [17, 18, 19] because CAV applications are com-
plex and involve many technologies, such as sensing, localization, per-
ception, communication, motion planning, and control. Existing simu-
lation tools lack the ability to comprehensively cover all these aspects
in a streamlined workflow. The fidelity of pure simulation-based ap-
proaches also depends on the accuracy of all simulated components,
such as human driver behaviors, traffic dynamics, vehicle and power-
train dynamics, traffic signal lights, V2X communication, perception
sensors, 3D road geometries, and other components that are difficult
to model. Simulating all these systems together with high fidelity is
challenging. Additionally, the simulated performance indexes such as
mobility, energy efficiency, safety, and emissions may not truly reflect
the real-world performance because of their complexities, unmodeled
dynamics, and variations. Real-world vehicle testing provides accurate
results and addresses variations in performance measurement but can
be expensive, be time-consuming, and have safety concerns. Vehicle
testing requires acquisition and maintenance of test vehicles with ma-
jor modifications to equip all necessary sensors, actuators, and com-
munication devices [20]. Also, CAV applications usually require a
minimum penetration rate of connectivity to provide benefits to trans-
portation systems [21, 22, 3]. Creating this penetration rate requires
many test CAVs and evaluating them at scale, which further increases
the level of challenges in real-world testing. An alternative approach
is hardware-in-the-loop (HIL) simulation, which has attracted a great
deal of attention from researchers [17, 23, 24]. HIL simulation in-
corporates actual physical systems, such as powertrain components or
test vehicles, with simulation, such as a simulated traffic environment.
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Also, HIL simulation has the advantage of keeping the actual dynam-
ics of complex physical systems in the loop, which is otherwise chal-
lenging to model and simulate, while at the same time avoiding the
complexity and risk of safety-related vehicle testing in the real world.

An integrated evaluation environment is needed to comprehensively
evaluate CAV applications. Often, these evaluation environments re-
quire an integration of different existing simulation tools from vari-
ous domains. Two critical aspects are the ego CAV simulation and
microscopic traffic simulation. A vehicle simulator is typically used
to develop and evaluate vehicle control software, such as an ad-
vanced driver-assistance systems (ADAS) or automated driving sys-
tems (ADS). Detailed dynamics of an ego vehicle are modeled (e.g.,
longitudinal, lateral, powertrain, and tire dynamics) with its sub-
components (e.g., steering systems and suspensions). A virtual 3D
environment is typically included to visualize and test the ego vehicle.
With the emergence of automated vehicles (AVs), many state-of-the-art
virtual environments have incorporated high-fidelity photorealism into
their simulations, as well as full perception sensor modeling and char-
acterization. Additionally, HIL and software-in-the-loop (SIL) sim-
ulation are often offered to evaluate real hardware components (e.g.,
controller-in-the-loop, camera-in-the-loop, and sensor-in-the-loop) in
the virtual environment. Vehicle simulators have been used by the au-
tomotive industry for many years and are designed to focus on the de-
tailed simulation of a standalone ego vehicle at a high level of details.
CAVs are different from conventional vehicles in that they proactively
interact with surrounding vehicles and influence the traffic system in a
feedback manner. A significant number of vehicles need to be consid-
ered to understand the impacts of CAVs to the traffic system. This char-
acteristic is typically the focus of microscopic traffic simulation tools;
the motion of each vehicle is described using behavioral models (e.g.
car-following models and lane-changing models) without considering
detailed vehicle dynamics. Therefore, traffic simulators can simulate
the vehicle interactions and traffic patterns for a scenario with few road
segments, corridors, or even a city with hundreds or thousands of ve-
hicles. Thus, the overall traffic level performance can be understood
using traffic level quantities, such as delay, travel time, and traffic flow.
Considering the different focus and levels of detail for vehicle and traf-
fic simulators, the integration of these tools to create a co-simulation
environment for the development and evaluation of CAV applications
is highly beneficial. Therefore, for ego CAVs, detailed dynamics and
performance can be simulated while their concurrent impacts to the
surrounding traffic can be fully understood.

Motivation and Contribution

Current vehicle simulators include, but are not limited to, open-source
tools such as CARLA [25], LGSVL Simulator [26], and commercial
tools such as IPG CarMaker [27], Vires VTD [28], and dSPACE ASM
[29], etc. Traffic simulation tools include the open-source SUMO [30]
and commercial software PTV VISSIM [31], Aimsun [32], among oth-
ers. Generally, these tools do not have co-simulation interfaces and
may have limited functionality if the necessary hooks exist. Ideally,
one would choose a specific vehicle simulator as well as a traffic sim-
ulator and develop a corresponding co-simulation environment once
for this structure. However, each tool has its benefits and drawbacks
which may or may not be desired for the target applications. Typically,
during the development of a CAV application, industry, government,
or academia will leverage different tools to fully evaluate the CAV
technology. Many considerations favor one tool over the other, for
example: 1) Open-source versus commercial. Open-source tools are
free, flexible, and usually update new functionalities frequently, but
they can lack support/documentation or not be fully tested. Commer-
cial tools are generally well developed but require paid licenses, which
could be expensive; 2) Level of modeling fidelity versus computational
time. Some tools have higher fidelity models (e.g., vehicle models,
sensor models, traffic models, or the visualized 3D environments), but
could have higher computational burdens; 3) Flexibility, modularity,
and user-friendly application programming interfaces (APIs). Often,
users need to implement customized models, controls, and applica-
tions. A flexible simulation tool with easy-to-implement APIs is al-

ways desirable. 4) Compatibility with standards, e.g., open-source
map-generation packages such as OpenDRIVE [33]; 5) High perfor-
mance computing (HPC) potential and scalability. Managing and eval-
uating CAV applications will be challenging if a separate integration
interface is needed every time the simulation tool is changed. The lit-
erature lacks a well-developed interface for co-simulation of vehicle,
traffic, and virtual environment for CAV applications. Eclipse MO-
SAIC [34] is a co-simulation framework designed for such purposes
using high level architecture (HLA) concepts. However, currently,
MOSAIC is only integrated with limited traffic and vehicle simulators
and is not designed for real-time HIL implementation.

The major contribution of this work is the development of a flexi-
ble Real-Sim interface that enables multi-resolution vehicle and traf-
fic simulation and X-in-the-loop (XIL) development for CAV applica-
tions. The interface is designed to be modular to support integration of
various simulation tools and real-time XIL systems and can be a criti-
cal component to facilitate the development and evaluation of percep-
tion algorithms, motion planning/control strategies, and CDAs. Figure
1 shows the potential usages of the Real-Sim interface with example
simulators and XIL systems that can be integrated. Existing simu-
lation platforms usually are designed for a specific vehicle or traffic
simulator and are not aimed for XIL integration with complete simu-
lation capabilities. Due to different protocols, APIs and program lan-
guages used by different simulators, it is challenging for researchers
to integrate various vehicle and traffic simulators and XIL systems in
a flexible way. The Real-Sim interface is developed to address these
challenges. The advantage is that the differences of simulators become
transparent to the users and the integration becomes a streamlined pro-
cess. Then users can select the relevant simulators and tools to “plug
and play” with the help of the Real-Sim interface. Oak Ridge National
Laboratory’s (ORNL’s) Real-Sim is simply defined as nearly any part
of a system can be “in the loop,” either physically or virtually. This
concept has become more evident as much of transportation research
has expanded beyond the vehicle into the traffic networks and traffic
control devices. Because of the nature of this expansion, ORNL has
adapted Real-Sim into all of its XIL capable laboratories, as well as
much of its simulation and model-based design. Real-Sim allows re-
searchers to bring real, tangible hardware and software into simulated
environments. This approach applies to a wide variety of applications,
including Real controller – Simulated vehicle, Real vehicle – Simu-
lated vehicle environment, Real SPaTs – Simulated traffic, Real time
traffic – Simulated traffic flow results, etc. The Real-Sim interface
presented in this work can be adapted to all these applications. The
interface is modular and designed to be flexible to connect to other
simulation components (e.g., traffic simulator, vehicle simulator, HIL
system, signal controller) through network communication protocols.
The Real-Sim approach and interface enables simulation feedback us-
ing relevant XIL platforms as well as actual on-road or on-track test-
ing. Then, researchers can determine how well a simulation emulates
or replicates the real world to enable realistic operations and results for
facilitating CAV technology developments [35].

The remainder of this paper is organized as the follows: First, the over-
all framework of the Real-Sim interface and its design principles are
discussed. Next, the performance of the Real-Sim interface is analyzed
in terms of the interface computational efficiency and delays. Then,
two example applications of the Real-Sim interface are demonstrated.
Finally, the conclusions are presented.

Framework of the Real-Sim Interface

Overall Architecture

The Real-Sim interface is the bridge enabling co-simulation of vehicle,
traffic, virtual environment, and XIL components. Real-Sim is imple-
mented in a Server-Client fashion with coupling between each compo-
nent through the network communication protocol TCP/IP. Thus, the
interface is fully modular and flexible and can be used to integrate var-
ious vehicle and traffic simulation tools as well as XIL components.
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*The types of traffic and vehicle simulators are for illustration only. The Real-Sim interface
is designed to be flexible and can be applied to other simulator tools and applications.
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Figure 1: Potential Usages of the Real-Sim Interface: modular and flexible integration of various simulation tools and XIL systems
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Figure 2: Architecture of the Flexible Real-Sim Interface

Figure 2 shows the overall architecture of the interface. The two ma-
jor components are: 1) the Traffic Layer, which is the core that di-
rectly connects to the traffic simulator to extract traffic information;
2) the Application Layer, which contains the programs that enable
CAV applications, such as coordinated driving control, optimal sig-
nal control, etc. The Traffic Layer acts as a Server that distributes the
traffic information to all connected Clients, such as the Application
Layer, and does not need to have any information about how Clients
will use the information. Each Client only needs to subscribe to the
information of interest (details are given in the “Message Flow” sec-

tion). A Client is essentially the Application Layer that contains the
CAV algorithms. This layer receives the traffic information and further
processes it to generate control commands for the CAV Application
Clients, which can be ego vehicle simulators, HIL testbeds, physical
signal controllers, and so on.

Depending on the specific CAV application, the Application Layer
could be applied in either the centralized architecture or distributed ar-
chitecture. In the centralized architecture, a single Application Layer
with a centralized controller that determines the control commands
for all ego vehicles and passes the commands to the CAV Applica-
tion Clients is used. This centralized Application Layer acts as the
Server to all CAV Application Clients. Each Client subscribes to the
Server to receive corresponding control commands, and the Server is
not required to know the details of the Clients. This modular design fa-
cilitates integration with different vehicle simulators and XIL testbeds
for various applications.

In the distributed architecture, each CAV Application Client is tied to
one Application Layer. Each Application Layer only holds the control
strategy for the corresponding CAV Application Client. The Traffic
Layer is then connected to multiple Application Layers, where each
subscribes to only information in proximity. The same Application
Layer program can be applied to both centralized and distributed archi-
tectures. The only difference is the number of linked CAV Application
Clients and the subscribed information. The “Example Applications”
section demonstrates the actual implementation of this Real-Sim inter-
face in two applications.

Message Flow

The Real-Sim interface is designed to integrate various simulators with
different CAV applications, as the required traffic information for each
application will be different. To maintain modularity and flexibility, the
interface can subscribe to various information types. Figure 3 shows a
typical message frame. It contains a Header, which indicates the cur-
rent simulation status, simulation time, and the total length of the mes-
sage frame; and the actual Data Frame. Currently, three types of Data
Frame are implemented: vehicle data frame, traffic light data frame,
and traffic detector data frame. The vehicle data frame contains a vehi-
cle’s state information, such as position, speed, acceleration, road link
and lane in the traffic simulator, etc. The traffic data frame includes the
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SPaT information of each intersection in the simulation. The detector
data frame has the detector events for each detector (e.g. loop detectors
or camera detectors) of each intersection. For a message frame, there
is consistently one Header that may have multiple Data Frames. Each
Data Frame can be any of the three defined types with a Data ID byte
to distinguish each type and Data Length bytes. For example, every
vehicle state will be parsed as one Data Frame. For each CAV applica-
tion, the required message types need to be defined at the outset. Then,
the Traffic Layer will be able to extract the traffic information from the
traffic simulator, and proceed to the Application Layer. Example mes-
sage subscriptions include: all vehicle states within an X meter radius
of an ego vehicle; all detector calls at an intersection; all vehicle states
at a given road link, etc.

Simulation Time 
(4 bytes)

Total Message 
Size

(4 bytes)

Data 
Length

(2 bytes)
Data Body

Data 
Length

(2 bytes)
Data Body

Header Data Frame 1 Data Frame 2

Simulation State (1 byte) Data ID (1 byte)Data ID (1 byte)

Figure 3: Typical Message Frame

Synchronization

Generally, the traffic simulator and CAV Application Clients (e.g., a
vehicle simulator) have different simulation steps. Therefore, synchro-
nization is critical for the success of co-simulation. Typically, CAV
Application Clients are actors that researchers controlled such as ego
vehicles and traffic signal controllers, while the traffic simulator sim-
ulates all the other actors in the traffic scenario. These two programs
together simulate the complete performance of all traffic actors in a dis-
tributed simulation fashion. A traffic simulator typically has a longer
time step than CAV Application Clients, which are typically imple-
mented in real-time HIL simulation with a shorter time step. In a
real-time HIL setup, CAV Application Clients often have a simulation
time aligned with the real-world time clock. Therefore, the Real-Sim
interface is designed to use the simulation time of CAV Application
Clients to trigger the traffic simulation. Figure 4 shows the overall
synchronization mechanism. As can be seen from the figure, the CAV
Application Client has faster time step which is represented by those
vertically aligned circles (this is for illustration only, the actual num-
ber of circles/time steps varies). Suppose the simulation time step of
the traffic simulator is ∆t; the current simulation time is t, which is a
multiple of ∆t (if the CAV Application Client runs on a real-time HIL
testbed, then t is also the real-world clock time). Then, the synchro-
nization occurs at every ∆t time step. The CAV Application Client
will send the actual state of the simulated traffic actor to the Real-Sim
interface, which in turn passes it to the Traffic Simulator. This is repre-
sented by the top grey arrow pointing right to left. Upon receiving this
actual state, the traffic simulator is triggered to perform one simulation
step and get the traffic states at the next time step t + ∆t. The next
time step traffic states are forwarded to the CAV Application Client
through the Real-Sim interface. Also, the Application Layer of the in-
terface sends the control commands to the traffic actor simulated by
the CAV Application Client. These are represented by the top blue
arrow and orange arrow pointing left to right. Before receiving the
traffic states and control commands, the previous traffic states and con-
trol commands were held. The CAV application kept on running as its
time step is much faster than the traffic simulator. Once the updated
traffic states and control commands are received, they are interpolated,
and the CAV Application Client simulates until it reaches simulation
time step t + 2∆t. The holding-interpolation mechanism acts as a
filter to ensure a smooth control command and addresses any interface
communication delays. The next section further demonstrates this syn-
chronization and explains the delay handling mechanism.

Delay Handling Mechanism

Figure 5 shows what will occur with no delay and one step delay in
the Real-Sim interface. In the “no delay” scenario, synchronization is
performed as expected. The synchronization between Traffic Simulator
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Figure 4: Synchronization Mechanism

and CAV Application Client is accomplished every ∆t seconds, which
is the time step of the traffic simulator. For example, at time t + ∆t
simulation time in Figure 5(a), the CAV Application Client holds the
previous traffic state (labelled as state “1”) for a short period (labelled
as “Use 1”) before receiving the next traffic state (labelled as state “2”).
Once state 2 is received, the CAV Application Client will interpolate
the state command and simulate the corresponding traffic actor. During
that short “hold last state” period, the CAV Application Client sends
the actual state 1 to the traffic simulator, and receives the state 2. The
duration of this period essentially characterizes the performance of the
Real-Sim interface in terms of the round-trip network communication
delays between the CAV Application Client and the Traffic Simulator,
which is further discussed in “Performance Analysis” section.

In “1 step delay” scenario, because of the “hold last state” mechanism,
the state commands will not break down, and there will be minimal
concern in safety when operating a HIL testbed. As shown in Figure
5(b), the CAV Application Client waits for the state command “2” until
it receives shortly after t + 2∆t seconds. The state command is kept
as the previous value for safety concerns. The received state command
“2” is interpolated toward the next time step t + 3∆t. During the in-
terpolation, since the state command “3” is received without delay, the
CAV Application Client switches the target and interpolate command
“3” toward t+ 3∆t.

Performance Analysis

Because the Real-Sim interface is based on network communication
protocols, understanding the network communication delay perfor-
mance is critical. The network communication delay was analyzed
for the Real-Sim interface for various numbers of CAV Application
Clients. The Application Layer can contain various CAV control algo-
rithms and the CAV Application Clients can include complex vehicle
simulator or HIL systems. These algorithms or complex simulators
could affect the computational efficiency and network communication
delays. To enable throughput testing of the Real-Sim interface, simple
Application Layer and CAV Application Clients were used. In other
words, the simple Application Layer only relays the traffic informa-
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Figure 5: Delay Handling Mechanism

tion to the CAV Application Client without executing any control algo-
rithms. Similarly, once the simple CAV Application Client receives a
state command, it replies with the same value to the Application Layer
and eventually to the Traffic Simulator. The network communication
delay is defined as the round-trip time from the initial time a CAV Ap-
plication Client sends out a message to the time it receives the next step
commands. This amount of time is the duration of the “Use 0”, “Use
1”, “Use 2” portions shown in Figure 5.

The Real-Sim interface can be implemented in the centralized architec-
ture or the distributed architecture as shown in Figure 2. Network com-
munication delays were analyzed for both architectures for 1, 2, 10, and
20 CAV Application Clients. In the centralized architecture, a single
centralized controller connects to all the CAV Application Clients. In
the distributed architecture, each CAV Application Client is connected
to a controller, and all controllers are connected to the traffic layer.
Figure 6a shows the delay of the centralized architecture, and Figure
6b shows the delay of the distributed architecture. The simulation was
conducted on a desktop PC with Intel Xeon W2145 CPU @ 3.70GHz
and Intel I219-LM Ethernet Adapter for more than 200 seconds with a
traffic simulator step size of 0.1 seconds. A total of more than 2,000
delay data points were recorded for every CAV Application Client. The
computational burden of the interface is low and the size of the mes-
sage sent through Ethernet is not significant. So it is anticipated to see
similar level of delays on other standard PCs.

The yellow dots in Figure 6a and Figure 6b show the average delay,
and the error bars show the 2-σ range, i.e., the upper bound is aver-
age delay plus two times standard deviation, and the lower bound is
average delay minus two times standard deviation. For all cases, the
delays are all below 0.05 seconds, which is well below the traffic sim-
ulator time step ∆t. This verifies that the current Real-Sim interface
can process at least 20 CAV Application Clients at the same time. An
example application is that 20 ego vehicles can be simulated with de-
tailed vehicle models and simulators and their benefits can be analyzed
with higher fidelity. Figure 7 shows the average delay of each CAV
Application Client scenario, e.g., for the 10-Client case, the average
delays of all 10 Clients are averaged which is about 0.014 seconds for
the centralized architecture and 0.017 seconds for the distributed archi-
tecture. It appears that the average delay increases in a near linear rate

(a) Centralized Architecture of the Real-Sim Interface

(b) Distributed Architecture of the Real-Sim Interface

Figure 6: Network Communication Delays: Using Centralized Architecture or
Distributed Architecture of the Real-Sim Interface

as the number of clients increases.

The integration of a large volume of simulators with low latency is crit-
ical to the development of CAV control technologies. Typically, these
technologies are based upon a wide array of inputs from many different
sources, such as their onboard systems, the surrounding vehicles (i.e.
CDA), and the larger traffic network. Therefore, developing these CAV
controls relies on a methodical approach utilizing various rich develop-
ment environments that enable the interaction of multiple high-fidelity
vehicle and traffic models in simulation and hardware. Introducing a
real-time constraint vets the operation of these complex CAV controls
in a vehicle and traffic environment that supports real time decision
making at various time scales. All in all, the Real-Sim interface pro-
vides a promising start to developing a framework with the appropri-
ate scaling considerations for developing and evaluating CAV controls.
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Figure 7: Average Network Communication Delays of Real-Sim Interface

This shows potential to apply and scale the Real-Sim interface to larger
numbers of clients, which will be studied in future work.

Example Applications

The Real-Sim interface was applied to two applications. In the first ap-
plication, the centralized architecture was applied where a centralized
merging controller was applied and two dSPACE SCALEXIO racks
were used to emulate the dynamics of two ego vehicles. In the sec-
ond application, the distributed architecture was applied to implement
signal-controller-in-the-loop (SCIL) simulation, in which one intersec-
tion in the traffic simulator was controlled by a physical signal con-
troller. The two applications are only examples of many potential ap-
plications that can be integrated using the Real-Sim interface. They
demonstrate the capability and potential usages of the interface. The
development of the specific application algorithms are out of the scope
of this work.

Application 1: Coordinated Merging with a Centralized
Controller

In this application, a centralized controller coordinates the arrivals of
vehicles around a merging ramp to improve energy efficiency and mo-
bility. The algorithm is illustrated in Figure 8 and are based on existing
work at ORNL [13]. It is a type of CDA algorithms where a central-
ized controller receives information of all vehicles’ position inside a
control zone near the merging area. The controller coordinates all vehi-
cles’ arrival times at the merging area based on the following principle:
a vehicle enters the control zone earlier and closer to the merging area
will have a higher priority, and hence enter the merging area earlier,
regardless of whether it is on the main road or the ramp. For example,
in Figure 8, the order will be blue car, white car, black car on the main
road, black car on ramp, and the green car. This coordination principle
can reduce potential queues and stops at both the main road and the
ramp to optimize the traffic flow and capacity at the global level. Once
the vehicle merging order is coordinated, the controller also optimizes
the desired speed of all CAVs with an analytical solution obtained us-
ing the Pontryagin’s minimum principle. The detailed algorithms can
be referred to [13].

Scenario

A single on-ramp lane merging into a single lane main road scenario
was studied with a road speed limit of 50km/h. As shown in Figure
8, two vehicles from this scenario were selected as ego vehicle—one
from the main road, and one from the merge road. These two ego ve-
hicles were modeled as Class 8 trucks, and detailed dynamics models
were simulated using two dSPACE SCALEXIO racks. ORNL has de-
veloped a library of high-fidelity vehicle dynamics models for various
types of vehicles, and the Class 8 truck model leveraged in this scenario
is in this model library. This model includes a full conventional vehicle
plant model, high fidelity vehicle dynamics, and a TCP/IP hardware in-

terface for communication with external tools. The engine is modeled
based on torque and fuel consumption maps derived from experimental
data collected at ORNL, and other components leverage representative
data available for use in the Class 8 model.

When determining the controller commands, the centralized controller
assumes simplified vehicle dynamics. The traffic simulator usually fo-
cuses on the traffic level performance (e.g., flow, travel time, delay,
etc.) with simplified vehicle dynamics as well. It is challenging to
evaluate the performance of the controller under detailed dynamics
that is close to the real-world. The Real-Sim interface can help the
inclusion of two detailed Class 8 vehicle models with the traffic sim-
ulator with small lift from the users. Figure 8 shows the information
exchange among the ego vehicle simulators and the traffic simulator.
The detailed Class 8 truck dynamics were simulated on the dSPACE
SCALEXIO, which is the CAV Application Client in this application,
whereas the remaining vehicles were simulated in the traffic simulator
SUMO. The coordinated merging algorithm was implemented in the
Application Layer of the Real-Sim interface. The merging algorithm
receives states of all traffic inside the control zone around the merging
point and optimizes the arrival time and desired speed. The desired
speed commands for the two selected ego vehicles are forwarded to
the Class 8 truck model simulated on the dSPACE boxes and the de-
sired speed commands for the remaining vehicles in the control zone
are sent to the traffic simulator. The Class 8 truck model uses a driver
model to control the vehicle accelerator and brake pedal commands to
follow the desired speed commands. The actual vehicle speed simu-
lated by the Class 8 truck model with high fidelity vehicle dynamics is
sent to the Real-Sim interface and then to the traffic simulator. Thus,
the two ego vehicles inside the traffic simulator are synchronized with
the dynamics simulated on the dSPACE boxes.

Results

Figure 9 shows the comparison of command speed, actual speed, and
simulation speed for the two ego trucks, as well as the corresponding
gear positions simulated by the detailed vehicle model on the dSPACE
SCALEXIO. The simulation speed is the vehicle speed recorded by
complete SUMO simulation without Real-Sim interface and the de-
tailed models on dSPACE. The actual speed and command speed were
obtained by co-simulation of the SUMO and two dSPACE with de-
tailed vehicle models, as shown in Figure 9. Based on the coordination
principle described earlier, the centralized controller would request de-
celeration of vehicles on either the main road or the ramp to avoid
conflicts during the merging and maximize the overall traffic through-
put. This is the reason why both ego vehicles have deceleration around
70-110 seconds. Figure 9 shows that the actual vehicle speed can gen-
erally follow the quadratic-shaped optimal speed command. However,
the actual speed is different than the speed profile purely from sim-
ulation. The overshoot behaviors and the delayed deceleration of the
actual speed profiles are because Class 8 vehicles possess large amount
of inertia. Also, at around 95 seconds, there is a speed dip for both ego
vehicles because of the transmission gear shift. This shows the dif-
ferences between the simplified vehicle model used in SUMO and a
well-developed detailed vehicle model. The Real-Sim interface can
help establish such co-simulation of traffic simulator with external de-
tailed vehicle models to improve the fidelity of the simulation and pro-
vide better evaluation on the CAV applications. The traffic scenario
is defined by the traffic simulator and users can vary either the traffic
flow conditions directly within the traffic simulator or replace the algo-
rithm in the Application Layer of the Real-Sim interface to change the
behavior of individual ego vehicle. The network communication de-
lay for this two-client centralized architecture scenario is around 0.005
seconds, which is in the similar range as those shown in Figure 6a.

Application 2: Signal-controller-in-the-loop Evaluation

In this application, a SCIL simulation was performed with the Real-
Sim interface. Existing microscopic traffic simulation uses software-
based signal controllers to emulate the operations of modern con-
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Figure 9: Simulation Results of Two Ego Trucks with Detailed Dynamics Mod-
els.

trollers. However, different signal controllers have complex built-in
logic and advanced features that are often not well-captured by simula-
tion software [36, 37]. For example, to implement coordination among
multiple intersections, mechanisms and logic are needed to synchro-
nize the controller clocks with a reference clock. Depending on the
type of controllers and their configuration, ongoing automatic adjust-
ment of the clocks takes place in the real-world and cannot be eas-
ily replicated in a software-based simulation approach. SCIL enables
realistic testing and validation of applications, such as optimized sig-
nal control [38] and vehicle-signal coordination for eco-driving, using

real-world advanced traffic signal controllers.

Scenario

The traffic scenario was conducted in SUMO and simulated based on
real-world data from a corridor at Shallowford Rd. in Chattanooga,
Tennessee [39, 40]. Figure 10 shows the traffic network in SUMO
which contains total of four signalized intersections. It replicates traf-
fic elements and operations of the real-world in a software environ-
ment. The components include (1) a road network that was created
from geographic information systems (GIS) files of the network; (2)
signal controls based on signal timing plans that are currently imple-
mented in the field; and (3) traffic volumes and turning movements at
different times of day based on data collected by smart traffic sensors
deployed along the corridor.

In this application, one of the signal controllers in the traffic simulator
SUMO was replaced with a physical signal controller using the SCIL
setup, as shown in Figure 10. A Siemens M60 Advanced Traffic Con-
troller identical to those in the field is set up in the laboratory and has
two-way communications with the traffic simulator through the Real-
Sim interface. The signal controller is the CAV Application Client to
the Real-Sim interface. As the traffic simulation executes in SUMO,
detector triggering events are sent as vehicle calls to the Real-Sim in-
terface and then the Client signal controller. The signal controller re-
sponds to these calls as if it receives real vehicle calls from detectors
in the actual field application. The real-time signal status is continu-
ously shared with the Real-Sim interface and then the traffic simulator
at 0.1 seconds intervals, which is the simulation step ∆t of the traffic
simulator. The Application Layer utilizes the NTCIP server, an exist-
ing effort between ORNL and Siemens, to communicate with the M60
controller.

Results

Figure 10 shows the screenshots during the actual SCIL evaluation.
The screenshots of the traffic simulator (SUMO) shows the intersec-
tion controlled by the signal controller. The intersection has four sig-
nal phases: 1,2,4,and 6, which correspond to westbound left, eastbound
through, westbound through, and southbound approaches, respectively.
The numbers next to the stop bar detectors indicate the corresponding
call phases. The Traffic Layer image shows that SUMO’s real-time
signal state is ‘rrrrrGGrrGGG’, which is equivalent to a green light
for phases 2 and 6. This status is the same as the active “Green On
Status” of the signal controller. The Application Layer window dis-
plays the received detector calls for all 8 phases. Each digit indicates
a phase detector call in which the rightmost one is phase 1. In this
specific case, all 4 phases have vehicles on detectors, so the calls the
Application Layer received were ‘00101011’. This phase detector call
synchronizes with those shown in the signal controller screenshot on
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the right. The signal controller receives these detector calls and react
and control the signal status and changes accordingly. This SCIL ap-
plication in this paper focuses on demonstrating the capability of the
Real-Sim interface. For simplicity, the Application Layer only relays
the information between traffic simulator and the signal controller. Fu-
ture work is planned to implement advanced signal control algorithms
(e.g., those in [38]) to the Application Layer.

Discussion

As deomonstrated, the current Real-Sim interface is capable of multi-
resolution vehicle and traffic co-simulation. However, the evaluation
and simulation of CAV applications involve many other aspects cur-
rently within the scope of the Real-Sim interface. In this section, sev-
eral critical aspects are discussed for potential future expansion of the
flexible Real-Sim interface.

These applications stress the importance of enabling communication
network simulation or communication-hardware-in-the-loop. The per-
formance of a CAV application depends on the information through
connectivity, which can be affected by the quality of communication.
The inclusion of a Communication Layer in the Real-Sim interface
will help evaluate the impacts of communication delays, packet drops,
and latency on CAV applications. A Communication Layer could po-
tentially be implemented between the Traffic Layer and Application
Layer. In this example, the Application Layer receives information
from the Communication Layer rather than directly from the traffic
simulator. Since all components are modular and connected through
network communication protocol, adding another layer to the Real-
Sim interface would be relatively straightforward and would not affect
the current implementation of other components.

Perception sensors are another critical resource to collect and parse
real-time traffic information. Sensors provide information to the Real-
Sim interface’s Application Layer, which contains the vehicle level
controller strategies. The Application Layer interacts with the sensors
mounted on a CAV operating within the virtual vehicle environment
in any CAV Application Client. As a result, the CAV sensor data can
be made available to the Application Layer through raw data stream-
ing interfaces with the virtual vehicle environment. Additionally, data
formatting services process the raw data of the virtual environment sen-

sor models into a communications protocol that the real CAV sensors
would output in a real test scenario. This formatting process ensures
that as the CAV controller is developed it can interpret simulated data
and real data with minimal added work on the controller interface layer.
Research at ORNL is being conducted toward developing the data for-
matting services that interpret the raw CAV sensor data into standard
protocols of various sensors. This work is proceeding on a sensor-by-
sensor basis currently focused on lidar and camera integration.

Performing large-scale CAV evaluation is important to fully understand
the impacts of CAV applications to the traffic flow or large areas of traf-
fic networks (e.g., to a city). The Real-Sim interface is modular and
designed to be capable of expanding to a large scale implementation,
especially with the distributed architecture. The results shown in this
work demonstrate that this interface can already simulate at least 20
ego vehicles or other CAV Application Clients. To further support large
scale implementation or take advantage of high performance comput-
ing (HPC), the Real-Sim interface could integrate parallel computation
methods or multi-threading programming. Therefore, for example, a
traffic simulator could emulate the traffic in a city-level, and the Real-
Sim interface could support hundreds of ego CAVs evaluation.

Conclusion

In this work, the flexible Real-Sim interface is developed to enable
multi-resolution vehicle and traffic co-simulation for CAV applica-
tions. The interface is modular and can integrate various simulation
tools and real-time XIL implementation. The integration with other
simulators or XIL systems is based on network communication proto-
cols and the network communication delays are analyzed. The results
show that the interface can handle more than 20 simulators at the same
time with less than 0.05 seconds of delay. This amount of delay is
well below the typical traffic simulator update frequency which is 0.1
seconds. This shows that the Real-Sim interface provides a promising
start to developing a framework with the appropriate scaling consid-
erations for developing and evaluating CAV controls. Two example
applications are studied to demonstrate the potential usage of the Real-
Sim interface: a centralized merging application where two dSPACE
SCALEXIO racks are used to emulate the dynamics of two ego vehi-
cles; a signal-controller-in-the-loop (SCIL) simulation where one in-
tersection of a digital twin of the Shallowford Rd. corridor in Chat-
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tanooga, TN is controlled by a physical signal controller. As future
work, the Real-Sim interface will be expanded to integrate communi-
cation and sensors simulation as well as large scale simulations.
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