

1 **Title: Transcriptional competition shapes proteotoxic ER stress resolution**

2 **Authors:** Dae Kwan Ko^{1,3}, Federica Brandizzi^{1,2,3*}

3 **Affiliations:**

4 ¹MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824

5 ²Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824

6 ³Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan,
7 48824

8 *Corresponding author. Email: fb@msu.edu

9

10 **Through dynamic activities of conserved master transcription factors (mTFs), the unfolded**
11 **protein response (UPR) relieves proteostasis imbalance of the endoplasmic reticulum (ER),**
12 **a condition known as ER stress^{1,2}. Because dysregulated UPR is lethal, the competence for**
13 **fate changes of the UPR mTFs must be tightly controlled^{3,4}. However, the molecular**
14 **mechanisms underlying regulatory dynamics of mTFs remain largely elusive. Here, we**
15 **identified the abscisic acid (ABA)-related regulator G-class bZIP TF2 (GBF2) and the *cis*-**
16 **regulatory element G-box as regulatory components of the plant UPR led by the mTFs,**
17 **bZIP28 and bZIP60. We demonstrate that, by competing with the mTFs at G-box, GBF2**
18 **represses UPR gene expression. Conversely, a *gbf2* null mutation enhances UPR gene**
19 **expression and suppresses the lethality of a *bzip28 bzip60* mutant in unresolved ER stress. By**
20 **demonstrating that GBF2 functions as a transcriptional repressor of the UPR, we address**
21 **the long-standing challenge of identifying shared signaling components for a better**

22 **understanding of the dynamic nature and complexity of stress biology. Furthermore, our**
23 **results identify a new layer of UPR gene regulation hinged upon an antagonistic mTFs-GFB2**
24 **competition for proteostasis and cell fate determination.**

25 Dynamic reprogramming of gene expression is universally important for stress responses⁵
26 and is orchestrated primarily by TFs that regulate target genes by binding short DNA sequences
27 on the genome, known as *cis*-regulatory elements (CREs)⁶. The gene regulatory activity of a TF is
28 often controlled by an interplay with one or multiple regulators, such as other TFs⁷, which also
29 regulate other target genes in concert with other regulators, generating a complex biological
30 network web known as gene regulatory network (GRN)⁸. Timely managed gene expression
31 changes in response to environmental stress are possible through GRNs⁹. One of the well-known
32 phenomena governed by GRN is the UPR^{3,4}, a protein quality control signaling network designed
33 to protect organisms from endogenous and induced stress that alters ER proteostasis^{1,2}. The UPR
34 senses increases in the accumulation of unfolded or misfolded proteins in the ER and reprograms
35 gene expression associated with protein folding and diverse biological processes, including cell
36 fate determination^{4,10}. In *Arabidopsis thaliana* (hereafter Arabidopsis), UPR gene regulation is
37 tightly controlled by bZIP28 and bZIP60, two functionally conserved mTFs that bind UPR gene
38 promoters specifically via CREs, including the highly conserved ER stress-responsive element I
39 (ERSE-I)^{4,11}. Understanding the regulatory mechanisms for the coordination of dynamic gene
40 expression by bZIP28 and bZIP60 is a central challenge due to their partial functional
41 redundancy^{1,2,4,12} and the multi-functionality of TFs in general^{6,13,14}.

42 TFs are generally associated with multiple pathways in growth and stress responses^{13,14}.
43 Similarly, UPR regulators function in diverse pathways, as demonstrated earlier^{3,15-17}.
44 Identification of signaling factors shared across pathways is one of the main challenges in

45 understanding the dynamic complexity of growth and stress management. To identify regulators
46 shared with the UPR, we adopted transcriptome profiles at 0 h, 12 h and 24 h following removal
47 of tunicamycin (Tm), an ER stress inducer, which was administered to seedlings for 6 h⁴.
48 Therefore, 0 h corresponds to a peak in adaptive UPR during which ER chaperone genes are
49 upregulated^{4,12}. Notably, upon Tm wash-out at 0 h, through processes collectively coined ER stress
50 recovery (ERR), ER stress and adaptive UPR are progressively mitigated, and growth is
51 resumed^{4,12}. We compared these transcriptomes to those of seedlings treated with the
52 phytohormone abscisic acid (ABA)¹³, which we selected because it is involved in a variety of
53 processes, including stress responses, development and metabolism¹³. We found that 22%
54 (928/4213) of differentially expressed genes (DEGs) in ERR were also differentially expressed in
55 ABA treatment with a significant overlap ($P = 5.18 \times 10^{-172}$) (Fig. 1a, Extended Data Fig. 1a and
56 Supplementary Data 1), hereafter ERR-ABA DEGs, and were associated with significant
57 biological pathways, including stress responses, growth and metabolism (Extended Data Fig. 1b
58 and Supplementary Data 2). Moreover, the relative gene expression changes were temporally and
59 dynamically correlated between ABA and ERR when DEGs were compared between each time
60 point of ABA and ERR treatment (significant positive correlation at 0 h of ER stress recovery with
61 4 h, 8 h, 12 h, 24 h and 36 h of ABA) (Fig. 1b and Extended Data Fig. 2). These results support
62 the existence of a temporal regulatory link between at least two stress-induced gene
63 reprogramming pathways, which are potentially regulated by common regulatory factors, such as
64 TFs. The presence of specific CREs on the gene promoters often determines their activity (e.g., by
65 generating interactions among TFs) and may lead to stress-responsive gene expression^{13,18}. To
66 identify potential CREs enriched in the promoters of ERR-ABA DEGs, we performed *de novo*
67 motif analyses of 10 individual overlapping promoters (~100-bp long) spanning 1-kb promoters

68 (named as Fragment 1 to 10) of ERR-ABA DEGs (Extended Data Fig. 3). We identified six
69 significantly enriched potential CREs exclusively on either Fragment 3, 4, 5, 8, 9 or 10 (Fig. 1c).
70 These CREs significantly match with binding motifs of distinct TF families: CXC-hinge-CXC,
71 C2C2 DOF, bZIP, WRKY, MYB and C2C2 DOF on Fragment 3, 4, 5, 8, 9 or 10, respectively
72 (Supplementary Data 3). These results suggest that multiple CREs present on specific locations in
73 the gene promoters may regulate gene expression in response to both ABA and ER stress
74 treatments. Among the potential CREs, G-box (CACGT) significantly enriched on the Fragment
75 9 (-200-bp to -90-bp) attracted our attention because it is known as bZIP TF binding site¹⁹ and its
76 core sequence (CACG; known as ABSCISIC ACID RESPONSIVE ELEMENT [ABRE]) is
77 contained in the second subunit (underlined) of ERSE-I (CCAAT-N₁₀CACG). Surprisingly, all
78 core UPR genes contain multiple copies of G-box/ABRE on either the 1-kb promoters or 5'UTR
79 sequences (Extended Data Fig. 4), collectively supporting that G-box is likely a new CRE that
80 modulates gene expression in the UPR.

81 Next, to identify the corresponding *trans*-acting elements (i.e., TFs) of the G-box, we
82 performed a large-scale enhanced yeast one-hybrid (eY1H) screen^{20,21} with two ~550-bp-long
83 partially overlapping fragments (Fa, fragment a [away from transcription start site]; Fb, fragment
84 b [containing the transcription start site]) spanning the 1-kb promoters of *bZIP28*, *bZIP60* and
85 *BiP3* (Fig. 1d and Supplementary Table 1). *BiP3* is a transcriptional target of *bZIP28* and
86 *bZIP60*^{4,11,12,22,23} and, due to its robust transcriptional response to ER stress, is the most
87 representative UPR marker gene encoding a highly conserved ER chaperone^{1,24}. We reasoned that
88 these UPR genes would be dynamically regulated under ER stress and other stress², and likely
89 targeted by multi-functional TFs in specific gene regulatory modules linking the UPR to other
90 biological pathways for ER homeostasis, as shown for the maize UPR³. Therefore, we screened

91 the six promoter fragments from the three UPR genes against a collection of ~2,000 Arabidopsis
92 TFs. We identified a total of 603 protein-DNA interactions (PDIs) and nonredundant 285 binding
93 TFs (141, *BiP3*; 200, *bZIP28*; 121, *bZIP60*) (Fig. 1e and Supplementary Data 4). The PDIs were
94 likely DNA sequence-specific as supported by binding enrichments of specific TF families on
95 either promoter fragment (Fa or Fb) with an exclusive presence of the corresponding binding sites
96 (Extended Data Fig. 5). A TF network map based on 471 PDIs (gene-TF) coupled with the
97 temporal expression of each TF in ERR⁴ revealed a high level of regulatory redundancy of these
98 UPR genes and regulatory modules in which TFs co-bound either single or multiple UPR genes
99 (Fig. 1f). We found that TF genes in each regulatory cluster (i.e., TFs binding exclusively to a
100 single gene or multiple genes) were enriched with diverse biological pathways, including
101 responses to hormones-related pathways (Extended Data Fig. 6 and Supplementary Data 5),
102 supporting our rationale that UPR regulators could be involved also in other stress responses. We
103 next aimed to validate these PDIs and investigate gene involvement in cell fate under ER stress.
104 We selected 12 TFs based on their association with abiotic stress or hormone response and
105 membership to the regulatory clusters (Fig. 1f and Extended Data Fig. 7), and we scored the
106 relative root length elongation of transcriptional knock-out mutants (KOs), as a hallmark of ERR
107 after Tm wash-out¹². Single and double KOs of *bZIP28* and *bZIP60* (*bzip28-2*, *bzip60-2* and
108 *bzip28-2 bzip60-1*) showed significantly reduced relative growth of primary root in ERR compared
109 to Col-0, consistent with previous studies^{4,12}. The selected TF KOs showed no significant
110 differences in primary root growth relative to Col-0, presumably due to functional redundancy¹³,
111 with the exception of a *GBF2* KO, which displayed a significant hyposensitivity to ER stress, as
112 verified for three independent KO alleles (*gbf2-1*, *gbf2-2* and *gbf2-3*) (Fig. 2a,b and Extended Data
113 Fig. 7). Interestingly, a KO of *GBF3*, a bZIP TF gene partially redundant with *GBF2* in vascular

114 development²⁵, showed no difference in the root growth, suggesting functional diversification
115 among the GBF TF family. Consistent with this hypothesis, a double *GBF1*, *GBF3* KO [*gbf1* (-/-)
116 *gbf2-2* (-/+) *gbf3* (-/-)²⁵ (a triple mutant could not be recovered in this study)] also showed no
117 difference in the root growth relative to Col-0 (Extended Data Fig. 7).

118 GBF2 is an ABA-responsive TF that binds hundreds of genes via G-box^{13,26}, which
119 temporally regulates gene expression in response to ABA (Extended Data Fig. 8) and physically
120 interacts with the bZIP TF HY5²⁷, a negative regulator of the UPR¹⁶. To profile genome-wide *in*
121 *vivo* DNA-binding activities of GBF2 in the UPR, we performed chromatin immunoprecipitation
122 sequencing (ChIP-seq) analyses of GBF2 at 0 h of ERR (i.e., 6 h of Tm treatment or DMSO) using
123 a *GBF2* native promoter-driven yellow fluorescent protein for energy transfer (Ypet)-tagged *GBF2*
124 line (*pGBF2:GBF2-Ypet*)¹³. Our analysis pipeline generated 523 Tm sample-specific binding
125 peaks of GBF2 (i.e., not overlapped with peaks found in the corresponding DMSO-treated
126 samples; see Methods) (Fig. 2c and Supplementary Data 6). Hereafter we refer to these peaks as
127 UPR-specific binding peaks. We found that the majority of UPR-specific binding peaks (77.25%)
128 were located in the proximal gene promoters (i.e., within 1-kb of the transcription start site) (Fig.
129 2c), consistent with typical activities of other *Arabidopsis* TFs²⁸. *De novo* motif analysis revealed
130 G-box as the top-scoring motif (E-value = 4.5×10^{-79}) in UPR-specific binding peaks (Fig. 2d),
131 validating the high quality of our data. We next mapped GBF2 UPR-specific binding peaks to the
132 gene targets and found a total of 492 UPR-specific GBF2-bound genes, which significantly
133 overlapped with UPR-specific bound genes of either bZIP28, bZIP60 or both bZIP28 and bZIP60
134 (Fig. 2e). Those co-bound genes showed strong enrichment of ER stress-related pathways (Fig. 2f
135 and Supplementary Data 7), suggesting that GBF2, bZIP28 and bZIP60 co-regulate a set of
136 genome-wide UPR genes at 0 h of ERR. Based on these results, we sought mechanistic insights

137 into the functional role of GBF2 in UPR gene expression using the *BiP3* promoter. At 0 h of ERR
138 where the *BiP3* expression was exponentially induced as a hallmark of UPR activation^{4,12} (Fig.
139 2g), GBF2, bZIP28 and bZIP60 co-bound the genomic locus of the *BiP3* promoter containing G-
140 boxes, which overlapped with the DNase hypersensitive site (DHS)²⁹, a proxy of open chromatin
141 (Fig. 2g), suggesting that these bZIP TFs control the expression of *BiP3* in concert. The *in vivo*
142 binding of GBF2 to the *BiP3* promoter, which confirms the binding in yeast (Fig. 1f), was
143 temporally regulated since it diminished at 12 h and 24 h of ER stress recovery (Extended Data
144 Fig. 9). Consistent with the temporal binding of GBF2, the transcripts of *BiP3* were significantly
145 induced in *gbf2-3* specifically at 0 h relative to Col-0 (Fig. 2h). Conversely, overexpression of
146 *GBF2* in *GBF2ox* significantly reduced the expression of *BiP3* compared to Col-0 (Fig. 2i).
147 Collectively, these results indicate that GBF2 functions as a gene repressor in the UPR, consistent
148 with its interaction with HY5 in UPR regulation²⁷. These results also support the hypothesis that
149 GBF2 competes with bZIP28 and/or bZIP60 for binding to UPR gene promoters. To test this
150 further, we used recombinant, purified, full-length GBF2, nucleus-imported form of bZIP28
151 (bZIP28n) and spliced form of bZIP60 (sbZIP60) proteins in electrophoretic mobility shift assays
152 (EMSA). GBF2 bound competitively and specifically the promoter fragment of *BiP3* (EW)
153 containing the G-box (Fig. 3a,b), in accordance with our binding results in yeast (Fig. 1f) and
154 plants (Fig. 2g and Extended Data Fig. 9). The GBF2-binding signal, which appeared saturated
155 with the lowest protein mass (lane 3), depended on the intact G-box since GBF2 bound neither the
156 promoter fragment containing a mutated G-box (EM; lane 13) or no G-box (EN; lane 14). Notably,
157 adding bZIP28n (lane 9 and 10) or sbZIP60 (Lane 11 and 12) to the GBF2-binding reactions
158 repressed and eventually removed the GBF2 binding to the EW with a dominant effect of sbZIP60,
159 indicating that the DNA-binding activity of GBF2 was negatively affected by the presence of either

160 bZIP28n or sbZIP60. Then we asked if GBF2 could alter the DNA-binding activity of sbZIP60
161 (Fig. 3c). While sbZIP60 bound the *BiP3* promoter specifically via the G-box (competitive to
162 unlabeled EW; no binding to EW or EM), adding GBF2 remarkably inhibited the G-box-specific
163 binding of sbZIP60, albeit at a lesser extent compared to the effect of sbZIP60 on GBF2-binding
164 to DNA. Intriguingly, we noted that sbZIP60-binding to the *BiP3* promoter was also repressed by
165 bZIP28. Thus, our data demonstrate a competitive binding of GBF2 and bZIP60, or to a lesser
166 extent bZIP28, to the *BiP3* promoter specifically via the G-box. To investigate the effects of the
167 competitive binding of GBF2 and UPR-bZIP TFs on the expression of *BiP3* *in planta*, we
168 performed transient expression assays in agroinfiltrated tobacco leaves³⁰ using the Dual-Luciferase
169 (LUC) Assay system³¹ (Fig. 3d-e). While the normalized activity of LUC driven by the ~1-kb *BiP3*
170 promoter containing the G-box and ERSE-I was increased by the addition of sbZIP60 effector cells
171 (OD₆₀₀ = 0.1) by 2.5 times (lane 2) relative to the one without any effector (lane 1), the induction
172 was substantially enhanced by adding bZIP28n effector cells along with sbZIP60 (OD₆₀₀ = 0.1 for
173 each, totaling 0.2 of both effectors) (lane 3), suggesting that the UPR-bZIP TFs activate the *BiP3*
174 expression in concert, in agreement with previous studies^{4,11,12,22,23}. The increased activity of LUC
175 by the addition of both UPR-bZIP TFs was dramatically suppressed when an equal density of
176 GBF2 effector cells (OD₆₀₀ = 0.2) was added (lane 5). Interestingly, the half density of GBF2
177 effector cells (OD₆₀₀ = 0.1) had no significant effect on the increased activity of LUC by both
178 UPR-bZIP TFs (lane 4), indicating a quantitative reaction for the competition. Collectively, our *in*
179 *planta* data confirmed the competitive binding of GBF2 to the *BiP3* promoter observed *in vitro*
180 (Fig. 3b,c) and further validated a UPR gene regulatory role of GBF2.

181 Based on these results and the evidence that the loss of *GBF2* enhances UPR gene
182 responsiveness (Fig. 2h) and growth resilience in ER stress resolution (Fig. 2a,b), we hypothesized

183 that a *GBF2* null mutation would suppress the lethality of a *bzip28-2 bzip60-1* mutant³² in both
184 ERR and chronic ER stress during which pro-death processes are actuated, a similar phenotype of
185 analogous mutants of mTF combinations in metazoan UPR^{12,32}. We therefore generated a *gbf2-3*
186 *bzip28-2 bzip60-1* triple mutant and evaluated its sensitivity to ER stress relative to Col-0, *gbf2-3*
187 and *bzip28-2 bzip60-1*. In ERR conditions (Fig. 4a), we found that the relative rate of *gbf2-3*
188 recovery was higher than Col-0, consistent with our earlier experiments (Fig. 2a,b), but also that
189 the lethal phenotype of *bzip28-2 bzip60-1* was partially suppressed by *gbf2-3*. The suppressive
190 effect of *gbf2-3* in *bzip28-2 bzip60-1* was even stronger in chronic ER stress assays (i.e., direct
191 seed germination and growth on Tm-containing culture media) (Fig. 4b). Our gene expression
192 analyses here and previous studies showed that *BiP3* and another UPR biomarker gene, *ER-*
193 *resident J protein 3B (ERdj3B)* which was also co-bound by GBF2, bZIP28 and bZIP60
194 (Supplementary Data 6), were not transcriptionally induced in *bzip28-2 bzip60-1* in Tm-treated
195 condition compared to the DMSO (Fig. 4c)^{12,33}. However, the *gbf2-3* mutation in *bzip28-2 bzip60-*
196 *1* led to a remarkably increased expression of *BiP3* and *Erdj3B* in Tm conditions. Because the
197 expression of *BiP3* and *Erdj3B* was derepressed in *gbf2-3 bzip28-2 bzip60-1* compared to *bzip28-*
198 *2 bzip60-1* specifically in Tm-conditions, our data indicate that in ER stress-treated *bzip28-2*
199 *bzip60-1* the expression of *BiP3* and *Erdj3B* is modulated by bZIP28- and bZIP60-independent
200 mechanisms, possibly dependent on the UPR master regulator Inositol Requiring Enzyme 1, but
201 also support the data that, by binding to the promoters of UPR genes, GBF2 suppresses their
202 expression.

203 Dysregulated UPR is potentially lethal and wasteful of stress response resources. Our
204 results support a model for UPR regulation whereby a repressive role of GBF2 on UPR gene
205 expression monitors the UPR activation. In ER stress situations requiring activation of the UPR,

206 bZIP28 and bZIP60 compete with GBF2 in the binding to the G-box for the activation of UPR
207 gene expression. Notably, the repressive role of GBF2 occurs in ER stress situations, but not ER
208 stress relief situations requiring deactivation of the UPR. Therefore, GBF2 may function to
209 monitor adequate timing and amplitude of UPR gene expression to manage ER stress resources,
210 such as UPR effectors (e.g., chaperones and foldases) that are associated with significant biological
211 processes³⁴ and whose expression levels need to be tightly controlled because of frequent demands
212 over the life cycle. Additional experiments are needed to establish how GBF2 can sense the
213 appropriate timing of the action to modulate gene expression in the UPR. The repressive role of
214 GBF2 and G-box is likely to be conserved in other multicellular organisms due to the exclusive
215 prevalence of G-box and G-class bZIP TF family in eukaryotes³⁵. As shown here, a TF competition
216 phenomenon, which appears universal in yeast³⁶, plants³⁷ and mammals³⁸, underpins the UPR. Our
217 findings contribute to understand the mechanisms for UPR gene regulation plasticity and provide
218 new insights for discovering therapeutic and agronomic targets linked to UPR dysregulation in
219 human disease³⁸ and crop loss³⁹.

220

221 **Methods**

222 **Plant material and growth.** *A. thaliana* ecotype Columbia-0 (Col-0) was used as the wild-type
223 control. The following mutants and transgenic lines, which are in Col-0 background, were used in
224 this study: *bzip28-2* (SALK_132285), *bzip60-2* (SAIL_283_B03), *bzip28-2 bzip60-1*
225 (SALK_132285 SALK_050203), *gbf2-1* (SALK_206654), *gbf2-2* (SALK_205706), *gbf2-3*
226 (SALK_087916), *nf-yc2* (SALK_111422), *wrky8* (SALK_050194), *lbd3* (SAIL_659_D08),
227 *anac092* (SALK_090154), *anac036* (SAIL_600_D02), *hb28* (SALK_096579), *erf11*
228 (SALK_085781), *nac2* (SALK_037700), *rap2.6* (SALK_051006), *anac062*

229 (WiscDsLoxHs100_07A), *gbf1* (SALK_027691), *gbf3* (SALK_056627), *GBF2ox* (CS2104585)
230 and *pGBF2:GBF2-Ypet* (CS71581). All T-DNA single and high-order mutants used in this study
231 were confirmed to be homozygous before the analysis. Primers used for genotyping are presented
232 in Table S3. Surface-sterilized seeds were plated on half-strength Linsmaier Skoog (LS) medium
233 (Caisson Labs, Ontario, Canada) supplemented with 1% sucrose (Sigma-Aldrich, St. Louis, MO,
234 USA), and 1.2% Agar (Acumedia, Lansing, MI, USA). Appropriate antibiotics was also added for
235 the screening of transgenic lines. After stratification in the dark at 4 °C for 2 days, plates were
236 transferred to a controlled growth chamber with 80 $\mu\text{mol m}^{-2} \text{s}^{-1}$ under 16 h light:8 h dark with
237 22 °C.

238

239 **RNA-seq data analysis.** RNA-seq data for response to ABA treatment¹³ and ER stress recovery⁴
240 were downloaded from NCBI Gene Expression Omnibus (GSE80568 and GSE146723,
241 respectively) and processed in the same analysis pipeline as described below. The quality of raw
242 reads was accessed using FastQC (version 0.11.5). Raw reads were cleaned for quality and
243 adapters with Cutadapt (version 1.8.1)⁴⁰ using a minimum base quality of 20 retaining reads with
244 a minimum length of 30 nucleotides after trimming. Quality-filtered reads were aligned to the Col-
245 0 reference genome (TAIR10) using Bowtie (version 2.2.4)⁴¹ and TopHat (version 2.0.14)⁴² with
246 a 10-bp minimum intron length and 15,000-bp maximum intron length. Per-gene read counts were
247 measured using HTSeq (version 0.6.1p1)⁴³ in the union mode with a minimum mapping quality of
248 20 with stranded=reverse counting. Differential gene expression analysis was performed in each
249 sample relative to the mock control using DESeq2 (version 1.16.1)⁴⁴ within R (version 4.1.2).
250 Genes of which the total count is < 60 (ABA dataset, which has 2 biological replicates) or 100 (ER
251 stress recovery dataset, which has 3 biological replicates) were not included in the analysis. DEGs

252 were obtained based on adjusted P-value < 0.01 and absolute Log₂FC > 1. For visualization
253 purposes, tdf files of each replicate file were generated using igv tools (version 2.3.26) with the
254 command “count” and loaded to Integrative Genome Browser (version 2.5.0)⁴⁵. GO enrichment
255 analysis was performed using clusterProfiler (version 4.2.2) and visualized using enrichplot
256 (version 1.14.2) in R (version 4.1.2)⁴⁶.

257

258 **ChIP assays, ChIP-qPCR, ChIP-seq library preparation.** ChIP for GBF2 was performed using
259 the same protocol applied to bZIP28 and bZIP60 ChIP analyses⁴. Plants germinated and were
260 subjected to treatment with 500 ng/mL Tm or DMSO for 6 h, which is 0 h of ER stress recovery.
261 Whole seedlings harvested in three biological replicates were completely submerged in freshly
262 prepared crosslinking buffer (0.4 M Sucrose, 10 mM Tris-HCl, 1 mM EDTA, 1 mM PMSF, 1%
263 Formaldehyde) in 50 mL conical tubes. Samples were subjected to a vacuum infiltration for 15
264 min and another for 5 min with glycine (125 mM final concentration). After the crosslinking buffer
265 was removed, the crosslinked tissues were briefly rinsed with pre-chilled sterilized water, dried by
266 gently blotting between paper towels, immediately frozen in the liquid nitrogen and stored at -
267 80 °C for the next steps. The frozen tissues were ground to fine powder in liquid nitrogen using
268 pre-chilled motors and pestles. After isolation, chromatin was fragmented using Covaris M220
269 sonicator (Covaris, Woburn, MA, USA) with settings of 3 cycles of PIP-50, duty factor 20% time-
270 70s at 4 °C. Immunoprecipitation (IP) was performed with a polyclonal anti-GFP antibody ab290
271 (Abcam, Cambridge, UK) (1:200 dilution rate). For each ChIP sample, a mock (no antibody) and
272 input (no IP) were included for control experiments. 2 µL of purified DNA (ChIP, mock and input),
273 which was diluted by 4-fold, was used for quantitative PCR (qPCR) analysis in an ABI7500
274 machine (Applied Biosystems, Foster City, CA, USA) using Fast SYBR Green Master Mix (Life

275 Technologies, Carlsbad, CA, USA). Enrichment from ChIP DNA was first normalized relative to
276 their input DNA. Three technical replicates were assayed for each of the three biological replicates.
277 The list of primers used in ChIP-qPCR is provided in Supplementary Table 1. The final purified
278 and ChIP and input DNAs were quantified using the Qubit fluorometer (Thermo Fisher Scientific,
279 Carlsbad, CA, USA), and ChIP-seq libraries were constructed in two biological replicates using
280 the NEBNext Ultra II DNA Library Prep Kit (New England BioLabs, Beverly, MA, USA)
281 according to manufacturer's protocol. The suitable size distribution of libraries was confirmed
282 using the 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). Multiplexed libraries of two
283 biological replicates were sequenced in single-end mode on the Illumina NovaSeq 6000 platform
284 (100-nt) at the Research Technology Support Facility Genomics Core at Michigan State
285 University.

286

287 **ChIP-seq data analysis.** The quality of raw ChIP-seq reads was evaluated using FastQC (version
288 0.11.5). Reads were cleaned for quality and adapters with Cutadapt (version 1.8.1)⁴⁰ using a
289 minimum base quality of 20 retaining reads with a minimum length of 30 nucleotides after
290 trimming. Quality-filtered reads were aligned to the Col-0 reference genome (TAIR10) using
291 Bowtie (version 1.1.2)⁴⁷ with parameters “-n 2 -m 3 -k 1 –threads 7 –best –chunkmbs 256 -q”.
292 Duplicated reads were removed using Samtools (version 1.8)⁴⁸. Peak calling was performed using
293 MACS2 (version 2.1.2)⁴⁹ in individual samples with the corresponding input samples with a
294 relaxed threshold of P-value (--pvalue=1e-2), as recommended by the IDR pipeline
295 (<https://sites.google.com/site/anshulkundaje/projects/idr>). Peaks across replicates with an IDR <
296 0.10 for GBF2 or < 0.5 for bZIP28 and bZIP60 were retained for further analysis. To obtain UPR-
297 specific binding peaks with high-confidence, we applied two parameters to IDR-filtered peaks; (1)

298 a peak called in Tm samples that was overlapped with a peak in the corresponding DMSO-treated
299 samples by > 30% was eliminated, (2) Among the peaks that were overlapped with peaks in
300 DMSO-treated sample, if its *P* float (8th column in the IDR output file) in the Tm-treated sample
301 was higher than the corresponding peak in the DMSO-treated sample by greater than 3-fold, the
302 peak was retained and named as a UPR-specific binding peak. UPR-specific binding peaks
303 obtained at each time-point were merged into a single list for further analysis and were annotated
304 using the ChIPseeker (version 1.30.3) and the GenomicFeatures R Package (version 4.1.2)⁵⁰. For
305 visualization purposes, bigwig files (using pooled data across biological replicates) were generated
306 by the deepTools suite (<https://deeptools.readthedocs.io/en/develop/>)⁵¹ (version 2.0) with the
307 command “bamCoverage”; read coverage was normalized as CPM (Counts Per Million mapped
308 reads). ChIP-seq tracks were visualized in Integrative Genome Browser (version 2.9.2)⁴⁵. UPR-
309 specific binding peaks were mapped to the vicinity of a transcript sequence (< 3-kb upstream or
310 downstream), generating a total of 492 GBF2-, 105 bZIP28- and 217 bZIP60-bound genes,
311 respectively. GO enrichment analysis was performed using clusterProfiler (version 4.2.2) and
312 visualized using enrichplot (version 1.14.2) in R (version 4.1.2)⁴⁶.

313

314 **Cistrome analysis.** The cistrome analysis was performed on overlapping 110-bp fragment
315 spanning the 1-kb upstream sequences of the transcription start site, hereafter called 1-kb promoter,
316 in the TAIR10 annotation, using tools of MEME suite (version 5.0.5) (<http://meme-suite.org>) with
317 default parameters and modifications indicated below. Among the 928 DEGs that were responsive
318 to both ABA treatment and ER stress recovery, 1-kb promoters of 922 DEG were obtained from
319 the BioMart tool at the Phytozome database (version 13; <https://phytozome-next.jgi.doe.gov>) and
320 used in the analysis since the promoter sequences of the six genes were not available in TAIR10.

321 As a control set, 922 genes were randomly selected and the 1-kb promoter sequences of the random
322 genes were obtained as described above. Each 1-kb promoter of 922 DEGs and random 922 genes
323 was split into 10 fragments (-1000-bp to -890-bp; -900-bp to -790-bp; - 800-bp to -690-bp; -700-
324 bp to -590-bp; -600-bp to -490-bp; -500-bp to -390-bp; -400-bp to -290-bp; -300 to -190; -200-bp
325 to -90; - 100 to -1-bp) using seqtk (version 1.3). *De novo* motif discovery in each promoter
326 fragment set of the DEGs was performed using STREME⁵² with a parameter of “–minw 5 –maxw
327 25 –pvt 0.05” with the control set of random genes. The similarity of enriched motifs with DNA
328 affinity purification sequencing motifs⁵³ and protein-binding microarray motifs⁵⁴ was assessed
329 using TOMTOM⁵⁵.

330

331 **Promoter cloning, yeast transformation and eY1H.** The genomic DNA of Col-0 was extracted
332 from two-week-old seedlings using the DNasesy Plant Mini Kit (Qiagen, Valencia, CA, USA) and
333 used for subsequent promoter cloning in this study. Promoter fragments, as described in Fig. 1d,
334 were amplified from the genomic DNA using Phusion High-Fidelity DNA Polymerase (New
335 England BioLabs, Beverly, MA, USA). Promoter fragments were recombined either into pDONR
336 P4-P1R using BP clonase II or pENTR 5'-TOPO (Supplementary Table 1) (Life Technologies,
337 Grand Island, NY, USA) to create entry clones. The resulting entry clones were sequence-
338 confirmed and then recombined into both pMW2 and pMW3 using LR clonase II (Life
339 Technologies, Grand Island, NY, USA). The resulting pMW2 and pMW3 constructs were
340 sequence-confirmed and then transformed into the yeast strain YM4271, as previously described⁵⁶.
341 Yeast colonies were screened for autoactivation and construct presence. Promoter strains were
342 mated against a collection of > 2000 Arabidopsis TF strains⁵⁷ using a Singer Instruments ROTOR
343 HDA robot platform in the Yeast One Hybrid Services Core at the Genome Center at the University

344 of California Davis, as previously described^{20,21,58}. The list of primers used in the promoter
345 amplification is provided in Supplementary Table 2.

346

347 **Visualization of TF network.** The TF network (Fig. 1f) was visualized using Cytoscape (version
348 3.8.2)⁵⁹. A text file was compiled to include all PDIs (TF to gene) and the corresponding gene
349 expression data (log₂-transformed expression fold-change) at 0, 12, and 24 h of ERR. The file was
350 used as an input file in which a row corresponded to an interaction between source and target. The
351 yFiles Organic Layout was applied to the network visualization. The selected TFs and bait genes
352 were manually labeled in the network. Gene ontology (GO) enrichment analysis was performed
353 using agriGO (version 2.0) (<http://systemsbiology.cau.edu.cn/agriGOv2/>)⁶⁰ with a false-discovery
354 rate adjusted $P < 0.05$ (hypergeometric test) as a cutoff.

355

356 **ER stress and ABA treatment assays.** For ERR assay, 5-day-old seedlings were transferred to
357 half-strength LS liquid buffer containing either 0.5 μ g/mL Tm (Sigma-Aldrich, St. Louis, MO,
358 USA) or DMSO-only as mock, and incubated for 6 h. After the drug treatment, seedlings were
359 transferred to 100x100 square Petri dishes with grid (Fisher Scientific, Hampton, NH, USA)
360 containing half-strength LS medium (Caisson Labs, Ontario, Canada) supplemented with 1%
361 sucrose (Sigma-Aldrich, St. Louis, MO, USA), 1.2% Agar (Acumedia, Lansing, MI, USA). Each
362 square plate was split into two portions, of which each side accommodated either Tm-treated
363 seedlings or DMSO-only-treated seedlings, and served as a biological replicate ($n = 6$ per
364 replicate). Then, the seedlings grew vertically under the normal growth condition. To transiently
365 induce the *GBF2* expression in *GBF2ox* during the recovery from ER stress, β -estradiol (Sigma-
366 Aldrich, St. Louis, MO, USA) was added to the recovery growth media at a final concentration of

367 10 μ M. For chronic ER stress assay, seeds were plated on half-strength LS medium (Caisson Labs,
368 Ontario, Canada) supplemented with 1% sucrose (Sigma-Aldrich, St. Louis, MO, USA), 1.2%
369 Agar (Acumedia, Lansing, MI, USA) and 25 ng/mL Tm (Sigma-Aldrich, St. Louis, MO, USA) or
370 DMSO alone as mock. For measuring the primary root length of seedlings, plates were photo-
371 scanned at the same of time of the day. The length of primary roots was measured using ImageJ
372 software (<https://imagej.nih.gov>). For the ABA treatment assay, 5-day-old seedlings were
373 transferred to half-strength LS liquid buffer containing 3 μ M ABA (Sigma-Aldrich, St. Louis, MO,
374 USA) or EtOH-only as mock, incubated, and harvested at 1, 4 and 24 h after the incubation. All
375 experiments were independently replicated with consistent results.

376

377 **RNA extraction and qRT-PCR analysis.** Plants germinated and were subjected to the ER stress
378 recovery or ABA treatment assays as described above. Whole seedlings were harvested at 0 h, 12
379 h and 24 h of ER stress recovery in three biological replicates (n = 12 per each replicate), except
380 for *GBF2ox* seedlings which were harvested only at 24 h to sufficiently induce the *GBF2*
381 expression, and immediately frozen in the liquid nitrogen. The frozen samples were ground to a
382 fine powder in liquid nitrogen using a Retch MM400 Mixer Mill with zirconium oxide balls. Total
383 RNA was extracted using the NucleoSpin RNA Plant kit (MACHEREY-NAGEL, Düren,
384 Germany) according to the manufacturer's instruction. cDNA was synthesized from 1 μ g of
385 DnaseI-treated total RNA using iScript cDNA Synthesis Kit (BIO-RAD, Hercules, CA, USA)
386 according to the manufacturer's instruction. For qRT-PCR, Fast SYBR Green Master Mix
387 (Applied Biosystems, Foster City, CA, USA) was used in the presence of gene-specific primers
388 and template cDNAs in an ABI7500 (Applied Biosystems, Foster City, CA, USA). The list of
389 primers used in qRT-PCR is provided in Supplementary Table 2.

390

391 **Vector construction and purification of recombinant bZIP28, bZIP60 and GBF2 proteins.**

392 The coding sequence (CDS) of bZIP28n, sbZIP60 and GBF2 were amplified from Col-0 cDNA
393 using Phusion High-Fidelity DNA Polymerase (New England BioLabs, Beverly, MA, USA) with
394 primers tailed with restriction enzyme sites: NcoI (forward) and BamHI (reverse) for bZIP28n and
395 sbZIP60; SalI (forward) and EcoRI (reverse) for GBF2. The bZIP28n, sbZIP60 and GBF2 cDNA
396 fragments were cloned into pGEM-T (Promega, Madison, Wisconsin), generating bZIP28n-T,
397 sbZIP60-T and GBF2-T constructs. After sequence verification, the bZIP28n, sbZIP60 and GBF2
398 cDNA CDSs were subcloned into pMAL-c5X (New England BioLabs, Beverly, MA) through the
399 corresponding restriction enzyme sites. E. coli strain BL21 competent cells were used to transform
400 empty pMAL (expressing the only maltose-binding protein, MBP), pMAL-bZIP28n, pMAL-
401 sbZIP60 or pMAL-GBF2, which were grown in 4 ml of Luria-Bertani (LB) media with
402 Carbenicillin (100 mg/L) at 37 °C for 18 h. The overnight cultures of BL21 cells containing pMAL,
403 pMAL-bZIP28n, pMAL-sbZIP60 or pMAL-GBF2 construct were diluted into 1:100 in 80 mL LB
404 media with Carbinicillin (100 mg/L) and grown at 37 °C to an OD600 value of 0.5, when
405 isopropyl-β-D-thiogalactoside (IPTG) (0.1 mM) was added. After 20 h of additional incubation at
406 16 °C, cells were harvested after centrifugation at 4,000 g at 4 °C for 10 min and resuspended in
407 2 mL of Column buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA). After frozen at -20 °C
408 for 18 h, cells were lysed by a Sonicator (Virtis, Gardiner, NY) and centrifuged at 20,000 g at 4
409 °C for 20 min. The cleared cell lysates were diluted 1:5 with Column buffer, and loaded on
410 amylose-coupled agarose resin columns prepared according to the manufacturer's instruction
411 (New England BioLabs, Beverly, MA). After columns were washed with 12 volumes of Column
412 buffer, MBP, MBP-bZIP28n, MBP-sbZIP60 and MBP-GBF2 were eluted with elution buffer (20

413 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, 10 mM Maltose). After filtration by Amicon Ultra
414 30 K (Millipore, Darmstadt, Germany), the purified MBP, MBP-bZIP28n, MBP-sbZIP60 and
415 MBP-GBF2 were aliquoted and stored at -80 °C. The list of primers used in the cloning is provided
416 in Extended Data Table 2.

417

418 **EMSA.** PAGE-purified sense and antisense oligonucleotides were annealed in an annealing buffer
419 (300 mM KCl, 30 mM HEPES-pH 7.5 and 1.0 mM MgCl₂) at 94 °C for 2 min and gradually
420 cooled to create double-stranded DNA probes (EW, EM and EN). The double-stranded
421 oligonucleotides were [³²P] end-labeled using a T4 Polynucleotide Kinase according to the
422 manufacturer's instruction (New England BioLabs, Beverly, MA). The recombinant proteins (10
423 to 30 pmol) were mixed with 40 fmol of the radiolabeled probes, without or with variable amounts
424 of unlabeled competitor DNA in reaction buffer (25 mM HEPES-KOH pH7.5, 2.5 mM DTT, 75
425 mM KCl, 10% glycerol, 1.25 ng poly-dIdC). Each reaction was incubated at room temperature for
426 10 min without the probes and then incubated on ice for 20 min with the radiolabeled probes. The
427 competitor concentrations were at 0.01, 0.05 and 0.1 pmol. After the incubation, the reaction
428 mixtures were resolved by electrophoresis on a 5% non-denaturing polyacrylamide gel. Gels were
429 dried in a gel dryer (Hoefer, Holliston, MA) and exposed to X-ray film (Kodak, Rochester, NY).
430 The list of oligo probes used in EMSA is provided in Extended Data Table 2.

431

432 **Vector construction for Dual-Luciferase Assay.** For the reporter construct, the promoter
433 fragment (-1000-bp to +37-bp) of *BiP3* was amplified from Col-0 genomic DNA using Phusion
434 High-Fidelity DNA Polymerase (New England BioLabs, Beverly, MA, USA) with primers tailed
435 with restriction enzyme sites: BamHI (forward) and NcoI (reverse). The BiP3 promoter fragment

436 was cloned into pGEM-T (Promega, Madison, Wisconsin). After sequence verification, it was
437 subcloned into pGreenII 0800-LUC through restriction enzyme sites, BamHI (forward) and NcoI
438 (reverse), generating the *BiP3* promoter reporter construct. For effector constructs, the CDS of
439 *bZIP28n*, *sbZIP60* and *GBF2* cloned in *bZIP28n*-T, *sbZIP60*-T and *GBF2*-T plasmids,
440 respectively, were subcloned into pGreenII 62-SK through restriction enzyme sites: NcoI
441 (forward) and BamHI (reverse) for *bZIP28n* and *sbZIP60*; SacII (forward) and EcoRI (reverse) for
442 *GBF2*. The reporter and effector plasmids were introduced into *Agrobacterium tumefaciens* strain
443 GV3101 along with pSOUP. The transformed cells were plated on LB agar media with rifampicin
444 (25 µg/mL), kanamycin (50 µg/mL), and gentamicin (100 µg/mL).

445

446 **Dual-Luciferase Assay.** One single colony of *A. tumefaciens* cells transformed with either the
447 reporter (*BiP3:LUC*) or one of the effectors (*35Spro:sbZIP60*, *35Spro:bZIP28n* and *35Spro:GBF2*)
448 was inoculated in 5 mL LB media with kanamycin (50 µg/mL), and gentamicin (100 µg/mL) at
449 28 °C overnight. 1 mL of the overnight culture was inoculated in 25 mL LB media with kanamycin
450 (50 µg/mL), and gentamicin (100 µg/mL) at 28 °C overnight. The overnight culture was
451 centrifuged at 1,500 x g for 10 min and the pellet was resuspended in 10 mL Resuspension Solution
452 (10 mM MgCl₂ and 10 mM MES-K pH 5.6). The centrifugation step was repeated to remove
453 traces of antibiotics. *A. tumefaciens* cell cultures transformed with each of the constructs were
454 mixed and adjusted to have 0.1 of the final OD₆₀₀ according to the experiment strategy. After being
455 incubated in the dark at room temperature for 24 h before infiltration, the cell suspension was
456 infiltrated into the abaxial surface of 4-weeks-old tobacco leaves using disposable 1 mL syringes.
457 After growth for 72 h, 1 cm leaf discs (one disc for each replicate) were harvested, snap-frozen,
458 and ground to a fine powder in liquid nitrogen using a Retch MM400 Mixer Mill with zirconium

459 oxide balls. Ground tissue powder of each leaf disc was homogenized with 300 μ L of the Passive
460 Lysis Buffer (PLB) provided in the Dual-Luciferase Assay kit (Promega, Madison, Wisconsin).
461 Homogenized samples were centrifuged at 7,500 x g for 1 min. The supernatant was diluted 5-fold
462 in PLB and ready for the assay. 15 μ L of each sample was loaded into a well of Nun F96 MicroWell
463 White Polystyrene Plate (Thermo Fisher Scientific, Waltham, MA). The plate was loaded into the
464 GloxMax Navigator luminometer (Promega, Madison, Wisconsin). The dual injectors were used
465 to dispense 75 μ L of luciferase assay reagent and Stop & Glo reagent into each well, respectively.
466 The relative activity of luciferase was normalized by the intensity of the internal control, *Renilla*.
467 Each biological replicate was measured in 3 technical replicates.

468

469 **Statistical analyses.** Statistical calculations were conducted using R (version 4.1.2) and Microsoft
470 Excel. Statistical analyses were performed using a two-tailed Student *t*-test and hypergeometric
471 probability test. The exact sample sizes (n) and all raw data for each experimental group/condition
472 are given as discrete numbers in each figure panel. Additional information is available in the
473 Reporting Summary, which includes statements on statistics, software used and data availability
474 and Source data.

475

476 **Reporting Summary**

477 Further information on research design is available in the Nature Research Reporting Summary
478 linked to this article.

479

480 **Data availability**

481 All data supporting the findings of this study are available within this paper and its Supplementary
482 Materials files. The ChIP-seq data supporting the finding of this study have been deposited in the
483 NCBI Sequence Read Archive and are accessible through the BioProject accession code
484 PRJNA810750. The full results of the eY1H screen, including gene accession numbers, are
485 available in Supplementary Data 4. The source data are provided with this paper.

486

487 **Code availability**

488 The scripts used in this study are available in GitHub (<https://github.com/DaeKwan-Ko/UPR-TFs.git>).
489

490

491 **Acknowledgments**

492 This study was supported primarily by the National Institutes of Health (R35GM136637) with
493 contributing support from by the Great Lakes Bioenergy Research Center, U.S. Department of
494 Energy, Office of Science, Office of Biological and Environmental Research (DE-SC0018409),
495 Chemical Sciences, Geoscience and Biosciences Division, Office of Basic Energy Sciences, Office
496 of Science, U.S. Department of Energy (DE-FG02-91ER20021) and MSU AgBioResearch
497 (MICL02598). This study was supported in part through Michigan State University's Institute for
498 Cyber-Enabled Research Cloud Computing Fellowship, with computational resources and services
499 provided by Information Technology Services and the Office of Research and Innovation at
500 Michigan State University. We thank the Genome Center and Proteomics Core, University of
501 California, Davis for the eY1H screen.

502

503 **Author Contributions**

504 D.K.K and F.B. conceived the project and designed experiments and research plan; D.K.K
505 performed experiments and data analysis; F.B. supervised the project; D.K.K and F.B. interpreted
506 the data and wrote the manuscript.

507

508 **Competing interests**

509 The authors declare no conflicts of interest.

510

511 **Figure Legends**

512 **Fig. 1 | Putative CRE identification relevant to differential gene expression in response to**
513 **both ABA treatment and ER stress recovery and a UPR-TF network built on Y1H screens.**

514 **a**, RNA-seq results in ABA treatment and ERR condition show a significant overlap of DEGs. The
515 significance (*P*-value) measured by one-sided hypergeometric distribution test is shown. **b**,
516 Pairwise correlation analyses of relative expression levels of DEGs between ABA-36 h and ERR
517 conditions. The expression of each of the DEGs (36 h of ABA treatment and 0 h, 12 h or 24 h of
518 ERR; *n* = 105 for ABA-36 h vs. ERR-0 h, *n* = 277 for ABA-36 h vs. ERR-12 h, *n* = 315 for ABA-
519 36 h vs. ERR-24 h) were subjected to Spearman correlation coefficient analyses. *n* = the number
520 shared DEGs. The density plots at the top and right display the enrichment of Log₂FC under ER
521 stress recovery and ABA (36 h), respectively. The Spearman's correlation coefficient (rho) for
522 each comparison is shown along with the level of significance (*P*-value) in the corresponding
523 color. Plots of the other ABA time-points are shown in Extended Data Fig. 2. Error bars (gray)
524 denote 95% confidence intervals. **c**, *De novo* motif analyses of promoter fragments of the ERR-
525 ABA DEGs with STREME. The 1-kb promoters of each of the ERR-ABA DEGs were split into
526 10 overlapping fragments (110-bp long except for the ones closest to TSSs, which are 100-bp) and

527 subjected to *de novo* motif analyses with a control set of randomly selected genes (See Methods
528 and Extended Data Fig. 3). STREME used Fisher's exact test to calculate *P*-values of each motif
529 enrichment. Full information of TOMTOM results is provided in Supplementary Data 3. **d**, A
530 schematic view of the 1-kb promoters of *bZIP28*, *bZIP60* and *BiP3* genes used for bait in the eY1H
531 screens. Coordinates of each fragment bait are indicated. Fa, fragment a (away from the
532 transcription start site). Fb, fragment b (containing the transcription start site). **e**, Distribution of
533 TF interaction hits for each promoter fragment (Fa or Fb) of each bait gene. **f**, A TF network
534 underlying the UPR. Square nodes indicate individual TFs. Bait genes (*bZIP28*, *bZIP60* and *BiP3*)
535 are shown as black circles. Three horizontal strip heatmaps within each node indicate expression
536 changes in Col-0 during ER stress recovery (0 h, 12 h and 24 h). A full list of PDIs identified in
537 our Y1H screens is provided in Supplementary Data 4.

538 **Fig. 2 | GBF2 negatively regulates the expression of *BiP3* via direct binding to the promoter.**
539 **a,b**, A heatmap (**a**) showing the relative growth rate of the primary roots of T-DNA mutants of
540 selected 12 TF genes. The relative growth rate of primary roots was measured at Day 7 in ERR.
541 Representative images (**b**) of the primary root of Col-0 and *gbf2-3* are shown. **c**, Genomic
542 annotations of GBF2 UPR-specific binding peaks. A full list of peak annotation is provided in
543 Supplementary Data 6. **d**, Top-scoring motif (G-box) enriched in centers of GBF2 Tm-specific
544 binding peaks. **e**, Intersection of GBF2 UPR-specific binding peaks with those of UPR bZIP-TFs.
545 The *P*-values of the overlaps between the two datasets or among multi-sets measured using one-
546 sided hypergeometric distribution test are shown. The degree of intersection is indicated in the
547 heatmap above the plot. The genes indicated by red dashed lines were used for the GO term
548 enrichment analysis in (**f**). **f**, GO term enrichments in genes bound by GBF2 and UPR mTF(s).
549 The 13 GO terms with the largest gene ratios are plotted in order of gene ratio. The *P*-values were

550 calculated by hypergeometric probability test and adjusted by the Benjamini-Hochberg method.
551 The size of the dots represents the number of genes in the significant DE gene list associated with
552 the GO term and the color of the dots represent the adjusted *P*-values. A full list of GO terms is
553 provided in Supplementary Data 6. **g**, Genome browser screenshots visualizing GBF2, bZIP28 and
554 bZIP60 binding to the promoter of *BiP3* and its expression at ERR-0 h. Arrows indicate gene
555 orientation. DHS, DNase I hypersensitive sites. All tracks were normalized to the respective
556 sequencing depth. The UPR-specific peak for each of GBF2, bZIP28 or bZIP60 is indicated by
557 blue solid lines below the corresponding ChIP track. **h**, qRT-PCR assays of *BiP3* expression
558 ($\text{Log}_2[\text{Tm}/\text{DMSO}]$) during ERR (0 h, 12 h and 24 h). Means \pm SEM; $n = 3$ biological replicates
559 (12 seedlings per replicate) except for Tm at 24 h where two biological replicates were used. The
560 significance (*P*-value) measured by two-tailed Student's *t*-test is shown. **i**, qRT-PCR assays of
561 *GBF2* and *BiP3* expression in the GBF2 β -estradiol inducible line. The expression values were
562 calculated relative to *UBQ10*. Means \pm SEM; $n = 3$ biological replicates (12 seedlings per replicate).
563 D, DMSO; T, Tunicamycin; BE, β -estradiol. The significance (*P*-value) measured by two-tailed
564 Student's *t*-test is shown. The experiments in **a,b,h,i** were independently repeated at least two
565 times with similar results.

566 **Fig. 3 | GBF2 competes with bZIP60 and bZIP28 for the binding to the *BiP3* promoter as a**
567 **negative regulator.** **a**, A schematic view of the 1-kb promoter of *BiP3*. Locations of G-box and
568 ERSE-I are indicated by red and blue arrowheads, respectively. The grey bars indicate the location
569 of probes (EW, EM and EN) used in the EMSA. Numbers are relative to the transcription start site
570 (+1). **b,c**, EMSA of *BiP3* promoter probes with recombinant MBP-GBF2 (**b**) and MBP-sbZIP60
571 (**c**) (10, 20 and 30 pmole for lane 3, lane 4 and lane 5 through 14). Radioisotope-labeled probes
572 (EW, EM and EN) were incubated in the presence of MBP, MBP-bZIP28n, MBP-sbZIP60 and

573 MBP-GBF2. Unlabeled EW probes (0.5×, 2.5× and 5× molar excess relative to labeled EW) were
574 used as competitors. MBP-bZIP28n and MBP-sbZIP60 were used as competitors for MBP-GBF2
575 while MBP-bZIP28n and MBP-GBF2 were so for MBP-sbZIP60 (1.5 pmole for lanes 9 and 11,
576 and 3 pmole for lanes 10 and 12). Shifted protein-DNA complexes are indicated by a black
577 arrowhead. Free probes were indicated by a grey arrowhead. EW: the endogenous promoter
578 fragment containing G-box and ERSE-I. EM: EW containing mutations on the G-box (gacGc).
579 EN: the endogenous promoter fragment with no G-box or ERSE-I. **d**, Schematic diagram shows
580 the constructs used in Dual-Luciferase Assays. BiP3pro, the *BiP3* promoter (1,037-bp). 35Spro,
581 the CaMV 35S promoter. **e**, Dual-Luciferase Assays in tobacco leaves. Each plus sign indicates
582 the addition of the corresponding *Agrobacterium* cell culture with 0.1 of OD₆₀₀, and two plus signs
583 do so with 0.2 of OD₆₀₀. Data were normalized to the internal control REN, *Renilla*. Means ±
584 SEM; *n* = 5 biological replicates (3 seedlings per replicate). The significance (*P*-value) measured
585 by two-tailed Student's *t*-test is shown. ns, not significant. The experiments were independently
586 repeated at least two times with similar results.

587 **Fig. 4 | The *gbf2-3* null mutation suppresses the lethal phenotype of *bzip28-2 bzip60-1* and de-
588 represses the expression of UPR biomarker genes. a,b**, The relative growth of primary roots of
589 Col-0, *gbf2-3*, *bzip28-2 bzip60-1* and *gbf2-3 bzip28-2 bzip60-1* in ERR (**a**) and chronic ER stress
590 (**b**). The relative length of primary root was measured at 7 days of ER stress recovery and 10 days
591 of growth under chronic ER stress. Means ± SEM; 5 biological replicates (*n* = 6 seedlings per
592 replicates). **(c)** qRT-PCR assays of *BiP3* and *ERdj3B* expression in Col-0, *bzip28-2 bzip60-1* and
593 *gbf2-3 bzip28-2 bzip60-1* after treatment with either Tm or DMSO for 6 h. The expression values
594 were calculated relative to *UBQ10*. Means ± SEM; 5 biological replicates (*n* = 12 seedlings per

595 replicates). The significance (*P*-value) measured by two-tailed Student's *t*-test is shown. ns, not
596 significant. The experiments were independently repeated at least two times with similar results.

597

598

599

600 **References**

- 601 1. Howell, S.H. Endoplasmic reticulum stress responses in plants. *Annu Rev Plant Biol* **64**,
602 477-99 (2013).
- 603 2. Pastor-Cantizano, N., Ko, D.K., Angelos, E., Pu, Y. & Brandizzi, F. Functional
604 Diversification of ER Stress Responses in Arabidopsis. *Trends Biochem Sci* **45**, 123-136
605 (2020).
- 606 3. Ko, D.K. & Brandizzi, F. A temporal hierarchy underpins the transcription factor-DNA
607 interactome of the maize UPR. *Plant J.* **105**(2020).
- 608 4. Ko, D.K. & Brandizzi, F. Advanced genomics identifies growth effectors for proteotoxic
609 ER stress recovery in Arabidopsis thaliana. *Commun Biol.* **5**(2022).
- 610 5. Vihervaara, A., Duarte, F.M. & Lis, J.T. Molecular mechanisms driving transcriptional
611 stress responses. *Nat Rev Genet.* **19**, 385-397 (2018).
- 612 6. Lemon, B. & Tjian, R. Orchestrated response: a symphony of transcription factors for
613 gene control. *Genes Dev* **14**, 2551-69 (2000).
- 614 7. Ezer, D. *et al.* The G-Box Transcriptional Regulatory Code in Arabidopsis. *Plant
615 Physiol.* **175**, 628-640 (2017).

616 8. Komili, S. & Silver, P.A. Coupling and coordination in gene expression processes: a
617 systems biology view. *Nat Rev Genet* **9**, 38-48 (2008).

618 9. Ko, D.K. & Brandizzi, F. Network-based approaches for understanding gene regulation
619 and function in plants. *Plant J.* (2020).

620 10. Martínez, I.M. & Chrispeels, M.J. Genomic analysis of the unfolded protein response in
621 Arabidopsis shows its connection to important cellular processes. *Plant Cell* **15**, 561-76
622 (2003).

623 11. Liu, J.X. & Howell, S.H. bZIP28 and NF-Y transcription factors are activated by ER
624 stress and assemble into a transcriptional complex to regulate stress response genes in
625 Arabidopsis. *Plant Cell* **22**, 782-96 (2010).

626 12. Ruberti, C., Lai, Y. & Brandizzi, F. Recovery from temporary endoplasmic reticulum
627 stress in plants relies on the tissue-specific and largely independent roles of bZIP28 and
628 bZIP60, as well as an antagonizing function of BAX-Inhibitor 1 upon the pro-adaptive
629 signaling mediated by bZIP28. *Plant J* **93**, 155-165 (2018).

630 13. Song, L. *et al.* A transcription factor hierarchy defines an environmental stress response
631 network. *Science* **354**(2016).

632 14. Vihervaara, A., Duarte, F.M. & Lis, J.T. Molecular mechanisms driving transcriptional
633 stress responses. *Nat Rev Genet* **19**, 385-397 (2018).

634 15. Lai, Y.S. *et al.* Salicylic acid-independent role of NPR1 is required for protection from
635 proteotoxic stress in the plant endoplasmic reticulum. *Proc Natl Acad Sci U S A* **115**,
636 E5203-E5212 (2018).

637 16. Nawkar, G.M. *et al.* HY5, a positive regulator of light signaling, negatively controls the
638 unfolded protein response in. *Proc Natl Acad Sci U S A* **114**, 2084-2089 (2017).

639 17. Zhang, S.S. *et al.* Tissue-Specific Transcriptomics Reveals an Important Role of the
640 Unfolded Protein Response in Maintaining Fertility upon Heat Stress in Arabidopsis.
641 *Plant Cell* **29**, 1007-1023 (2017).

642 18. Zou, C. *et al.* Cis-regulatory code of stress-responsive transcription in Arabidopsis
643 thaliana. *Proceedings of the National Academy of Sciences* **108**, 14992-14997 (2011).

644 19. Jakoby, M. *et al.* bZIP transcription factors in Arabidopsis. *Trends Plant Sci* **7**, 106-11
645 (2002).

646 20. Gaudinier, A. *et al.* Enhanced Y1H assays for Arabidopsis. *Nat Methods* **8**, 1053-5
647 (2011).

648 21. Reece-Hoyes, J.S. *et al.* Enhanced yeast one-hybrid assays for high-throughput gene-
649 centered regulatory network mapping. *Nat Methods* **8**, 1059-64 (2011).

650 22. Deng, Y. *et al.* Heat induces the splicing by IRE1 of a mRNA encoding a transcription
651 factor involved in the unfolded protein response in Arabidopsis. *Proc Natl Acad Sci U S*
652 *A* **108**, 7247-52 (2011).

653 23. Song, Z.T. *et al.* Transcription factor interaction with COMPASS-like complex regulates
654 histone H3K4 trimethylation for specific gene expression in plants. *Proc Natl Acad Sci U*
655 *S A* **112**, 2900-5 (2015).

656 24. Otero, J.H., Lizák, B. & Hendershot, L.M. Life and death of a BiP substrate. in *Seminars*
657 *in cell & developmental biology* Vol. 21 472-478 (Elsevier, 2010).

658 25. Smit, M.E. *et al.* Specification and regulation of vascular tissue identity in the.
659 *Development* (2020).

660 26. Schindler, U., Menkens, A.E., Beckmann, H., Ecker, J.R. & Cashmore, A.R.

661 Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF

662 bZIP proteins. *The EMBO journal* **11**, 1261-1273 (1992).

663 27. Kurihara, Y., Makita, Y., Shimohira, H. & Matsui, M. Time-Course Transcriptome Study

664 Reveals Mode of bZIP Transcription Factors on Light Exposure in. *Int J Mol Sci*

665 **21**(2020).

666 28. Yu, C.P., Lin, J.J. & Li, W.H. Positional distribution of transcription factor binding sites

667 in *Arabidopsis thaliana*. *Sci Rep* **6**, 25164 (2016).

668 29. Zhang, T., Marand, A.P. & Jiang, J. PlantDHS: a database for DNase I hypersensitive

669 sites in plants. *Nucleic Acids Res* **44**, D1148-53 (2016).

670 30. Sparkes, I.A., Runions, J., Kearns, A. & Hawes, C. Rapid, transient expression of

671 fluorescent fusion proteins in tobacco plants and generation of stably transformed plants.

672 *Nat Protoc* **1**, 2019-25 (2006).

673 31. Sherf, B.A., Navarro, S.L., Hannah, R.R. & Wood, K.V. Dual-luciferase reporter assay:

674 an advanced co-reporter technology integrating firefly and Renilla luciferase assays.

675 *Promega notes* **57**, 2-8 (1996).

676 32. Deng, Y., Srivastava, R. & Howell, S.H. Protein kinase and ribonuclease domains of

677 IRE1 confer stress tolerance, vegetative growth, and reproductive development in

678 *Arabidopsis*. *Proc Natl Acad Sci U S A* **110**, 19633-8 (2013).

679 33. Lai, Y.S. *et al.* Systemic signaling contributes to the unfolded protein response of the

680 plant endoplasmic reticulum. *Nat Commun* **9**, 3918 (2018).

681 34. Pobre, K.F.R., Poet, G.J. & Hendershot, L.M. The endoplasmic reticulum (ER)
682 chaperone BiP is a master regulator of ER functions: Getting by with a little help from
683 ERdj friends. *J Biol Chem* **294**, 2098-2108 (2019).

684 35. Deppmann, C.D. *et al.* Dimerization specificity of all 67 B-ZIP motifs in *Arabidopsis*
685 *thaliana*: a comparison to *Homo sapiens* B-ZIP motifs. *Nucleic Acids Res* **32**, 3435-45
686 (2004).

687 36. Gordân, R. *et al.* Genomic regions flanking E-box binding sites influence DNA binding
688 specificity of bHLH transcription factors through DNA shape. *Cell Rep* **3**, 1093-104
689 (2013).

690 37. Nuruzzaman, M., Sharoni, A.M. & Kikuchi, S. Roles of NAC transcription factors in the
691 regulation of biotic and abiotic stress responses in plants. *Front Microbiol* **4**, 248 (2013).

692 38. Altman, B.J. *et al.* MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells.
693 *Cell Metab* **22**, 1009-19 (2015).

694 39. Li, Z., Tang, J., Srivastava, R., Bassham, D.C. & Howell, S.H. The Transcription Factor
695 bZIP60 Links the Unfolded Protein Response to the Heat Stress Response in Maize.
696 *Plant Cell* **32**, 3559-3575 (2020).

697 40. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
698 *EMBnet. journal* **17**, 10-12 (2011).

699 41. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. *Nat Methods*
700 **9**, 357-9 (2012).

701 42. Kim, D. *et al.* TopHat2: accurate alignment of transcriptomes in the presence of
702 insertions, deletions and gene fusions. *Genome Biol* **14**, R36 (2013).

703 43. Anders, S., Pyl, P.T. & Huber, W. HTSeq--a Python framework to work with high-
704 throughput sequencing data. *Bioinformatics* **31**, 166-9 (2015).

705 44. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
706 for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

707 45. Robinson, J.T. *et al.* Integrative genomics viewer. *Nat Biotechnol* **29**, 24-6 (2011).

708 46. Wu, T. *et al.* clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
709 *Innovation (N Y)* **2**, 100141 (2021).

710 47. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient
711 alignment of short DNA sequences to the human genome. *Genome Biol* **10**, R25 (2009).

712 48. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
713 2078-9 (2009).

714 49. Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**, R137
715 (2008).

716 50. Yu, G., Wang, L.G. & He, Q.Y. ChIPseeker: an R/Bioconductor package for ChIP peak
717 annotation, comparison and visualization. *Bioinformatics* **31**, 2382-3 (2015).

718 51. Ramírez, F. *et al.* deepTools2: a next generation web server for deep-sequencing data
719 analysis. *Nucleic Acids Res* **44**, W160-5 (2016).

720 52. Bailey, T.L. STREME: Accurate and versatile sequence motif discovery. *Bioinformatics*
721 (2021).

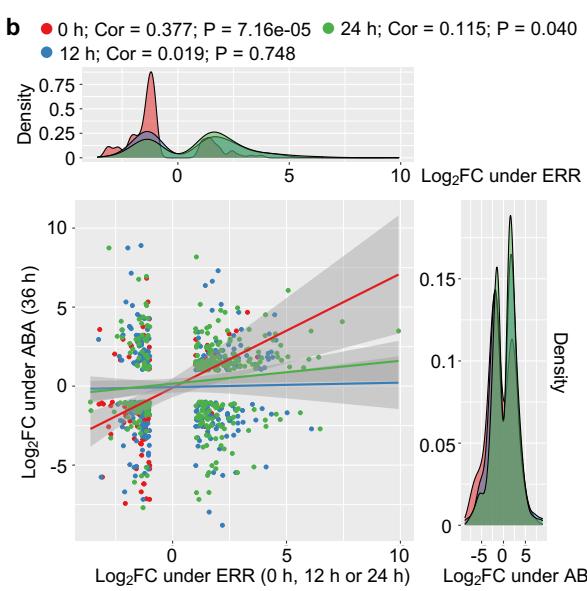
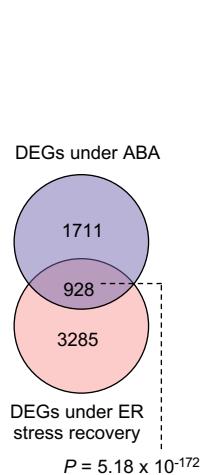
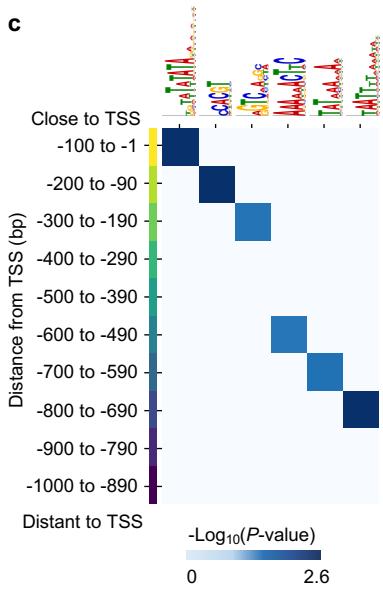
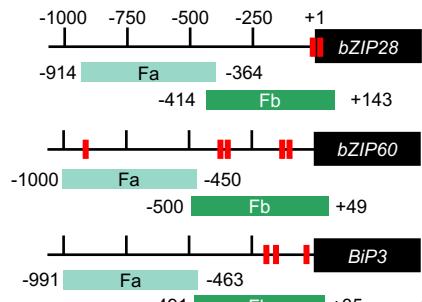
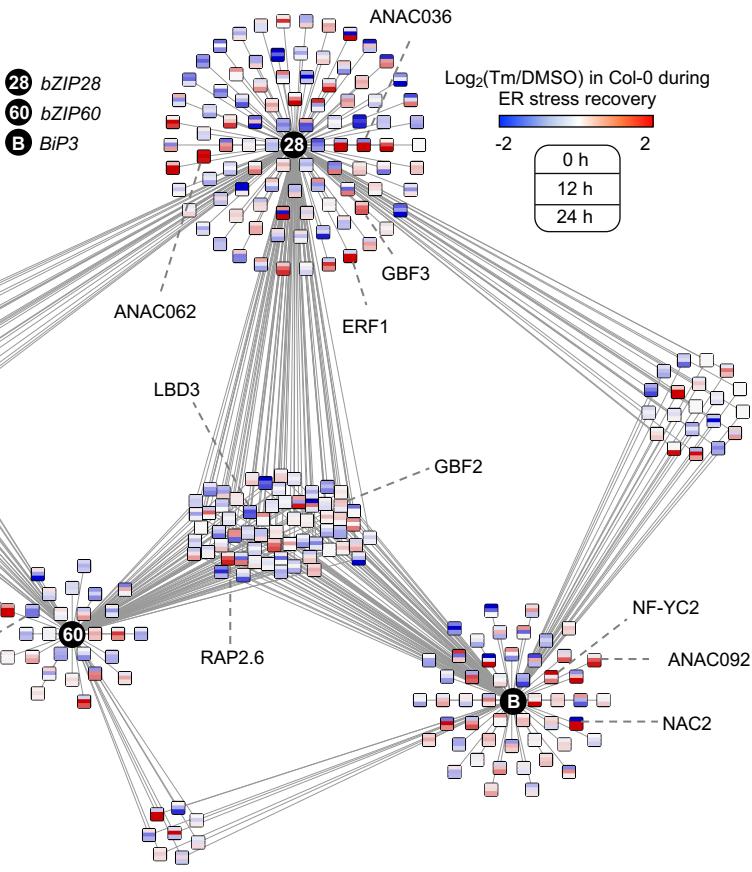
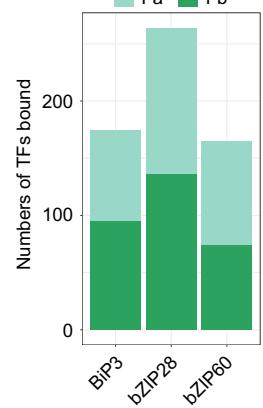
722 53. O'Malley, R.C. *et al.* Cistrome and Epicistrome Features Shape the Regulatory DNA
723 Landscape. *Cell* **165**, 1280-1292 (2016).

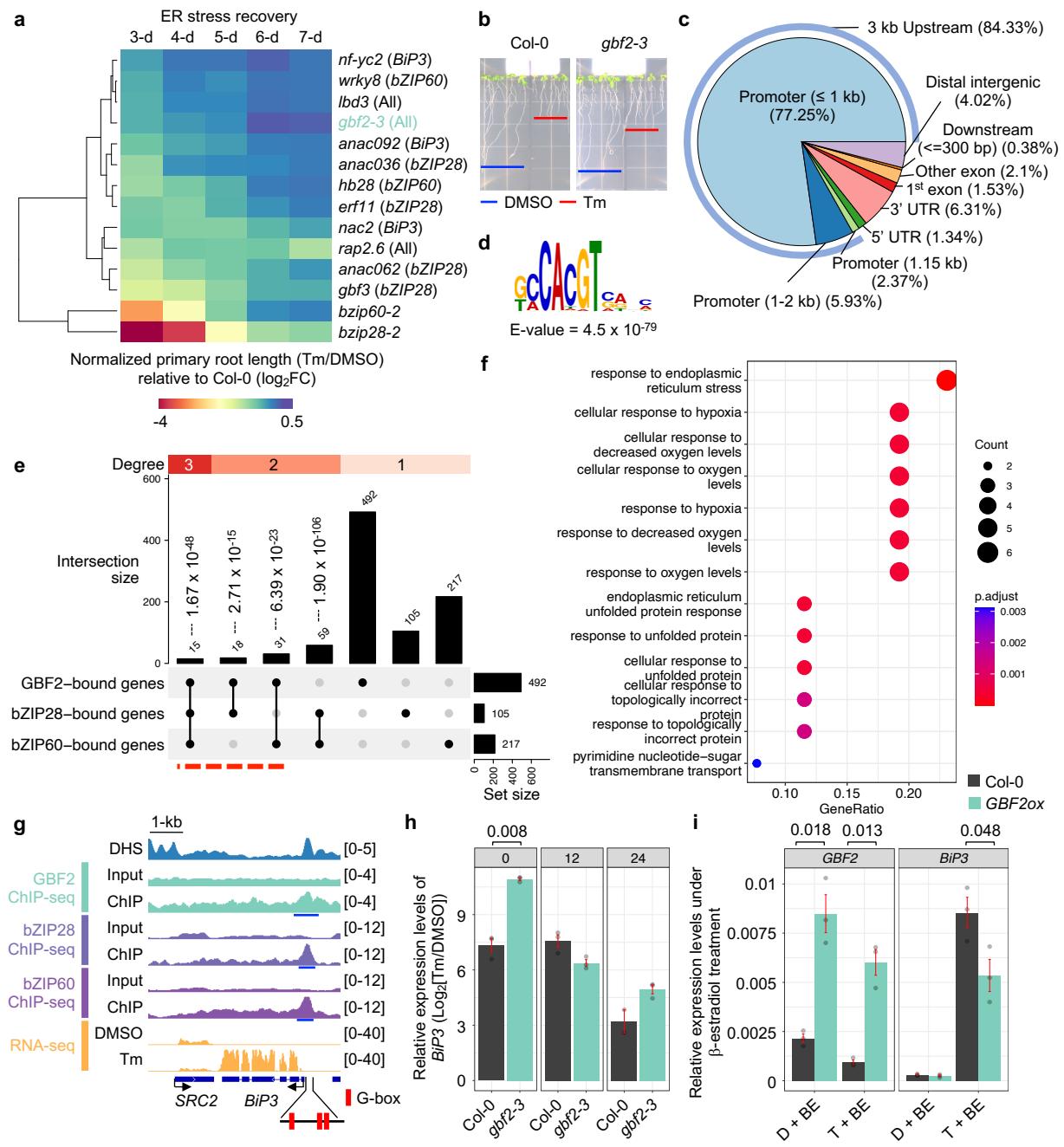
724 54. Franco-Zorrilla, J.M. *et al.* DNA-binding specificities of plant transcription factors and
725 their potential to define target genes. *Proc Natl Acad Sci U S A* **111**, 2367-72 (2014).

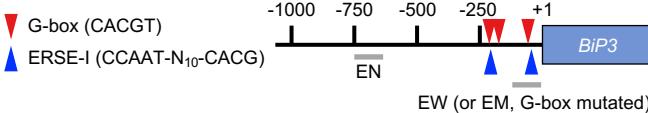
726 55. Gupta, S., Stamatoyannopoulos, J.A., Bailey, T.L. & Noble, W.S. Quantifying similarity
727 between motifs. *Genome Biol* **8**, R24 (2007).

728 56. Deplancke, B., Dupuy, D., Vidal, M. & Walhout, A.J. A gateway-compatible yeast one-
729 hybrid system. *Genome Res* **14**, 2093-101 (2004).

730 57. Pruneda-Paz, J.L. *et al.* A genome-scale resource for the functional characterization of
731 Arabidopsis transcription factors. *Cell Rep* **8**, 622-32 (2014).







732 58. Gaudinier, A. *et al.* Transcriptional regulation of nitrogen-associated metabolism and
733 growth. *Nature* **563**, 259-264 (2018).

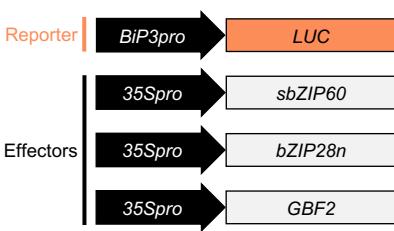
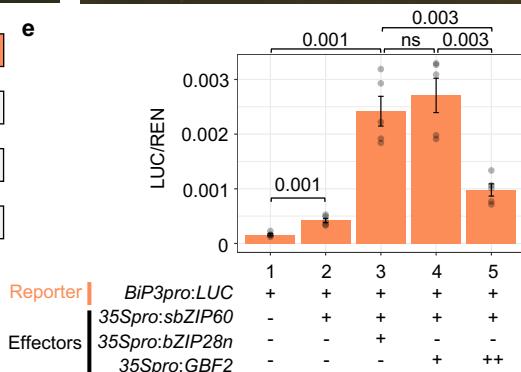

734 59. Shannon, P. *et al.* Cytoscape: a software environment for integrated models of
735 biomolecular interaction networks. *Genome Res* **13**, 2498-504 (2003).

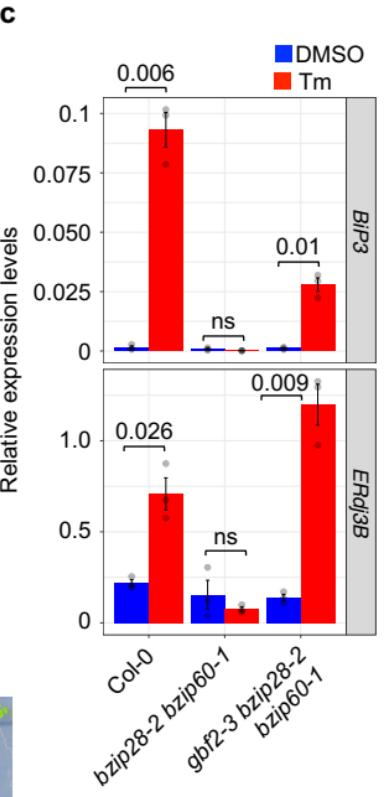
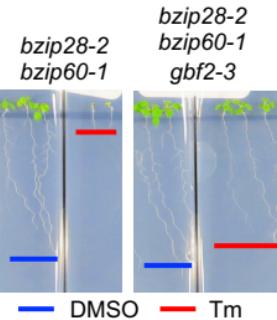
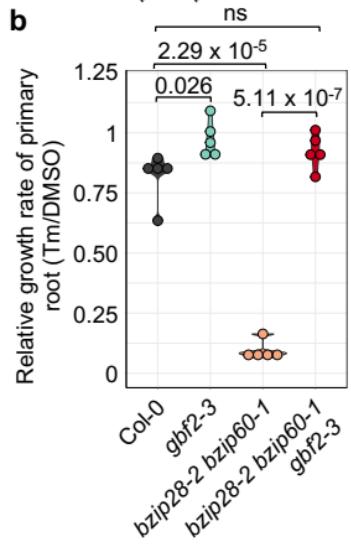
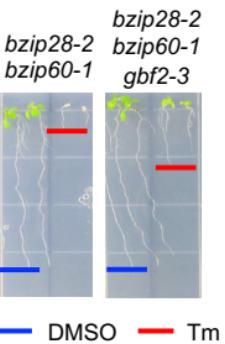
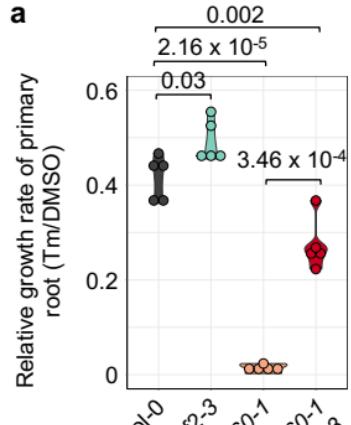

736 60. Tian, T. *et al.* agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017
737 update. *Nucleic Acids Res* (2017).

738

739

a**c****d****f****e**






a**b**

BiP3-EN	-	-	-	-	-	-	-	-	-	-	-	-	+
BiP3-EM	-	-	-	-	-	-	-	-	-	-	-	-	-
EW unlabeled	-	-	-	-	-	-	-	-	-	-	-	-	-
BiP3-EW	+	+	+	+	+	+	+	+	+	+	+	+	-
MBP-GBF2	-	-	-	-	-	-	-	-	-	-	-	-	-
MBP-bZIP28n	-	-	-	-	-	-	-	-	-	-	-	-	-
MBP	-	+	-	-	-	-	-	-	-	-	-	-	-
MBP-sbZIP60	-	-	-	-	-	-	-	-	-	-	-	-	-

c

EW unlabeled	-	-	-	-	-	-	-	-	-	-	-	-	+
BiP3-EW	+	+	+	+	+	+	+	+	+	+	+	+	-
MBP-GBF2	-	-	-	-	-	-	-	-	-	-	-	-	-
MBP-bZIP28n	-	-	-	-	-	-	-	-	-	-	-	-	-
MBP	-	-	-	-	-	-	-	-	-	-	-	-	-
MBP-sbZIP60	-	-	-	-	-	-	-	-	-	-	-	-	-

d**e**

