
Scalable3-BayesOpt: Big Data meets HPC
A scalable parallel high-dimensional BO framework on supercomputers

ASME IDETC-CIE 2021. August 17–19, 2021. Virtual.
Anh Tran (SNL)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

SAND NO. SAND2021-???? C

SAND2021-7668CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Acknowledgment

Joint work with Bart G van Bloemen Waanders (SNL).
Funded by DOE/Office of Science/ASCR.

2



Advantages/Disadvantages

Bayesian optimization in a nutshell
Bayesian optimization = Gaussian process + sampling strategy

Advantages:
optimize with uncertainty consideration
active machine learning (balance exploration-exploitation)
derivative free (avoid computing Jacobian)
global optimization (convergence in probability to global optimum)

good convergence rate (provably asymptotic regret, O
(

n− 1
d
)

)

Disadvantages:
high-dimensionality
scalability: computational bottleneck O(n3) when n ≥ O(103)
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Bayesian optimization features

very versatile (open for methodological extensions)
acquisition functions: PI, EI, UCB, Thompson sampling, entropy-based, KG, or combination among these
constrained on objectives (known + unknown constraints) X

multi-objective(Pareto frontier/optimal, domination) X

multi-output 7

multi-fidelity (couple multiple low-, high-fidelity models) X

batch parallelization X→ asynchronous parallel X
stochastic 7

time-series (forecasting, e.g. causal kernel) 7

mixed-integer (discrete/categorical + continuous) X

scalable X

latent variable model 7

gradient-enhanced X

high-dimensional (with low effective dimensionality) X

physics-constrained: monotonic, discontinuous, symmetry, bound 7

outlier: student-t distribution 7

non-stationary 7
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Outline

An outline for this talk
warning: will be dense in mathematics
delibrate use of Sherman–Morrison–Woodbury formula for matrix inversion

formulations
1. (scalable + low-rank) sparse GP – variational inference for ELBO
2. high-dimensional problem with low effective dimensionality:

Johnson-Lindenstrauss lemma for Gaussian random projection1

3. asynchronous (nonmyopic/lookahead) parallel on HPC
our contribution: a unifying framework to tackle scalability with respect to
different fronts: (1) data size, (2) dimensionality, (3) computational resource

demonstration with distinct numerical examples
1M data point
10,000D with low-d
20 concurrent workers for parallelization

1https://en.wikipedia.org/wiki/Random_projection
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Notation

x ∈ X ⊂ RD : inputs,
z ∈ Z ⊂ Rd : random embedded inputs,
Xu ∈ X ⊂ RD : inducing inputs,
Zu ∈ Z ⊂ Rd : random embedded inducing inputs,
u ∈ R: inducing random embedded outputs,
y ∈ R: outputs,
D: dimensionality of x (before embedding),
d � D: dimensionality of z (after embedding),

A ∈ RD×d : normal random matrix, aij
i.i.d∼ N (0, 1).
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Classical GP

Let Dn = {xi , yi}n
i=1 denote the dataset. Assume observations jointly Gaussian

f|X ∼ N (m,Kf,f), (1)

and

y|f, σ2 ∼
n∏

i=1

p(yi |fi ) = N (f, σ2I), (2)

then the Gaussian process posterior mean and variance is given by

µ(x∗) = m(x) + k(x∗)>(Kf,f + σ2I)−1(y−m), (3)

σ2(x∗) = K(x∗, x∗)− k(x∗)>(Kf,f + σ2I)−1k(x∗). (4)
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Classical GP

Formulation:
assume stationary: only depends on distance r = ||x− x∗||
then the covariance matrix is symmetric positive-semidefinite matrix made up of
pairwise inner products

Kij = k(xi , xj) = k(xj , xi ) = Kji (5)

unknown function is presumably smooth, i.e. squared exponential is infinitely
differentiable C∞

x are continuous, i.e. f : X ⊂ RD → R.
Implementation:

MLE to estimate the hyper-parameter θ ∈ RD

MLE is equivalent to MAP if prior is uniform
cost complexity K−1 at the cost of O(n3), K ∈ Rn×n
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Classical GP: A Bayesian perspective

Mostly follow Quiñonero-Candela and Hansen 2004; Quiñonero-Candela and
Rasmussen 2005.
Denote training f, testing f∗, the joint GP prior is

p(f, f∗) = N
([

m
m

]
,

[
Kf,f K∗,f
Kf,∗ K∗,∗

])
. (6)

By Bayes’ rule

p(f∗|y) =
∫

p(f, f∗|y)df
= 1

p(y)
∫

p(y|f) p(f, f∗)df
= N (m + K∗,f[Kf,f + σ2I]−1(y−m),K∗,∗ − K∗,f[Kf,f + σ2I]−1Kf,∗),

(7)
Log of marginal likelihood function:

log p(y|X) = log
∫

p(y|f)p(f|X)df
= − n

2
log (2π)− 1

2
log |Kf,f + σ2I| − 1

2
(y−m)>(Kf,f + σ2I)−1(y−m).

(8)
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Classical GP: A Bayesian perspective
A conditional of a Gaussian is also Gaussian.

Figure: Photo courtesy of from Lawrence 2016.

If
P(x, y) = N

([
µx
µy

]
,

[
A C

C> B

])
(9)

then
P(x|y) = N (µx + CB−1(y − µy),A− CB−1C>) (10)

(cf. App. A, Quiñonero-Candela and Rasmussen 2005). 10



Sparse GP

Low-rank approximation2for Kf,f

Low-rank approximation K ≈ K̃ = Kn×mK−1
m×mKm×n (cf. Section 8.1 Rasmussen

2006) and scales as O(nm2 + m3) instead of O(n3).
For n� m, this method scales as O(nm2).

Following Quiñonero-Candela and Rasmussen 2005; Quiñonero-Candela, Rasmussen,
and Williams 2007, Chalupka, Williams, and Murray 2013, Vanhatalo et al. 2012;
Vanhatalo et al. 2013.
Cost complexity:

local GP: O(m3)

sparse GP: O(nm2)

classical GP (Cholesky decomposition): O
(
1
3

n3
)

classical GP (LU decomposition): O
(
2
3

n3
)

classical GP (QR decomposition): O
(
4
3

n3
)

2https://en.wikipedia.org/wiki/Low-rank_matrix_approximations
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Sparse GP
p(·): true pdf
q(·): approximate pdf

Assume the fully independent training conditional (FITC) Quiñonero-Candela and
Rasmussen 2005; Quiñonero-Candela, Rasmussen, and Williams 2007, augment the
joint model p(f∗, f) as

p(f∗, f) =
∫

p(f∗, f, u)du =

∫
p(f∗, f|u)p(u)du, (11)

u: inducing variables at m locations Xu. The training and testing conditionals are

p(f|u) = N (m + Kf,uK−1
u,u (u−m), Kf,f − Qf,f), (12)

and
p(f∗|u) = N (m + K∗,uK−1

u,u (u−m), K∗,∗ − Q∗,∗), (13)

where
Qa,b := Ka,uK−1

u,u Ku,b. (14)

The likelihood and inducing priors remain the same, i.e. p(y|f) = N (f, σ2I), and
p(u) = N (m,Ku,u).
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Sparse GP
FITC training prior based on the inducing priors is modified as

q(f|u) =
n∏

i=1

p(fi |u) = N (m + Kf,uK−1
u,u (u−m),Diag[Kf,f − Qf,f]) (15)

and keeping the testing prior the same

q(f∗|u) = p(f∗|u) = N (m + K∗,uK−1
u,u (u−m), K∗,∗ − Q∗,∗), (16)

the effective prior under the FITC assumption is

q(f, f∗) = N
([

m
m

]
,

[
Qf,f − Diag[Qf,f − Kf,f] Qf,∗

Q∗,f K∗,∗

])
, (17)

which implies the testing distribution as

q(f∗|y) = N (m + Q∗,f(Qf,f + Λ)−1(y−m),K∗,∗ − Q∗,f(Qf,f + Λ)−1Qf,∗)
= N (m + K∗,uΣKu,fΛ

−1(y−m),K∗,∗ − Q∗,∗ + K∗,uΣKu,∗)
,

(18)
where Σ = [Ku,u + Ku,fΛ

−1Kf,u]
−1 and Λ = Diag[Kf,f − Qf,f + σ2I]. 13



Sparse GP

The marginal likelihood conditioned on the inducing inputs is therefore

q(y|Xu) =

∫ ∫
p(y|f)q(f|u)p(u|Xu)dudf =

∫
p(y|f)q(f|Xu)df, (19)

which implies the log marginal likelihood as

log q(y|Xu) = −
n
2

log(2π)−
1

2
log |Qf,f + Λ| −

1

2
(y−m)>[Qf,f + Λ]−1(y−m), (20)

where Λ = Diag[Kf,f − Qf,f] + σ2I.
Note that by Sherman–Morrison–Woodbury formula,

[Qf,f + Λ]−1 = [Λ + Kf,uK−1
u,u Ku,f]

−1

= Λ−1 − Λ−1Kf,u[Ku,u + Ku,fΛ
−1Kf,u]

−1Ku,fΛ
−1.

(21)

Cost complexity: O(nm2) Williams and Seeger 2001; Li, Kwok, and Lü 2010, if Xu is
chosen in advanced.
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Variational inference: a hand-waving argument
Follows Frigola, Chen, and Rasmussen 2014 and Rasmussen’s corresponding slides. By
Bayes’ rule,

p(f|y, θ) =
p(y|f)p(f|θ)

p(y|θ)
⇔ p(y|θ) =

p(y|f)p(f|θ)
p(f|y, θ)

. (22)

The idea: approximate the (computationally intractable) p(f|y, θ) by a
(computationally tractable) parameterized variational q(f). For any q(f),

p(y|θ) =
p(y|f)p(f|θ)

p(f|y, θ)
q(f)
q(f)

⇔ log p(y|θ) = log
p(y|f)p(f|θ)

q(f)
+ log

q(f)
p(f|y, θ)

. (23)

Apply
∫

q(f)df to both sides

log p(y|θ)︸ ︷︷ ︸
marginal likelihood

=

∫
q(f) log

p(y|f)p(f|θ)
q(f)

df︸ ︷︷ ︸
Evidence Lower BOund

+

∫
q(f) log

q(f)
p(f|y, θ)

df︸ ︷︷ ︸
KL(q(f)||p(f|y,θ))

(24)

Somewhat related to the reparameterization trick in VAE Diederik and Welling 2014.
Turn our attention to maximizing the variational ELBO (or equivalently minimizing
the KL divergence) instead of maximizing the log marginal likelihood. 15



Variational inference: a rigorous approach
Mostly follow Titsias 2009a; Titsias 2009b and Bonilla, Krauth, and Dezfouli 2019.
Definition of conditionally independent condition:

p(f|u, y) = p(f|u), (25)

which implies p(f, u|y) = p(f|u, y)p(u|y) ≈ q(f, u) = p(f|u)q(u), where q(u) is the
approximate variational posterior. Main tool: Jensen’s inequality.

log q(y|Xu) = log
∫ ∫

p(y|f)q(f|u)p(u|Xu)× q(u,f)
q(u,f)dudf

≥
∫ ∫

q(u, f) log p(y|f)q(f|u)p(u|Xu)
q(u,f) dudf

=
∫ ∫

p(f|u)q(u) log p(y|f)��q(f|u)p(u|Xu)
��p(f|u)q(u) dudf

=
∫

q(u)
{∫

p(f|u) log p(y|f)df + log p(u|Xu)
q(u)

}
du

=
∫

q(u)
{

log G(u, y) + log p(u|Xu)
q(u)

}
du

=
∫

q(u)
{

log G(u,y)p(u|Xu)
q(u)

}
du := FV (Xu, u),

(26)

log G(u, y) =
∫

p(f|u) log p(y|f)df
=

∫
p(f|u)

{
− n

2
log(2πσ2)− 1

2σ2 Tr
[
yy> − 2yf> + ff>

]}
df

= − n
2

log(2πσ2)− 1
2σ2 Tr

[
yy> − 2yα> + αα> + Qf,f − Kf,f

]
= N (y|α, σ2I)− 1

2σ2 Tr[Cov(α)],
(27)
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Variational inference: a rigorous approach

where α = f|u, with
E[α] = E[f|u] = m + Kf,uK−1

u,u (u−m) (28)

and
Cov[α] = Cov[f|u] = Kf,f − Qf,f = Kf,f − Kf,uK−1

u,u Ku,f. (29)

Reverse Jensen’s inequality to maximize the variational evidence lower bound
FV (Xu, u) w.r.t. q(u)

FV (Xu, u) =
∫

q(u)
{

log G(u,y)p(u|Xu)
q(u)

}
du

≤
∫

log G(u, y)p(u|Xu)du
= log[N (y|m, σ2I + Qf,f)]− 1

2σ2 Tr
[
Kf,f − Kf,uK−1

u,u Ku,f
]
=: FV (Xu)

(30)
Train sparse GP by maximizing FV (Xu). See also Vanhatalo et al. 2012; Vanhatalo
et al. 2013, Bauer, Wilk, and Rasmussen 2016; Burt, Rasmussen, and Wilk 2020,
Matthews et al. 2016.
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Numerical benchmark: Big Data

Intel Xeon Platinum 8160 CPU @
2.10GHz
24 cores, 48 threads
RHEL 7.1 (Maipo)
180 GB of memory
sphere function y =

∑3
i=1(xi )2,

X = [−1, 1]3

training data points:
n ∈ {101, 102, . . . , 106}
number of inducing points:
m ∈ {10, 50, 100, . . . , 300}
GPstuff with SuitSparse toolbox on
MATLAB
m = 300, n = 106 takes ∼48
minutes Figure: Benchmark of training time.
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Numerical benchmark: Big Data

Figure: Benchmark of testing time. Figure: Benchmark of accuracy.
19



High-dimensional: Active subspace method

Formulations are derived by Constantine, Dow, and Wang 2014; Constantine 2015
Ideas:

approximate high-dimensional function using gradients, f : X ⊂ RD → R
perform SVD on covariance of gradient vector with descending eigenvalues

E[∇f (x)∇f (x)>] = WDiag[λ1, . . . , λD ]W> (31)

Diag[λ1, . . . , λD ] = Diag[λ1, . . . , λd ]
⊕

Diag[λd+1, . . . , λD ], W = [W1 W2]

(32)
rotate the inputs W1 ∈ RD×d ,W2 ∈ RD×(D−d)

f (x) = f (WW>x) = f (W1W>
1 x + W2W>

2 x) = f (W1y + W2z) (33)

if z invariant in an inactive subspace λd+1 = · · · = λD = 0, then
f (x) = f (W1y): reduce from D to d
work great if gradients are readily available
but what if gradients are not available? estimation by GP? constrained manifold
optimization for W>

1 besides the original optimization?
20



High-dimensional: Gaussian random projection

Mostly follow Wang et al. 2013; Wang et al. 2016. Main idea:
choose (wisely) and optimize over Z ⊂ Rd

embed and project onto high-dimensional space as x← pX (Az)
A ∈ RD×d : tall-and-skinny random matrix with standard normal component

Figure: Photo courtesy of Wang et
al Wang et al. 2016. Optimizing a 2d
function (with 1d active subspace) via
random embedding.

1: generate a random matrix
A ∈ RD×d : aij ∼ N (0, 1)

2: choose the bounded region set Z ⊂ Rd

3: D0 ← ∅
4: for i = 1, 2, · · · do
5: locate next sampling point

zi+1 ← argmaxz∈Z a(z) ∈ Rd

6: query
Di+1 ← Di ∪ {zi+1, f (pX (Azi+1))}

7: update GP
8: end for
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High-dimensional: Gaussian random projection

x
∈
R

D

1

=

D
ro

ws A

d cols

z
∈
R

d

1

Figure: A random embedding or a random
projection x = Az is built as a corollary
from the Johnson-Lindenstrauss lemma,
where A is a random normal matrix.

Theorem (Johnson-Lindenstrauss
lemma (cf. Lemma 15 Mahoney 2016))
Given n points {xi}n

i=1, each of which is in
RD , A ∼MND×d (0, I, I), and let z ∈ Rd

defined as z = A>x. Then, if d ≥ 9 log n
ε2−ε3

,
for some ε ∈

(
0, 1

2

)
, then with probability

at least 1
2

, all pairwise distances are
preserved, i.e. for all i, j, we have

(1−ε)‖xi−xj ‖22 ≤ ‖zi−zj‖22 ≤ (1+ε)‖xi−xj ‖22
(34)
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High-dimensional: Gaussian random projection

Mostly follow Wang et al. 2013; Wang et al. 2016.
D: original high dimensionality
de : true effective dimensionality
d ≥ de : guess dimensionality
theory says that if ε = log d√

d

which implies Z = [−
√

d,+
√

d]d ⊂ Rd

Caveats (and modifications):
may have to normalize the embedding to 1

d Az instead of Az

need to translate from [−
√

d,+
√

d]D to [x, x]
Compared to the active subspace method:

does not require the rotation matrix W>
1 (hence avoid the manifold

optimization constraint)
comes at the cost of having (1− ε) successful rate for finding optimal
could be reduced with multiple A
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Numerical benchmark: High-dimensional (with low
effective dimensionality)

The modified ZDT1 function, which is
defined on [−1, 1]D , is

f2(x) = g

1−

√
x2
1

g

 , (35)

where g = 1 + 9
(∑D

i=2
xi

D−1

)2
.

(non-unique) global minimizer
x∗ = [1, 0, . . . , 0]

f2(x∗) = 0

D = 104

d = 10

de = 2

Figure: Convergence plot with
D = 10, 000, d = 10.
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Numerical benchmark: High-dimensional (with low
effective dimensionality)

The modified ZDT2 function, which is
defined on [−1, 1]D , is

f2(x) = g
[
1−

(
x1
g

)2
]
, (36)

where g = 1 +
(
9
∑D

i=2 xi
)2

.

(non-unique) global minimizer
x∗ = [1, 0, . . . , 0]

f2(x∗) = 0

D = 104

d = 3

de = 2

Figure: Convergence plot with
D = 10, 000, d = 3.
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Asynchronous parallelism

Takeaway message:
asynchronous scheduler reduces idle time for workers,
benefit is maximized when simulator f (·) run-time vary (wildly).

Figure: Batch-sequential parallel Figure: Asynchronous parallel
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Numerical benchmark: parallelization
Hart4 function, t ∼ U [30, 900]s

f (x) =
1

0.839

1.1− 4∑
i=1

αi exp

− 3∑
j=4

Aij(xj − Pij)
2

 , (37)
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Scalable3-BO algorithm
1: draw a random matrix A ∈ RD×d : aij

i.i.d∼ N (0, 1) . A is a Gaussian random matrix
2: set Z ⊂ Rd = [−

√
d,+
√

d]d
3: D0 ← ∅
4: while convergence criteria not met do
5: while no available computational budget do . threshold the computational

budget
6: wait and check periodically if there is any update
7: end while
8: update input, output, and status for all cases . if not complete then hallucinate
9: update dataset Di
10: determine batch to fill . exploit/explore or purely explore
11: locate next sampling point: zi+1 = argmaxz∈Z a(z) ∈ Rd

12: embed, normalize, scale, and translate: x∗i+1 ← x +
1
d Azi+1+

√
d

2(
√

d)
� (x− x) . �

is Hadamard product
13: project xi+1 to X : xi+1 ← pX (x∗i+1) . pX (z) = argminx∈X ‖x− z‖2
14: query Di+1 ← Di ∪ {zi+1, f (xi+1)}
15: hallucinate the sparse GP
16: sample inducing inputs Zu, where |Zu| = min{|X|,m} . Latin hypercube

sampling, | · | denotes cardinality
17: update the sparse GP . fully independent condition sparse GP
18: end while 28



Conclusion

In this talk, we
replace classical GP with sparse GP for Big Data
demonstrate scalability with 1M data points
implement a random embedding based on Johnson-Lindenstrauss lemma for
high-dimensional but low-effective-dimensional problems
demonstrate with D = 10, 000 but de < 10

implement an asynchronous parallel feature to avoid downtime for
computational workers
demonstrate that larger batch means more effectiveness

29



Thank you for listening.

Any question?
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Applications:
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