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37 Abstract: 
38
39 To characterize complex biogeochemical systems, results from multiple experiments, where 
40 each targets a specific subprocess, are commonly combined. The resulting datasets are 
41 interpreted through the calibration of biogeochemical models for process inference and 
42 predictions. Commonly used calibration approaches of fitting datasets from individual 
43 experiments to subprocess models one at a time is prone to missing information shared 
44 between datasets and incomplete uncertainty propagation. We propose a Bayesian joint-fitting 
45 scheme addressing the above-mentioned concerns by jointly fitting all the available datasets, 
46 thus calibrating the entire biogeochemical model in one go using Markov Chain Monte Carlo 
47 (MCMC). The identification of null spaces in the parameter distributions from MCMC guided the 
48 simplification of certain subprocess models. For example, fast kinetic sorption was replaced by 
49 equilibrium sorption, and Monod demethylation was replaced by first-order demethylation. 
50 Joint fitting of datasets resulted in complete uncertainty propagation with parameter estimates 
51 informed by all available data.
52



53 1. Introduction:

54
55 Many stream ecosystems are under stress due to contamination driven by anthropogenic 
56 activities. In particular, trace metals such as mercury, lead and cadmium released from 
57 industrial activities pose a serious threat to human and ecosystem health because of their 
58 toxicity even at minimum levels and potential of bioaccumulation (Chen and Folt, 2000; Evers et 
59 al., 2007; Goodyear and McNeill, 1999; Horowitz, 1991; Mason et al., 2000; Ward et al., 2010). 
60 A comprehensive understanding of their transformation in the environment requires 
61 considerations of the complex interplay between physical, chemical and biological processes at 
62 different spatial and temporal scales. Carefully designed field and laboratory experiments 
63 gather critical data about these processes. However, the usefulness of these datasets depends 
64 on their reliable interpretations. Empirical relations can fit the data well but can struggle to 
65 extrapolate due to a lack of mechanistic underpinnings. Process-based biogeochemical models 
66 are developed and calibrated using the experimental data for mechanistically rich process 
67 inferences and predictions. There are generally multiple candidate biogeochemical models 
68 available to fit the data, e.g., first-order kinetics, equilibrium, Monod, and Tessier. All these 
69 models are upscaled phenomenological descriptions of complex biogeochemical processes and 
70 do not perfectly represent the biogeochemical system, since the “true” model is unknown 
71 (Neumann and Gujer, 2008). Typically, based on preliminary data analysis and expert 
72 knowledge, a model is proposed and calibrated to estimate model parameters. However, often 
73 initially proposed mechanistic models are overparameterized, needing data-driven methods for 
74 model simplification and unique parameter estimates. Commonly used approaches in 
75 biogeochemical modeling and calibration are prone to underutilization of the data available 
76 from multiple experiments, incomplete uncertainty quantification, and model 
77 overparameterization. Below we describe some of the challenges in interpreting data with 
78 commonly used biogeochemical modeling approaches and how we aim to address them. 
79
80 Characterization of biogeochemical systems often requires multiple experiments targeting a 
81 subset of processes in the system (referred henceforth as subprocesses). For example, sorption 
82 experiments are performed separately from reaction-focused experiments in various 
83 biogeochemical applications (e.g., Haggerty et al., 2008; Lemke et al., 2014; Olsen et al., 2018; 
84 Schwartz et al., 2021a). Models for subprocesses, like sorption, are often calibrated first and the 
85 resulting best-fit parameters are kept fixed in the subsequent estimation of reaction 
86 parameters in a broader model framework. This sequential fitting scheme has two main 
87 shortcomings. First, it fails to make full use of all information. Information on subprocesses that 
88 are common to multiple experiments is not fully used when subprocess parameters are 
89 determined by analysis of one experiment and then held fixed in subsequent analyses. Second, 
90 sequential fitting fails to propagate uncertainty from one experiment to the next. For example, 
91 fixing sorption parameters when analyzing reaction experiments ignores the fact that the 
92 reaction experiments contain information about both sorption and reactions. Moreover, it fails 
93 to propagate uncertainty from the analyzed sorption experiment to the analysis of the reaction 
94 experiment. Figure 1 shows this sequential fitting scheme in a general biogeochemical model 
95 comprising three subprocesses that are calibrated sequentially. We propose that the datasets 



96 from multiple experiments should be fitted simultaneously, thus calibrating all subprocess 
97 models together. By doing so, we leverage information sharing about subprocesses among 
98 datasets. Additionally, this joint-fitting scheme also allows uncertainty propagation among 
99 subprocess models. The surface (Kelleher et al., 2019; Knapp and Cirpka, 2017; Lemke et al., 

100 2013; Liao et al., 2013) and subsurface (Luo et al., 2006; Zhao et al., 2018) hydrologists have 
101 previously recognized merit in this joint fitting approach. These studies fitted conservative and 
102 reactive tracer data from tracer experiments jointly rather than sequentially to leverage shared 
103 information and propagate uncertainty fully. Biogeochemical systems, typically more complex 
104 with a larger number of highly intertwined subprocesses, can particularly benefit from sharing 
105 information because of the different scales and interactions of these subprocesses captured in 
106 different experiments. 
107
108 A more general problem and very relevant to biogeochemical modeling is the lack of parameter 
109 identifiability (Beck, 1987), which essentially means that significantly different parameter values 
110 can reproduce the experimental data equally well. This can result from insufficient information 
111 in the experimental data to match the model complexity or “incorrect” model structure 
112 (Marschmann et al., 2019). Although non-linear least-square schemes can yield parameters that 
113 produce a good match between simulations and experimental data in such cases, the model 
114 structure deficiency can go undetected leading to non-meaningful local uncertainty estimates 
115 and faulty process inferences (Marschmann et al., 2019; Neumann and Gujer, 2008; van 
116 Turnhout et al., 2016). Neumann and Gujer (2008) showed that bias related to model-structure  
117 in environmental models can be diagnosed through analysis of residuals from non-linear 
118 regression schemes. Marschmann et al. (2019) used information geometry to identify model 
119 structure limitations and reduce the model complexity in mechanistically rich biogeochemical 
120 models suffering from the lack of parameter identifiability. With the advancements in 
121 computational capabilities, computationally intensive Bayesian inverse modeling have become 
122 accessible to widespread applications including biogeochemical modeling. Mapping full joint 
123 distributions of parameters in Bayesian approach can reveal parameter uncertainties, 
124 sensitivities, interactions and potential null spaces, which can guide model improvements. 
125 Arhonditsis et al. (2008) applied Bayesian calibration using Markov Chain Monte Carlo (MCMC) 
126 to rigorously quantify parameter and predictive uncertainty in aquatic-biogeochemical models. 
127 Zhang and Arhonditsis (2009), using synthetic aquatic-biogeochemistry datasets, demonstrated 
128 the strength of the Bayesian approach in transferring information across systems as priors in a 
129 hierarchical calibration scheme. van Oijen et al. (2011) calibrated four different biogeochemical 
130 models for Norway spruce forest using MCMC. They compared models through “integrated 
131 likelihood” values of the estimated parameter distributions. van Turnhout et al. (2016) 
132 developed a toolbox with Bayesian-inference-based criteria for selecting optimal reaction 
133 network in Municipal Solid Waste landfills. Davoudabadi et al. (2021) used particle-filter-based 
134 advanced Bayesian methods to calibrate high complexity state-space models with soil-carbon 
135 sequestration as an example. 
136



137
138 Figure 1: Sequential calibration of individual subprocesses and gradient-based parameter 
139 estimation schemes commonly used to calibrate complex biogeochemical models have several 
140 shortcomings, which were encountered by Schwartz et al. (2021a). 𝜃𝑆𝑖

𝑗  represents 𝑗𝑡ℎ parameter 
141 (out of total 𝑛𝑖 parameters) of subprocess model 𝑆𝑖 
142
143 In this paper, we present a holistic framework of Bayesian joint fitting for biogeochemical 
144 models leveraging information from multiple experiments, treating uncertainty rigorously, and 
145 detecting potential parameterization deficiencies. This approach broadly has two facets. First, 
146 we propose that the datasets from multiple experiments should be fitted simultaneously, thus 
147 calibrating all subprocess models together. By doing so, we are informing each subprocess 
148 model using all the available datasets involving that particular subprocess. Additionally, this 
149 joint-fitting scheme also allows uncertainty propagation among subprocess models and 
150 different datasets. Second, we map the full joint distribution of parameters using the advanced 
151 Markov Chain Monte Carlo (MCMC) method. This approach not only yields robust global 
152 uncertainty estimates and but can also identify model deficiencies causing the lack of 
153 parameter identifiability. We apply the proposed workflow to a recently published mercury 



154 methylation dataset (Schwartz et al., 2021b) to improve data interpretation and advance 
155 process inferences. 
156
157 Characterization of mercury methylation processes, a use case in this paper, is of significantly 
158 high importance as methylmercury (MeHg) poses a great threat to humans and wildlife (Eckley 
159 et al., 2020). Occurring in the environment as a natural and anthropogenic pollutant, Hg is 
160 methylated to form the neurotoxin MeHg through microbially mediated processes (Clarkson et 
161 al., 2003). MeHg ingestion even at a low level has adverse impacts on the development of 
162 children. MeHg can get biomagnified in aquatic food webs which makes it particularly 
163 concerning (Mergler et al., 2007). Significant experimental and modeling efforts have been 
164 made to understand mercury methylation dynamics (Avramescu et al., 2011; Hintelmann et al., 
165 2000; Jonsson et al., 2012; Liem-Nguyen et al., 2016; Mitchell and Gilmour, 2008; Olsen et al., 
166 2018; Rodrı́guez Martı́n-Doimeadios et al., 2004; Schwartz et al., 2019). 
167
168 Traditionally, first-order reversible kinetics have been used to model mercury-methylation 
169 (Hintelmann et al., 2000), however, apparent non-first order kinetic behavior has often been 
170 observed in mercury methylation-demethylation data (Avramescu et al., 2011; Jonsson et al., 
171 2012; Olsen et al., 2018). Olsen et al. (2018), studying mercury methylation in periphyton 
172 biofilms, suggested that the apparent non-first order behavior does not necessarily imply non-
173 first order kinetics, but can result from other competing processes making Hg and MeHg 
174 unavailable for methylation and demethylation, respectively. They proposed the Transient 
175 Availability Model (TAM) accounting for competing processes like multisite kinetic sorption of 
176 Hg and MeHg and reduction of Hg. Schwartz et al. (2022) extended the TAM framework to 
177 aquatic sediment systems to model mercury methylation on two disparate sediments from East 
178 Fork Poplar Creek (EFPC) in Oak Ridge, TN, USA. TAM application by Schwartz et al. (2022) 
179 considered fully kinetic competing processes for bioavailability with first-order methylation-
180 demethylation for one sediment type, and reversible Monod kinetics for another. With the 
181 sequential fitting of sorption and methylation datasets and a gradient-based scheme for 
182 parameter estimation, they reproduced experimental data well but obtained non-meaningful 
183 error estimates for certain parameters. Using the novel mercury-methylation dataset (Schwartz 
184 et al., 2021b), we implement the proposed parameter estimation workflow in the TAM 
185 framework. 
186
187 Olsen et al. (2018) and Schwartz et al. (2022) studied biologically mediated methylation of 
188 mercury (Hg) to the neurotoxin methylmercury (MeHg) on periphyton film and colonized 
189 sediments, respectively. Both studies fitted sorption experiment datasets first to estimate 
190 sorption parameters, which were then fixed while estimating methylation-demethylation 
191 parameters fitting datasets from methylation experiments. However, it is important to 
192 recognize that these processes are not independent and methylation-demethylation datasets 
193 also contain information about the sorption processes, which is not leveraged in this sequential 
194 fitting approach. Additionally, because of using the “best fit” values of sorption parameters, the 
195 estimates of methylation-demethylation parameters ignore uncertainties in sorption datasets. 
196 In our approach, sorption and methylation datasets are fitted simultaneously and respective 
197 parameters are jointly estimated, thus addressing the above-described concerns. 



198
199 For the uncertainty-aware parameter estimation, Olsen et al. (2018) and Schwartz et al. (2022) 
200 adopted a gradient-based local optimization scheme, which works well in unimodal smooth 
201 parameter spaces but can suffer in multimodal or other atypical parameter spaces. Additionally, 
202 under such schemes, other model-structure-related issues like overparameterization may go 
203 undetected. We adopt a Bayesian approach using MCMC, a global-search scheme yielding a full 
204 joint distribution of parameters. The obtained parameter distributions are expected to guide 
205 model improvements in addition to offering robust uncertainty estimates. 
206
207 With the proposed parameter estimation workflow of Bayesian joint fitting, we aim to improve 
208 the interpretation of the rich mercury methylation dataset by Schwartz et al. (2021b). The 
209 proposed workflow is easily transferable to other complex biogeochemical systems 
210 characterized through multiple experiments for reliable parameter estimates, process 
211 inferences, and predictions.
212
213 2. Overview of Experiments and Datasets 

214 Here we provide a brief overview of the study site and experiments. For more information 
215 about the site see Brooks and Southworth (2011); Riscassi et al. (2016) and for experimental 
216 details, see Schwartz et al. (2022). Schwartz et al. (2022) collected sediments from EFPC, that 
217 have legacy mercury contamination, and performed sorption and mercury methylation 
218 experiments to characterize and quantify their methylation and demethylation potential and 
219 associated physical, chemical, and microbial processes. Two contrasting sediment types were 
220 collected for use in laboratory studies.  Sediment 1 – rich in organic matter, relatively anoxic 
221 fine sand predominant along the stream edge, and Sediment 2 – a medium to coarse sand 
222 lower in organic carbon and less metabolically active than Sediment 1, and predominant in the 
223 center of the channel. 

224 For Hg and MeHg sorption experiments, isotopically labeled 201Hg or Me202Hg were added to 
225 sediment-creek water suspension under air and placed on a reciprocating shaker. The number 
226 of time points at which samples were collected for Hg are 12 and 14 for Sediment 1 and for 
227 Sediment 2, respectively, and for MeHg, 14 and 15, respectively. Triplicate samples were 
228 sacrificed at each time point. In the Hg sorption experiment, Hg in the aqueous phase, total 
229 solid-phase Hg, and Hg(0) were quantified at different time points. Under the oxic conditions of 
230 the Hg sorption experiments Hg methylation, an obligately anaerobic microbial process, did not 
231 occur. In the MeHg sorption experiments, aqueous Me202Hg quantified at different time points 
232 from triplicate samples and total Me202Hg in the system was quantified at select time points to 
233 verify the lack of demethylation of the added isotope (Schwartz et al., 2022).

234 Mercury-methylation experiments were conducted on carefully prepared anoxic sediment 
235 slurry microcosms. Three treatments were established, one spiked with 201Hg to monitor 
236 methylation via production of Me201Hg, the second spiked with Me202Hg to monitor 
237 demethylation via loss of Me202Hg, and treatment with no spike added to monitor other 
238 biogeochemical parameters of interest (e.g., Fe(II), sulfide) because the Hg and MeHg analyses 
239 were full consumptive and destructive. The experiment for Sediment 2 was run longer because 



240 of the low activity initially measured in those sediments. The number of timepoints at which 
241 samples were collected is 4 and 3 for Sediment 1 and Sediment 2, respectively. Three 
242 microcosms from each treatment were destroyed at each time point for Hg and MeHg analysis. 
243 The resulting datasets from mercury-methylation experiments are total Me201Hg and Me202Hg 
244 at each time point (Schwartz et al., 2022). 

245 3. Bayesian Joint-Fitting Approach

246 The data from the experiments by Schwartz et al. (2022) captures information about the 
247 biogeochemical processes controlling methylation of mercury on colonized river sediments. 
248 Models under the TAM framework are proposed for these biogeochemical processes and 
249 calibrated to match the experimental data allowing us to make process inferences and develop 
250 prediction capabilities. Experience from the interpretation of mercury methylation datasets by 
251 Schwartz et al. (2022) reveals several shortcomings of commonly used biogeochemical model 
252 calibration practices which we discussed in the Introduction section (Figure 1).   
253
254 Our approach leverages information shared among experiments by joint calibration of 
255 subprocesses using all the available datasets. Additionally, full joint distribution of parameters 
256 is mapped to get robust uncertainty estimates and detect potential model-structure 
257 deficiencies. In Figure 2, we present a schematic of our Bayesian joint-fitting scheme and the 
258 advantages of different facets of the scheme. In the following sub-sections, we describe 
259 different models considered for sorption and methylation, provide Bayesian formulation, and 
260 details of MCMC application. 
261



262
263 Figure 2: Schematics of Bayesian joint-fitting scheme for calibrating complex biogeochemical 
264 models offer multiple advantages with efficient utilization of datasets, full uncertainty 
265 propagation and robust estimation, and detecting parameterization deficiencies
266
267 3.1.  Transient Availability Model Framework

268 The TAM model framework developed by Olsen et al (2018) is used to describe mercury 
269 methylation. Under the TAM model framework, methylation and demethylation of mercury are 
270 strongly influenced by the availability of Hg and MeHg in the aqueous phase. Experiments 
271 suggest that the transient availability of Hg in the aqueous phase is caused by competition with 
272 two-site sorption and reversible reduction of aqueous mercury into elemental mercury, while 
273 that of MeHg is governed by competition with two-site sorption. Figure 3 shows schematics of 
274 the general TAM model framework. 
275



276
277 Figure 3: Schematics of TAM framework for mercury methylation representing competing 
278 biogeochemical processes (modified from Olsen et al. (2018))
279
280 For both types of sediments, Schwartz et al. (2022) modeled two-site sorption as fast and slow 
281 first-order reversible kinetic sorption. Similarly, the reduction of Hg(II) to Hg(0) was also 
282 modeled as a first-order reversible kinetic process. For Sediment 1, both methylation and 
283 demethylation were modeled using Monod kinetics. For Sediment 2, methylation and 
284 demethylation were modeled using first-order kinetics. The uncertainty-aware parameter 
285 estimation was performed using a gradient-based scheme (nlinfit in Matlab) yielding locally 
286 optimal parameter values with first-order error estimates. Schwartz et al. (2022) found large 
287 parameter uncertainties and non-unique solution (sensitive to initial values) for Monod kinetics 
288 in Sediment 1. Additionally, when they applied Monod kinetics in Sediment 2, the parameter 
289 estimation scheme failed to converge without giving any clear insights into the defects in the 
290 considered parameterization. This is not surprising as potential overparameterization-related 
291 model-structure deficiencies can go undetected with gradient-based non-linear fitting schemes. 
292
293 In this study, we first implement the proposed Bayesian joint-fitting scheme, i.e. jointly 
294 calibrating sorption and methylation models using MCMC with TAM model in Schwartz et al. 
295 (2022). Thereafter, based on the insights from the resulting joint posterior distributions, we aim 
296 to improve the TAM model framework for both Sediment 1 and Sediment 2 to explain the 
297 experimental data better and obtain robust uncertainty estimates. The system of ODEs in TAM 
298 reaction network are solved using odeint from scipy.integrate package in Python which uses 
299 Isoda from FORTRAN odepack library. 
300
301 3.2. Bayesian Formulation 



302 We estimate all parameters in the TAM framework simultaneously by fitting datasets from 
303 sorption and methylation experiments together. We adopt the Bayesian approach to estimate 
304 distributions of TAM parameters conditioned on the measurements. Measurements from Hg 
305 sorption, MeHg sorption, and methylation experiments are represented by vectors 𝑪𝑚𝑒𝑎𝑠

1 , 
306 𝑪𝑚𝑒𝑎𝑠

2 , and 𝑪𝑚𝑒𝑎𝑠
3 , respectively. Measurements for model calibration are triplicate averages at 

307 each time point. Collectively, all model parameters can be represented by vector 𝜽 and 
308 measurements by 𝑪𝑚𝑒𝑎𝑠. Using Bayes’ theorem, conditional probability density function 𝑝(𝜽|
309 𝑪𝑚𝑒𝑎𝑠) can be given as: 
310

𝑝 𝜽│𝑪𝑚𝑒𝑎𝑠  𝑝(𝑪𝑚𝑒𝑎𝑠|𝜽)𝑝(𝜽) (1)

311
312 where 𝑝(𝑪𝑚𝑒𝑎𝑠|𝜽) is the likelihood of the measurements 𝑪𝑚𝑒𝑎𝑠 given the parameter set 𝜽, 
313 which represents the constraints imposed by 𝑪𝑚𝑒𝑎𝑠 on 𝜽. The 𝑝(𝜽) is the probability density 
314 function representing the prior knowledge about parameters. Probability 𝑝(𝑪𝑚𝑒𝑎𝑠|𝜽) is 
315 composed of contributions from individual experiments as:
316

𝑝 𝑪𝒎𝒆𝒂𝒔│𝜽 =
3

𝑖=1
𝑝 𝑪𝒎𝒆𝒂𝒔

𝑖 │𝜽 (2)

317
318 𝑪𝑚𝑒𝑎𝑠

𝑖  for all experiment is assumed to follow multi-gaussian distribution:
319

𝑝 𝑪𝑚𝑒𝑎𝑠
𝑖 │𝜽 =  

1
(2𝜋)𝑛|𝚺i|exp ― 1

2
𝑪𝑚𝑒𝑎𝑠

𝑖 ― 𝑪𝑠𝑖𝑚
𝑖

𝑇
𝚺―1

i 𝑪𝑚𝑒𝑎𝑠
𝑖 ― 𝑪𝑠𝑖𝑚

𝑖  (3)

320
321 where, 𝚺i represents the covariance matrix of the measurements, |𝚺i| represents its 
322 determinant, and 𝑛 is the number of time points in the dataset. We assume uncorrelated 
323 measurement errors resulting in a diagonal 𝚺i matrix with measurement variances as diagonal 
324 elements. We assume uniform priors for all parameters with a reasonable range based on 
325 domain knowledge. We do not have any additional information to assume non-uniform priors. 
326 For cases when parameter distribution hit the boundary of the parameter space, analysis is 
327 repeated with expanded range a few times to ensure there is no additional mode beyond 
328 range. We assume a homoscedastic error model and evaluate pooled variance for each dataset 
329 (i.e., variance of different populations with different means with presumably same variance). 
330 This is a reasonable choice as triplicate variances did not show consistent trend with time. It is 
331 important to note, however, that pooled variance calculated this way is still uncertain because 
332 of small sample size. We ignore the uncertainty in variance here but note it could be estimated 
333 in a more robust way by taking the variance as a hyperparameter that is sampled along with 
334 main model parameters. 
335



336 For each case, we plotted the distribution of residuals of model fit and found them to be 
337 unimodal, almost symmetric and gaussian, except at early timestep in one of the cases. Hence, 
338 our assumption of gaussian likelihood is reasonable for these datasets. The example plots of 
339 residual distributions for methylation and demethylation in both types of sediments are 
340 provided in the Appendix-B. 
341
342 3.3. MCMC Implementation 

343 For most practical cases, it is almost impossible to analytically derive the joint distributions of 
344 parameters. Hence, we use the MCMC technique, a family of algorithms designed to 
345 approximate posterior distributions of variables of interest by drawing samples from their 
346 derived distributions. MCMC has benefitted many fields where posterior inferences about 
347 complex systems in the Bayesian framework are desired (Vrugt et al., 2008). MCMC offers 
348 globally optimal solutions with full joint distributions of parameters. This allows for the 
349 quantification of parameter uncertainties rigorously, assessment of model structure adequacy, 
350 and potential for model improvements.
351
352 In this study,  we use PyDREAM (Shockley et al., 2018), a python implementation of the 
353 DREAM(ZS) (Laloy and Vrugt, 2012) algorithm, which is one of the most advanced adaptions of 
354 DiffRential Evolution Adaptive Metropolis (DREAM) (Vrugt et al., 2008). DREAM is a multi-chain 
355 MCMC with the automatic adaption of step size and direction of sampler movement. 
356 DREAM(ZS) stores past states in archives which are then used to propose new positions making 
357 it highly efficient with quick convergence and fewer number of chains needed. With a range of 
358 proposal maneuvers, DREAM(ZS) can sample from challenging parameter spaces like 
359 multimodality and highly correlated parameters. Key inputs to DREAM(ZS) algorithm includes 
360 number of differential pairs equals to 3, gamma levels to 4, probability of unity gamma to 0.2 
361 and probability of snooker step to 0.1. For more details about these options, refer to Shockley 
362 et al. (2018) and Laloy and Vrugt (2012).
363
364 We provide in the supporting information a modular python workflow in which each 
365 experiment is modeled in a separate python script and is accessed by the main python script 
366 performing MCMC. Therefore, datasets from additional experiments can be conveniently 
367 included in the MCMC analyses. The MCMC results are post-processed, analyzed, and visualized 
368 in Jupyter notebooks enabling an efficient and self-documenting workflow. The model-data files 
369 are archived at Rathore and Painter (2021). 
370
371 4. Results and Discussion 

372 MCMC runs were performed using 10 parallel communicating chains with at least 25,000 
373 generations per chain after chains had converged. The convergence of chain is tested using 
374 Reduction Factor (𝑅) criteria by Gelman and Rubin (1992) which when below 1.2 indicates the 
375 chain convergence. Plots for the evolution of 𝑅 with the progression of chains for each MCMC 
376 run can be found in the SI. The posterior distributions of estimated parameters were 
377 summarized using at least 250,000 parameter sets yielding a robust estimation. First, we 
378 present parameter estimation with models of Schwartz et al. (2022). Based on the insights into 



379 the parameter space, we improve the model structure and discuss process inferences. 
380 Equations for final improved models are provided in the Appendix-A. 
381
382 4.1. Bayesian Joint-Fitting for Transient Availability Model by Schwartz et al. (2022)
383
384 4.1.1. Model Description 

385 Figure 4(a) depicts models considered by for fitting sorption and methylation experiment data 
386 sequentially for both Sediments 1 and 2. Hg sorption experiment is modeled using three first-
387 order reversible kinetic processes, namely, sorption-desorption on fast sites (𝐻𝑔𝐼𝐼

𝑓𝑎𝑠𝑡) with 
388 parameters 𝑘1 [𝑇―1] and 𝑘2 [𝑇―1], sorption-desorption on slow sites (𝐻𝑔𝐼𝐼

𝑠𝑙𝑜𝑤) with parameters 
389 𝑘3 [𝑇―1] and 𝑘4 [𝑇―1], and first-order reversible kinetic reduction to 𝐻𝑔0

𝑎𝑞 with parameters 𝑘5 
390 [𝑇―1] and 𝑘6 [𝑇―1]. MeHg sorption is modeled using first-order reversible kinetic fast-site 
391 sorption with parameters 𝑘7 [𝑇―1] and 𝑘10 [𝑇―1] and slow-site sorption with parameters 𝑘9 [
392 𝑇―1] and 𝑘10 [𝑇―1]. They fitted Hg and MeHg models to respective experimental data and 
393 reported best-fit parameters and quantified uncertainty as 5th and 95th confidence intervals. 
394 Thereafter, the mercury methylation model under the TAM framework was calibrated to 
395 estimate methylation and demethylation parameters keeping sorption parameters fixed as 
396 best-fit values estimated previously. In Sediment 1, Monod kinetics was used to model 
397 methylation and demethylation. For methylation, 𝑘𝑚𝑚𝑎𝑥 [𝑀𝑇―1] and 𝐾𝑚ℎ𝑠 [𝑀] denote 
398 maximum reaction rate and half-saturation constant, respectively. Similarly, for demethylation, 
399 Monod parameters are denoted as 𝑘𝑑𝑚𝑎𝑥[𝑀𝑇―1]  and 𝐾𝑑ℎ𝑠 [𝑀]. Monod reactions exhibit first-
400 order behavior at concentrations significantly smaller than 𝐾ℎ𝑠 and zeroth-order behavior at 
401 concentrations significantly greater than 𝐾ℎ𝑠. In Sediment 2, reversible first-order kinetics was 
402 used for methylation and demethylation with rate constants 𝑘𝑚 [𝑇―1] and 𝑘𝑑 [𝑇―1], 
403 respectively. 
404
405 We estimate all parameters together by fitting seven datasets from three experiments 
406 (described in section 2) simultaneously using MCMC to obtain full posterior joint distributions. 
407 Figures 4(b) and 5(b) maps experimental datasets to the parameters they are informing. This 
408 allows for a rigorous treatment of uncertainty in all parameters and full utilization of the 
409 information shared among available datasets. In section 4.1.2, joint distributions of parameters 
410 of the model by Schwartz et al. (2022) obtained from MCMC are presented for both sediment 
411 types. Marginal distributions and predictive uncertainty plots are provided in the SI. 



412
413 Figure 4: Reversible first-order kinetics for Hg and MeHg two-site sorption, Hg reduction, and 
414 reversible Monod kinetics for methylation considered by Schwartz et al. (2022) for Sediment 1 
415
416

417
418 Figure 5: Reversible first-order kinetics for Hg and MeHg two-site sorption, Hg reduction, and 
419 methylation considered by Schwartz et al. (2022) for Sediment 2
420

421 4.1.2. Joint Distribution of Parameters 
422
423 Figure 6 and Figure 7 present MCMC results for Sediment 1 and Sediment 2, respectively, as 
424 individual parameter histograms and pairwise joint distributions. 𝑅 for the converged chains for 
425 all the parameters was approximately equal to 1 in both cases of sediment types. For Sediment 



426 1 the distributions of parameters are unimodal with reasonable uncertainty, except for Hg 
427 reduction and the Monod parameters. The marginal distributions of the Hg reduction 
428 parameters are almost non-informative. Their joint distribution appears to be unconstrained 
429 with a strong linear correlation suggesting that the parameter space contains a null space 
430 defined by a distinctive 𝑘6/𝑘5  ratio (distribution presented in Figure 6). This strongly suggests 
431 that for the considered system, Hg reduction should be modeled as an equilibrium reaction. 
432 Similarly, Monod parameters for demethylation, 𝑘𝑑𝑚𝑎𝑥 and 𝐾𝑑ℎ𝑠, also span a null space defined 
433 by their distinct ratio, suggesting that the experimental data can be explained by a simpler first-
434 order kinetic model for demethylation. Monod methylation parameters, 𝑘𝑚𝑚𝑎𝑥 and 𝐾𝑚ℎ𝑠, also 
435 exhibit strong linear correlation and high uncertainty with a thick tail, but with some central 
436 tendency as unique peaks. Because of this null space in demethylation-parameter distributions 
437 and highly skewed non-gaussian methylation-parameter distributions, Schwartz et al. (2022) 
438 obtained very large uncertainty estimates and non-unique solutions for Monod methylation-
439 demethylation parameters.

440



441 Figure 6: Joint distributions of parameters obtained from MCMC for model framework 
442 proposed by Schwartz et al. (2022) for Sediment 1
443

444 For Sediment 2, the parameters for fast sorption for Hg (𝑘1 and 𝑘2), Hg reduction (𝑘5 and 𝑘6) 
445 and fast sorption of MeHg (𝑘7 and 𝑘8) were non-informative and unconstrained, spanning a 
446 null space characterized by a distinct ratio of forward to reverse rate constants (distributions of 
447 ratios shown in Figure 7). This favors replacing the reversible kinetic models for Hg reduction 
448 and fast sorption of Hg and MeHg with corresponding equilibrium models. The non-linear least-
449 square fitting scheme as adopted in Schwartz et al. (2022) does not offer such insights into 
450 parameter space. The “best-fit” parameters for these subprocess models by Schwartz et al. 
451 (2021a) are one of the many equally good possibilities in the null space, and their local error 
452 estimates stem from perturbations around the “best-fit” parameters. In section 4.2, based on 
453 the insights obtained from MCMC results, improved models are proposed, and parameter 
454 estimation is performed for new models. 



455
456 Figure 7: Joint distributions of parameters obtained from MCMC for model framework 
457 proposed by Schwartz et al. (2022) for Sediment 2
458
459 4.2. Bayesian Joint Fitting for Updated Models

460 Based on the insights gained from the MCMC analysis of the Schwartz et al. (2022) model, we 
461 propose improved models and perform Bayesian parameter estimation to obtain joint 
462 parameter distributions and quantify uncertainties for both Sediment 1 and Sediment 2. 𝑅 for 
463 all the parameters was approximately equal to 1 in both cases of sediment types, except for 𝑘𝑑 in 
464 Sediment 1 for which final 𝑅 is equal to 1.07.  Model descriptions, estimated parameters 
465 distributions, summary statistics and predictive uncertainties are presented in the following 
466 subsections. 

467 4.2.1. Sediment 1



468 Under the improved model structure for Sediment 1, mercury reduction is modeled as an 
469 equilibrium process parameterized by a single parameter – the dimensionless equilibrium 
470 constant 𝐾5―6 [ ― ]. Note that the subscripts of the equilibrium constant are related to the 
471 corresponding kinetic models in Figure 4 for the sake of clarity and convenience. Additionally, 
472 demethylation is modeled using first-order kinetics with a rate constant 𝑘𝑑 [𝑇―1]. The model 
473 structure and estimated joint parameter distributions are presented in Figure 8. Marginal 
474 distributions are provided in SI. All parameters are estimated as unimodal distributions. Monod 
475 parameters for methylation exhibit high uncertainty with a thick tail. This ambiguity is 
476 potentially due to time-varying microbial activity due to evolving redox conditions in the 
477 sediments (Schwartz et al., 2022). The summary statistics of parameters are presented in Table 
478 1 in the form of 5th, 25th, median, 75th, and 95th percentiles. 
479

480



481 Figure 8: Model description (top right) and joint distributions of parameters obtained from 
482 MCMC for the improved model for sediment 1
483
484 Table 1: Summary statistics of parameters estimated from MCMC for the improved model for 
485 sediment 1

Parameter 5th 25th Median 75th 95th

𝑘1[𝑑―1] 5.39e2 5.96e2 6.40e2 6.88e2 7.72e2
𝑘2[𝑑―1] 1.08e3 1.2e3 1.30e3 1.41e3 1.60e3
𝑘3[𝑑―1] 4.11 4.27 4.39 4.50 4.68
𝑘4[𝑑―1] 1.41e-1 2.00e-1 2.39e-1 2.79e-1 3.40e-1

𝐾5―6[ ― ] 42.29 44.48 46.13 47.80 50.63
𝑘7[𝑑―1] 51.78 55.82 58.71 61.81 66.42
𝑘8[𝑑―1] 73.86 81.11 87.12 93.60 1.03
𝑘9[𝑑―1] 6.67 7.10 7.44 7.77 8.27

𝑘10[𝑑―1] 1.07 1.22 1.32 1.42 1.58
𝑘𝑚𝑚𝑎𝑥[𝑛𝑔𝑑―1] 67.6 93.6 191.8 441.4 795

𝐾𝑚ℎ𝑠[𝑛𝑔] 35.6 282.3 1426.2 4671.5 8874.7
𝑘𝑑[𝑑―1] 1.43 1.68 1.88 2.16 3.08

486
487

488
489 Figure 9: Median (solid line), bands of 2.5th and 97.5th percentiles (shaded region) of predictions 
490 and experimental data (solid dots) for Hg sorption and reduction (gaseous phase is not shown) 
491 (a), MeHg sorption (b), and methylation-demethylation experiment (c - d), along with the 
492 predicted concentration history of total dissolved of 201Hg (e) and 202Hg (f) during the 
493 methylation-demethylation experiment for sediment 1
494



495 Figure 9 presents the predictive uncertainty plots obtained by generating an ensemble of 
496 sorption and methylation model runs using the parameters sets from MCMC. Model reduction 
497 from kinetic to equilibrium for Hg reduction and from Monod for first-order kinetics for 
498 demethylation was found to be adequate as the model simulation results explain the 
499 experimental data well for both sorption and methylation experiments. The parameter 
500 estimates and thus predictions benefit from the joint fitting of sorption and methylation 
501 datasets and estimating all parameters simultaneously. 
502
503 4.2.2. Sediment 2

504 Parameters for the fast-site sorption for Hg and MeHg considered by Schwartz et al. (2022) 
505 exhibited high ambiguity as they contain a null space with a distinctive ratio of forward and 
506 reverse rate constants. In the improved model, sorption of Hg and MeHg on Sediment 2 is 
507 modeled as two-site sorption, i.e. equilibrium and kinetic sorption. Equilibrium sorption 
508 constants for Hg and MeHg are represented by 𝐾1―2[ ― ] and 𝐾7―8[ ― ], respectively. Similar 
509 to Sediment 1, Hg reduction in sediment 2 is modeled as an equilibrium process with the 
510 equilibrium constant as 𝐾5―6 [ ― ]. Guo et al. (2019) showed that the uncertainty in the 
511 thermodynamic constants for equilibrium processes has an outsized impact on the output 
512 uncertainties, hence it is critical to obtain global uncertainty estimates for these constants. The 
513 joint distribution of estimated parameters in Figure 10 are well-constrained and unimodal. The 
514 summary statistics of estimated parameters are presented in Table 2. Predictive uncertainty 
515 plots in Figure 11 show good agreement between model simulations and experimental data for 
516 both sorption and methylation experiments. 
517



518
519 Figure 10: Model description (top right) and joint distributions of parameters obtained from 
520 MCMC for the improved model for sediment 2
521
522 Table 2: Summary statistics of parameters estimated from MCMC for the improved model for 
523 sediment 1

Parameter 5th 25th Median 75th 95th

𝐾1―2[ ― ] 4.18 4.46 4.67 4.90 5.27
𝑘3[𝑑―1] 3.98 4.48 4.85 5.25 5.89
𝑘4[𝑑―1] 3.55 4.08 4.48 4.91 5.59

𝐾5―6[ ― ] 11.10 12.75 14.16 15.9 19.2
𝐾7―8[ ― ] 13.19 15.38 17.41 20.07 26.15
𝑘9[𝑑―1] 3.03e-1 3.91e-1 4.64e-1 5.48e-1 6.95e-1

𝑘10[𝑑―1] 8.37e-1 1.39 1.81 2.28 3.09
𝑘𝑚[𝑑―1] 7.23e-5 9.64e-5 11.38e-5 13.19e-5 15.85e-5
𝑘𝑑[𝑑―1] 5.57e-2 7.01e-2 8.14e-2 9.38e-2 11.46e-2

524



525
526 Figure 11: Median (solid line), band of 2.5th and 97.5th percentiles (shaded region) of 
527 predictions and experimental data (solid dots) for Hg sorption and reduction (gaseous phase is 
528 not shown) (a), MeHg sorption (b), and methylation-demethylation experiment (c - d), along 
529 with the predicted concentration history of total dissolved of 201Hg (e) and 202Hg (f) during the 
530 methylation-demethylation experiment for Sediment 2
531
532 5.3.Summary and Conclusions

533 In this paper, we proposed Bayesian joint fitting, a parameter-estimation workflow, for 
534 biogeochemical systems with two main advancements from traditional methods: 1) 
535 simultaneous fitting of datasets from multiple experiments characterizing competing 
536 subprocesses within the system, 2) mapping full joint distribution of parameters using MCMC. 
537 The efficacy of the proposed method was demonstrated with mercury methylation as a use 
538 case. The method was deployed to reinterpret recently published datasets (Schwartz et al., 
539 2021b) characterizing mercury methylation on aquatic sediments under the Transient 
540 Availability Model (TAM) framework (Olsen et al., 2018; Schwartz et al., 2022). Rigorous 
541 estimation of parameter uncertainties and improvement in the TAM framework were achieved. 
542
543 Simultaneous fitting of datasets from sorption and methylation experiments to estimate all 
544 TAM parameters together comprehensively captured interactions between sorption and 
545 methylation processes. This approach allowed the inclusion of the measurement uncertainties 
546 in the sorption experiments (for both Hg and MeHg) into methylation parameters in the TAM 
547 model framework. Another advantage of simultaneously fitting datasets is sorption parameters 
548 were informed by datasets from both sorption and methylation experiments. 
549
550 Mapping full joint distributions of parameters using MCMC yielded global optimal parameters 
551 and robust uncertainty estimates. Additionally, it revealed deficiencies in the existing model 



552 structure which eluded first-order error estimates. For example, the identification of null spaces 
553 in the original sorption model (Schwartz et al., 2022) in Sediment 2 and the Hg-reduction model 
554 for both sediments proved valuable in simplifying the model from kinetic to equilibrium, thus 
555 reducing the parameter uncertainty arising due to over-parameterization. Similarly, null space 
556 in parameters for Monod demethylation in Schwartz et al. (2022) model suggested replacing it 
557 with first-order kinetics. Note that lumping null space parameters into a single parameter is one 
558 of the many ways of model reduction. This inverse-modeling-based approach simplifies the 
559 model with null-space identification without compromising on the goodness of fit and 
560 prediction uncertainties. The different fast sorption dynamics of the finer-grained Sediment 1 
561 and coarser-grained Sediment 2 is consistent with reduced access to sorption sites due to low 
562 diffusion coefficients in Sediment 2. Such insights can be helpful to guide future experiments 
563 for better resolving processes that exert control on Hg methylation-MeHg demethylation 
564 dynamics in environmental systems.  For example, the MeHg concentrations measured in 
565 samples is the net result of the opposing processes of Hg methylation and MeHg 
566 demethylation. The simultaneous fitting approach discriminated among competing models 
567 describing these processes and identified parameters with greater relative uncertainty which, in 
568 turn, will inform future data gathering efforts to design experiments that will decrease 
569 uncertainty in those parameters. Other approaches include using theoretical measures like 
570 Akaike Information Criterion or Bayesian Information Criterion to trade-off the goodness of fit 
571 for the model simplicity.
572
573 Bayesian inference from experimental datasets (Schwartz et al., 2021b) revealed different 
574 methylation and sorption dynamics for Sediment 1 and Sediment 2. In Sediment 1, two-site 
575 kinetic sorption (fast and slow) explained the datasets well. In Sediment 2, data did not capture 
576 kinetic behavior for fast sorption making the associated kinetic parameters unidentifiable. The 
577 equilibrium sorption along with slow kinetic sorption resulted in a good fit between the model 
578 and data. For the methylation experiment in Sediment 1, Monod methylation and first-order 
579 demethylation gave a decent fit to the data with unique parameter estimates. The dataset was 
580 unable to uniquely identify Monod parameters for demethylation. In Sediment 2, first-order 
581 kinetics for both methylation and demethylation offered a good match with the data. 
582
583 In summary, the proposed method of joint fitting of multiple-experiment datasets in the 
584 Bayesian framework and mapping full joint distributions using MCMC were shown to be 
585 effective in improving the parameterization of biogeochemical models, quantifying the 
586 uncertainties in parameters and outputs, and evaluating different model structures. This 
587 approach can be beneficial particularly in a system with multiple competing reactions taking 
588 place at different timescales. Insights into parameter space through joint probability 
589 distributions coupled with domain knowledge guides model improvements. Full quantification 
590 of uncertainties informs the design of future experiments targeted at constraining poorly 
591 constrained parameters, eliminating multimodality or dealing with parameter degeneracy. 
592 Improved model structures and robust uncertainty estimates offer better understanding of 
593 underlying mechanisms and reliable predictions of fate of metals and nutrients in the 
594 environment. 



595 Parameter estimation using MCMC will not be suitable for models with high runtime as MCMC 
596 requires large number of model runs, raising the computational cost. However, typical reaction 
597 networks are ODEs and even a complex reaction network is relatively fast to solve. Additionally, 
598 with an increased access to computational resources, there is no reason why researcher should 
599 not opt for robust uncertainty estimates using MCMC which offers flexibility of analyzing 
600 multiple experiments together and also guide domain-knowledge-based model improvements 
601 in the process. 

602 The workflow for this approach is coded in Python and scripts are provided in the mode-data 
603 archive at Rathore and Painter (2021). The modular nature of the workflow allows for inclusion 
604 of additional experimental data or a new reaction to the reaction network, conveniently. 
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758 Appendix-A

759

760 Here we present mathematical equations for improved models for mercury methylation on 
761 aquatic sediments presented in this manuscript. For variables are described in the main text of 
762 the manuscript. 

763 Sediment 1:

764 (1)
𝑑[𝐻𝑔]

𝑑𝑡 =
―𝑘𝑚𝑚𝑎𝑥

𝐾𝑚ℎ𝑠 + [𝐻𝑔] [𝐻𝑔] + 𝑘𝑑 [𝑀𝑒𝐻𝑔] ―  𝑘1[𝐻𝑔] +  𝑘2[𝐻𝑔𝑓] ―  𝑘3[𝐻𝑔] +  𝑘4 [𝐻𝑔𝑠]

765 (2)

𝑑[𝑀𝑒𝐻𝑔]
𝑑𝑡

=  
𝑘𝑚𝑚𝑎𝑥

𝐾𝑚ℎ𝑠 + [𝐻𝑔] [𝐻𝑔] ― 𝑘𝑑 [𝑀𝑒𝐻𝑔] ―  𝑘7[𝑀𝑒𝐻𝑔] +  𝑘8 𝑀𝑒𝐻𝑔𝑓 ―  𝑘9[𝑀𝑒𝐻𝑔] +  𝑘10[𝑀𝑒

𝐻𝑔𝑠]

766 (3)
𝑑 𝐻𝑔𝑓

𝑑𝑡 = 𝑘1[𝐻𝑔] ― 𝑘2[𝐻𝑔𝑓]

767 (4)
𝑑[𝐻𝑔𝑠]

𝑑𝑡 =  𝑘3[𝐻𝑔] ―  𝑘4 [𝐻𝑔𝑠]

768 (5)
𝑑 𝑀𝑒𝐻𝑔𝑓

𝑑𝑡 = 𝑘7[𝑀𝑒𝐻𝑔] ―  𝑘8 𝑀𝑒𝐻𝑔𝑓

769 (6)
𝑑[𝑀𝑒𝐻𝑔𝑠]

𝑑𝑡 = 𝑘9[𝑀𝑒𝐻𝑔] ―  𝑘10[𝑀𝑒𝐻𝑔𝑠]
770 (7) [𝐻𝑔] = 𝐾5―6[𝐻𝑔0]

771 Sediment 2:

772 (1)
𝑑[𝐻𝑔]

𝑑𝑡 = ―𝑘𝑚[𝐻𝑔] +  𝑘𝑑 [𝑀𝑒𝐻𝑔] ―  𝑘3[𝐻𝑔] +  𝑘4 [𝐻𝑔𝑠]

773 (2)
𝑑[𝑀𝑒𝐻𝑔]

𝑑𝑡 =  𝑘𝑚[𝐻𝑔] ―  𝑘𝑑[𝑀𝑒𝐻𝑔] ―  𝑘9[𝑀𝑒𝐻𝑔] +  𝑘10[𝑀𝑒𝐻𝑔𝑠]

774 (3)
𝑑[𝐻𝑔𝑠]

𝑑𝑡 =  𝑘3[𝐻𝑔] ―  𝑘4 [𝐻𝑔𝑠]

775 (4)
𝑑[𝑀𝑒𝐻𝑔𝑠]

𝑑𝑡 = 𝑘9[𝑀𝑒𝐻𝑔] ―  𝑘10[𝑀𝑒𝐻𝑔𝑠]
776 (5) [𝐻𝑔] = 𝐾1―2[𝐻𝑔𝑓]
777 (6) [𝐻𝑔] = 𝐾5―6 𝐻𝑔0

778 (7) [𝑀𝑒𝐻𝑔] = 𝐾7―8[𝑀𝑒𝐻𝑔𝑓]

779

780 Appendix-B

781 Example plots of residual distribution for the time series of Me201Hg and Me202Hg in 
782 methylation and demethylation experiments for both Sediment 1 and Sediment 2 are shown 
783 below. 



784
785 Figure B.1: Distribution of residuals for Me201Hg predictions are different timepoints for 
786 methylation experiment in Sediment 1
787

788
789 Figure B.2: Distribution of residuals for Me202Hg predictions are different timepoints for 
790 demethylation experiment in Sediment 1
791

792
793 Figure B.3: Distribution of residuals for Me201Hg predictions are different timepoints for 
794 methylation experiment in Sediment 2
795
796

797
798 Figure B.4: Distribution of residuals for Me202Hg predictions are different timepoints for 
799 demethylation experiment in Sediment 2
800
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