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Highlights:

1) Jointly fitted sorption and methylation datasets allow information sharing and uncertainty
propagation across process models

2) Mapping full joint distributions of parameters identified null-spaces and facilitated model
simplification

3) Sediments collected from near-bank and near-center of the stream exhibited different
sorption and methylation kinetics

Software and Data Availability:

The original experimental dataset is archived at Schwartz et al. (2021b). The model-data for this
manuscript is archived at Rathore and Painter (2021).


mailto:rathoress@ornl.gov
http://energy.gov/downloads/doe-public-access-plan

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Abstract:

To characterize complex biogeochemical systems, results from multiple experiments, where
each targets a specific subprocess, are commonly combined. The resulting datasets are
interpreted through the calibration of biogeochemical models for process inference and
predictions. Commonly used calibration approaches of fitting datasets from individual
experiments to subprocess models one at a time is prone to missing information shared
between datasets and incomplete uncertainty propagation. We propose a Bayesian joint-fitting
scheme addressing the above-mentioned concerns by jointly fitting all the available datasets,
thus calibrating the entire biogeochemical model in one go using Markov Chain Monte Carlo
(MCMC). The identification of null spaces in the parameter distributions from MCMC guided the
simplification of certain subprocess models. For example, fast kinetic sorption was replaced by
equilibrium sorption, and Monod demethylation was replaced by first-order demethylation.
Joint fitting of datasets resulted in complete uncertainty propagation with parameter estimates
informed by all available data.
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1. Introduction:

Many stream ecosystems are under stress due to contamination driven by anthropogenic
activities. In particular, trace metals such as mercury, lead and cadmium released from
industrial activities pose a serious threat to human and ecosystem health because of their
toxicity even at minimum levels and potential of bioaccumulation (Chen and Folt, 2000; Evers et
al., 2007; Goodyear and McNeill, 1999; Horowitz, 1991; Mason et al., 2000; Ward et al., 2010).
A comprehensive understanding of their transformation in the environment requires
considerations of the complex interplay between physical, chemical and biological processes at
different spatial and temporal scales. Carefully designed field and laboratory experiments
gather critical data about these processes. However, the usefulness of these datasets depends
on their reliable interpretations. Empirical relations can fit the data well but can struggle to
extrapolate due to a lack of mechanistic underpinnings. Process-based biogeochemical models
are developed and calibrated using the experimental data for mechanistically rich process
inferences and predictions. There are generally multiple candidate biogeochemical models
available to fit the data, e.g., first-order kinetics, equilibrium, Monod, and Tessier. All these
models are upscaled phenomenological descriptions of complex biogeochemical processes and
do not perfectly represent the biogeochemical system, since the “true” model is unknown
(Neumann and Gujer, 2008). Typically, based on preliminary data analysis and expert
knowledge, a model is proposed and calibrated to estimate model parameters. However, often
initially proposed mechanistic models are overparameterized, needing data-driven methods for
model simplification and unique parameter estimates. Commonly used approaches in
biogeochemical modeling and calibration are prone to underutilization of the data available
from multiple experiments, incomplete uncertainty quantification, and model
overparameterization. Below we describe some of the challenges in interpreting data with
commonly used biogeochemical modeling approaches and how we aim to address them.

Characterization of biogeochemical systems often requires multiple experiments targeting a
subset of processes in the system (referred henceforth as subprocesses). For example, sorption
experiments are performed separately from reaction-focused experiments in various
biogeochemical applications (e.g., Haggerty et al., 2008; Lemke et al., 2014; Olsen et al., 2018;
Schwartz et al., 2021a). Models for subprocesses, like sorption, are often calibrated first and the
resulting best-fit parameters are kept fixed in the subsequent estimation of reaction
parameters in a broader model framework. This sequential fitting scheme has two main
shortcomings. First, it fails to make full use of all information. Information on subprocesses that
are common to multiple experiments is not fully used when subprocess parameters are
determined by analysis of one experiment and then held fixed in subsequent analyses. Second,
sequential fitting fails to propagate uncertainty from one experiment to the next. For example,
fixing sorption parameters when analyzing reaction experiments ignores the fact that the
reaction experiments contain information about both sorption and reactions. Moreover, it fails
to propagate uncertainty from the analyzed sorption experiment to the analysis of the reaction
experiment. Figure 1 shows this sequential fitting scheme in a general biogeochemical model
comprising three subprocesses that are calibrated sequentially. We propose that the datasets
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from multiple experiments should be fitted simultaneously, thus calibrating all subprocess
models together. By doing so, we leverage information sharing about subprocesses among
datasets. Additionally, this joint-fitting scheme also allows uncertainty propagation among
subprocess models. The surface (Kelleher et al., 2019; Knapp and Cirpka, 2017; Lemke et al.,
2013; Liao et al., 2013) and subsurface (Luo et al., 2006; Zhao et al., 2018) hydrologists have
previously recognized merit in this joint fitting approach. These studies fitted conservative and
reactive tracer data from tracer experiments jointly rather than sequentially to leverage shared
information and propagate uncertainty fully. Biogeochemical systems, typically more complex
with a larger number of highly intertwined subprocesses, can particularly benefit from sharing
information because of the different scales and interactions of these subprocesses captured in
different experiments.

A more general problem and very relevant to biogeochemical modeling is the lack of parameter
identifiability (Beck, 1987), which essentially means that significantly different parameter values
can reproduce the experimental data equally well. This can result from insufficient information
in the experimental data to match the model complexity or “incorrect” model structure
(Marschmann et al., 2019). Although non-linear least-square schemes can yield parameters that
produce a good match between simulations and experimental data in such cases, the model
structure deficiency can go undetected leading to non-meaningful local uncertainty estimates
and faulty process inferences (Marschmann et al., 2019; Neumann and Gujer, 2008; van
Turnhout et al., 2016). Neumann and Gujer (2008) showed that bias related to model-structure
in environmental models can be diagnosed through analysis of residuals from non-linear
regression schemes. Marschmann et al. (2019) used information geometry to identify model
structure limitations and reduce the model complexity in mechanistically rich biogeochemical
models suffering from the lack of parameter identifiability. With the advancements in
computational capabilities, computationally intensive Bayesian inverse modeling have become
accessible to widespread applications including biogeochemical modeling. Mapping full joint
distributions of parameters in Bayesian approach can reveal parameter uncertainties,
sensitivities, interactions and potential null spaces, which can guide model improvements.
Arhonditsis et al. (2008) applied Bayesian calibration using Markov Chain Monte Carlo (MCMC)
to rigorously quantify parameter and predictive uncertainty in aquatic-biogeochemical models.
Zhang and Arhonditsis (2009), using synthetic aquatic-biogeochemistry datasets, demonstrated
the strength of the Bayesian approach in transferring information across systems as priors in a
hierarchical calibration scheme. van Qijen et al. (2011) calibrated four different biogeochemical
models for Norway spruce forest using MCMC. They compared models through “integrated
likelihood” values of the estimated parameter distributions. van Turnhout et al. (2016)
developed a toolbox with Bayesian-inference-based criteria for selecting optimal reaction
network in Municipal Solid Waste landfills. Davoudabadi et al. (2021) used particle-filter-based
advanced Bayesian methods to calibrate high complexity state-space models with soil-carbon
sequestration as an example.
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methylation dataset (Schwartz et al., 2021b) to improve data interpretation and advance
process inferences.

Characterization of mercury methylation processes, a use case in this paper, is of significantly
high importance as methylmercury (MeHg) poses a great threat to humans and wildlife (Eckley
et al., 2020). Occurring in the environment as a natural and anthropogenic pollutant, Hg is
methylated to form the neurotoxin MeHg through microbially mediated processes (Clarkson et
al., 2003). MeHg ingestion even at a low level has adverse impacts on the development of
children. MeHg can get biomagnified in aquatic food webs which makes it particularly
concerning (Mergler et al., 2007). Significant experimental and modeling efforts have been
made to understand mercury methylation dynamics (Avramescu et al., 2011; Hintelmann et al.,
2000; Jonsson et al., 2012; Liem-Nguyen et al., 2016; Mitchell and Gilmour, 2008; Olsen et al.,
2018; Rodriguez Martin-Doimeadios et al., 2004; Schwartz et al., 2019).

Traditionally, first-order reversible kinetics have been used to model mercury-methylation
(Hintelmann et al., 2000), however, apparent non-first order kinetic behavior has often been
observed in mercury methylation-demethylation data (Avramescu et al., 2011; Jonsson et al.,
2012; Olsen et al., 2018). Olsen et al. (2018), studying mercury methylation in periphyton
biofilms, suggested that the apparent non-first order behavior does not necessarily imply non-
first order kinetics, but can result from other competing processes making Hg and MeHg
unavailable for methylation and demethylation, respectively. They proposed the Transient
Availability Model (TAM) accounting for competing processes like multisite kinetic sorption of
Hg and MeHg and reduction of Hg. Schwartz et al. (2022) extended the TAM framework to
aquatic sediment systems to model mercury methylation on two disparate sediments from East
Fork Poplar Creek (EFPC) in Oak Ridge, TN, USA. TAM application by Schwartz et al. (2022)
considered fully kinetic competing processes for bioavailability with first-order methylation-
demethylation for one sediment type, and reversible Monod kinetics for another. With the
sequential fitting of sorption and methylation datasets and a gradient-based scheme for
parameter estimation, they reproduced experimental data well but obtained non-meaningful
error estimates for certain parameters. Using the novel mercury-methylation dataset (Schwartz
et al., 2021b), we implement the proposed parameter estimation workflow in the TAM
framework.

Olsen et al. (2018) and Schwartz et al. (2022) studied biologically mediated methylation of
mercury (Hg) to the neurotoxin methylmercury (MeHg) on periphyton film and colonized
sediments, respectively. Both studies fitted sorption experiment datasets first to estimate
sorption parameters, which were then fixed while estimating methylation-demethylation
parameters fitting datasets from methylation experiments. However, it is important to
recognize that these processes are not independent and methylation-demethylation datasets
also contain information about the sorption processes, which is not leveraged in this sequential
fitting approach. Additionally, because of using the “best fit” values of sorption parameters, the
estimates of methylation-demethylation parameters ignore uncertainties in sorption datasets.
In our approach, sorption and methylation datasets are fitted simultaneously and respective
parameters are jointly estimated, thus addressing the above-described concerns.
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For the uncertainty-aware parameter estimation, Olsen et al. (2018) and Schwartz et al. (2022)
adopted a gradient-based local optimization scheme, which works well in unimodal smooth
parameter spaces but can suffer in multimodal or other atypical parameter spaces. Additionally,
under such schemes, other model-structure-related issues like overparameterization may go
undetected. We adopt a Bayesian approach using MCMC, a global-search scheme yielding a full
joint distribution of parameters. The obtained parameter distributions are expected to guide
model improvements in addition to offering robust uncertainty estimates.

With the proposed parameter estimation workflow of Bayesian joint fitting, we aim to improve
the interpretation of the rich mercury methylation dataset by Schwartz et al. (2021b). The
proposed workflow is easily transferable to other complex biogeochemical systems
characterized through multiple experiments for reliable parameter estimates, process
inferences, and predictions.

2. Overview of Experiments and Datasets

Here we provide a brief overview of the study site and experiments. For more information
about the site see Brooks and Southworth (2011); Riscassi et al. (2016) and for experimental
details, see Schwartz et al. (2022). Schwartz et al. (2022) collected sediments from EFPC, that
have legacy mercury contamination, and performed sorption and mercury methylation
experiments to characterize and quantify their methylation and demethylation potential and
associated physical, chemical, and microbial processes. Two contrasting sediment types were
collected for use in laboratory studies. Sediment 1 —rich in organic matter, relatively anoxic
fine sand predominant along the stream edge, and Sediment 2 —a medium to coarse sand
lower in organic carbon and less metabolically active than Sediment 1, and predominant in the
center of the channel.

For Hg and MeHg sorption experiments, isotopically labeled 2°'Hg or Me??Hg were added to
sediment-creek water suspension under air and placed on a reciprocating shaker. The number
of time points at which samples were collected for Hg are 12 and 14 for Sediment 1 and for
Sediment 2, respectively, and for MeHg, 14 and 15, respectively. Triplicate samples were
sacrificed at each time point. In the Hg sorption experiment, Hg in the aqueous phase, total
solid-phase Hg, and Hg(0) were quantified at different time points. Under the oxic conditions of
the Hg sorption experiments Hg methylation, an obligately anaerobic microbial process, did not
occur. In the MeHg sorption experiments, aqueous Me?°2Hg quantified at different time points
from triplicate samples and total Me2°2Hg in the system was quantified at select time points to
verify the lack of demethylation of the added isotope (Schwartz et al., 2022).

Mercury-methylation experiments were conducted on carefully prepared anoxic sediment
slurry microcosms. Three treatments were established, one spiked with 2°’Hg to monitor
methylation via production of Me?°1Hg, the second spiked with Me2°?2Hg to monitor
demethylation via loss of Me2%2Hg, and treatment with no spike added to monitor other
biogeochemical parameters of interest (e.g., Fe(ll), sulfide) because the Hg and MeHg analyses
were full consumptive and destructive. The experiment for Sediment 2 was run longer because
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of the low activity initially measured in those sediments. The number of timepoints at which
samples were collected is 4 and 3 for Sediment 1 and Sediment 2, respectively. Three
microcosms from each treatment were destroyed at each time point for Hg and MeHg analysis.
The resulting datasets from mercury-methylation experiments are total Me?°*Hg and Me?%2Hg
at each time point (Schwartz et al., 2022).

3. Bayesian Joint-Fitting Approach

The data from the experiments by Schwartz et al. (2022) captures information about the
biogeochemical processes controlling methylation of mercury on colonized river sediments.
Models under the TAM framework are proposed for these biogeochemical processes and
calibrated to match the experimental data allowing us to make process inferences and develop
prediction capabilities. Experience from the interpretation of mercury methylation datasets by
Schwartz et al. (2022) reveals several shortcomings of commonly used biogeochemical model
calibration practices which we discussed in the Introduction section (Figure 1).

Our approach leverages information shared among experiments by joint calibration of
subprocesses using all the available datasets. Additionally, full joint distribution of parameters
is mapped to get robust uncertainty estimates and detect potential model-structure
deficiencies. In Figure 2, we present a schematic of our Bayesian joint-fitting scheme and the
advantages of different facets of the scheme. In the following sub-sections, we describe
different models considered for sorption and methylation, provide Bayesian formulation, and
details of MCMC application.



262
263

264
265
266
267

268
269
270
271
272
273
274
275

§

Bayesian Inference \

I 74 =
2 09 = ;
90 s J Wy WF W

§ | ¥ivooo o565, .. 05
5 R CE ) -

3| ldoeders =

@ 3 00 od0Oe =

8 | 4. 2200000~ pr G M-
E S AN AARARAAN 67,65, .05
B AN AN =

G BEBEBESSS S =

=

e
Biogeochemical Model \

/

>

Subprocess-2
model

Complex biogeochemical model
with multiple subprocesses

it Bayesian parameter estimation using MCMC

= Full joint distributions of parameters

* Robust estimates of global uncertainty

* Insights into model-structure deficiencies
manifesting as null space, multi-modality,

etc.

/'
( Joint calibration of all subprocess-models

* Complete uncertainty propagation
across subprocess-models

* Elucidates interactions between tightly
intertwined subprocesses

e

| —

: |
S
. £ Experiment 1 Experiment 2 Experiment 3
v
o
s
E

{ Simultaneous fitting of multiple datasets

= Larger quantity and variety of data
informing parameters

* Enables sharing of information among
experiments

Figure 2: Schematics of Bayesian joint-fitting scheme for calibrating complex biogeochemical
models offer multiple advantages with efficient utilization of datasets, full uncertainty
propagation and robust estimation, and detecting parameterization deficiencies

3.1. Transient Availability Model Framework

The TAM model framework developed by Olsen et al (2018) is used to describe mercury
methylation. Under the TAM model framework, methylation and demethylation of mercury are
strongly influenced by the availability of Hg and MeHg in the aqueous phase. Experiments
suggest that the transient availability of Hg in the aqueous phase is caused by competition with
two-site sorption and reversible reduction of aqgueous mercury into elemental mercury, while
that of MeHg is governed by competition with two-site sorption. Figure 3 shows schematics of

the general TAM model framework.
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For both types of sediments, Schwartz et al. (2022) modeled two-site sorption as fast and slow
first-order reversible kinetic sorption. Similarly, the reduction of Hg(ll) to Hg(0) was also
modeled as a first-order reversible kinetic process. For Sediment 1, both methylation and
demethylation were modeled using Monod kinetics. For Sediment 2, methylation and
demethylation were modeled using first-order kinetics. The uncertainty-aware parameter
estimation was performed using a gradient-based scheme (nlinfit in Matlab) yielding locally
optimal parameter values with first-order error estimates. Schwartz et al. (2022) found large
parameter uncertainties and non-unique solution (sensitive to initial values) for Monod kinetics
in Sediment 1. Additionally, when they applied Monod kinetics in Sediment 2, the parameter
estimation scheme failed to converge without giving any clear insights into the defects in the
considered parameterization. This is not surprising as potential overparameterization-related
model-structure deficiencies can go undetected with gradient-based non-linear fitting schemes.

In this study, we first implement the proposed Bayesian joint-fitting scheme, i.e. jointly
calibrating sorption and methylation models using MCMC with TAM model in Schwartz et al.
(2022). Thereafter, based on the insights from the resulting joint posterior distributions, we aim
to improve the TAM model framework for both Sediment 1 and Sediment 2 to explain the
experimental data better and obtain robust uncertainty estimates. The system of ODEs in TAM
reaction network are solved using odeint from scipy.integrate package in Python which uses
Isoda from FORTRAN odepack library.

3.2. Bayesian Formulation
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We estimate all parameters in the TAM framework simultaneously by fitting datasets from
sorption and methylation experiments together. We adopt the Bayesian approach to estimate
distributions of TAM parameters conditioned on the measurements. Measurements from Hg
sorption, MeHg sorption, and methylation experiments are represented by vectors C7*¢%°,
C7¢%, and C5*°%°, respectively. Measurements for model calibration are triplicate averages at
each time point. Collectively, all model parameters can be represented by vector 8 and
measurements by C"%*. Using Bayes’ theorem, conditional probability density function p(8|
C'™°%%) can be given as:

p(6]Ce%) ocp(€™%|0)p(8) (1)

where p(€™¢%°|0) is the likelihood of the measurements C"¢%® given the parameter set 0,
which represents the constraints imposed by C"**“* on 6. The p(0) is the probability density
function representing the prior knowledge about parameters. Probability p(C™°%*|0) is
composed of contributions from individual experiments as:

3
p(cmeas|g) = | | p(cimees|6) @
i=1

C7*¢* for all experiment is assumed to follow multi-gaussian distribution:
1 - \T .
p(C;neas | 0) — mexp( _ %(C;neas _ C?Lm) Zi—l(cgneas _ Cflm)) (3)

where, X; represents the covariance matrix of the measurements, |Z;| represents its
determinant, and n is the number of time points in the dataset. We assume uncorrelated
measurement errors resulting in a diagonal X; matrix with measurement variances as diagonal
elements. We assume uniform priors for all parameters with a reasonable range based on
domain knowledge. We do not have any additional information to assume non-uniform priors.
For cases when parameter distribution hit the boundary of the parameter space, analysis is
repeated with expanded range a few times to ensure there is no additional mode beyond
range. We assume a homoscedastic error model and evaluate pooled variance for each dataset
(i.e., variance of different populations with different means with presumably same variance).
This is a reasonable choice as triplicate variances did not show consistent trend with time. It is
important to note, however, that pooled variance calculated this way is still uncertain because
of small sample size. We ignore the uncertainty in variance here but note it could be estimated
in a more robust way by taking the variance as a hyperparameter that is sampled along with
main model parameters.
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For each case, we plotted the distribution of residuals of model fit and found them to be
unimodal, almost symmetric and gaussian, except at early timestep in one of the cases. Hence,
our assumption of gaussian likelihood is reasonable for these datasets. The example plots of
residual distributions for methylation and demethylation in both types of sediments are
provided in the Appendix-B.

3.3. MCMC Implementation

For most practical cases, it is almost impossible to analytically derive the joint distributions of
parameters. Hence, we use the MCMC technique, a family of algorithms designed to
approximate posterior distributions of variables of interest by drawing samples from their
derived distributions. MCMC has benefitted many fields where posterior inferences about
complex systems in the Bayesian framework are desired (Vrugt et al., 2008). MCMC offers
globally optimal solutions with full joint distributions of parameters. This allows for the
guantification of parameter uncertainties rigorously, assessment of model structure adequacy,
and potential for model improvements.

In this study, we use PyDREAM (Shockley et al., 2018), a python implementation of the
DREAM(ZS) (Laloy and Vrugt, 2012) algorithm, which is one of the most advanced adaptions of
DiffRential Evolution Adaptive Metropolis (DREAM) (Vrugt et al., 2008). DREAM is a multi-chain
MCMC with the automatic adaption of step size and direction of sampler movement.
DREAM(ZS) stores past states in archives which are then used to propose new positions making
it highly efficient with quick convergence and fewer number of chains needed. With a range of
proposal maneuvers, DREAM(ZS) can sample from challenging parameter spaces like
multimodality and highly correlated parameters. Key inputs to DREAM(ZS) algorithm includes
number of differential pairs equals to 3, gamma levels to 4, probability of unity gamma to 0.2
and probability of snooker step to 0.1. For more details about these options, refer to Shockley
et al. (2018) and Laloy and Vrugt (2012).

We provide in the supporting information a modular python workflow in which each
experiment is modeled in a separate python script and is accessed by the main python script
performing MCMC. Therefore, datasets from additional experiments can be conveniently
included in the MCMC analyses. The MCMC results are post-processed, analyzed, and visualized
in Jupyter notebooks enabling an efficient and self-documenting workflow. The model-data files
are archived at Rathore and Painter (2021).

4. Results and Discussion

MCMC runs were performed using 10 parallel communicating chains with at least 25,000
generations per chain after chains had converged. The convergence of chain is tested using
Reduction Factor (IA?) criteria by Gelman and Rubin (1992) which when below 1.2 indicates the
chain convergence. Plots for the evolution of R with the progression of chains for each MCMC
run can be found in the SI. The posterior distributions of estimated parameters were
summarized using at least 250,000 parameter sets yielding a robust estimation. First, we
present parameter estimation with models of Schwartz et al. (2022). Based on the insights into
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the parameter space, we improve the model structure and discuss process inferences.
Equations for final improved models are provided in the Appendix-A.

4.1. Bayesian Joint-Fitting for Transient Availability Model by Schwartz et al. (2022)

4.1.1. Model Description

Figure 4(a) depicts models considered by for fitting sorption and methylation experiment data
sequentially for both Sediments 1 and 2. Hg sorption experiment is modeled using three first-

order reversible kinetic processes, namely, sorption-desorption on fast sites (Hg}’ast) with

parameters kq [T~1] and k, [T~1], sorption-desorption on slow sites (Hgé’low) with parameters

ks [T~1] and k4 [T—1], and first-order reversible kinetic reduction to Hggq with parameters kg
[T—1] and k¢ [T~1]. MeHg sorption is modeled using first-order reversible kinetic fast-site
sorption with parameters k- [T~1] and k1 [T~1] and slow-site sorption with parameters kq [
T—1] and kq [T~1]. They fitted Hg and MeHg models to respective experimental data and
reported best-fit parameters and quantified uncertainty as 5t and 95t confidence intervals.
Thereafter, the mercury methylation model under the TAM framework was calibrated to
estimate methylation and demethylation parameters keeping sorption parameters fixed as
best-fit values estimated previously. In Sediment 1, Monod kinetics was used to model
methylation and demethylation. For methylation, k.max [MT 1] and K5, [M] denote
maximum reaction rate and half-saturation constant, respectively. Similarly, for demethylation,
Monod parameters are denoted as kg,qx[MT~1] and K 455 [M]. Monod reactions exhibit first-
order behavior at concentrations significantly smaller than K, and zeroth-order behavior at
concentrations significantly greater than K. In Sediment 2, reversible first-order kinetics was
used for methylation and demethylation with rate constants k,, [T~1] and kg4 [T71],
respectively.

We estimate all parameters together by fitting seven datasets from three experiments
(described in section 2) simultaneously using MCMC to obtain full posterior joint distributions.
Figures 4(b) and 5(b) maps experimental datasets to the parameters they are informing. This
allows for a rigorous treatment of uncertainty in all parameters and full utilization of the
information shared among available datasets. In section 4.1.2, joint distributions of parameters
of the model by Schwartz et al. (2022) obtained from MCMC are presented for both sediment
types. Marginal distributions and predictive uncertainty plots are provided in the SI.
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Figure 4: Reversible first-order kinetics for Hg and MeHg two-site sorption, Hg reduction, and
reversible Monod kinetics for methylation considered by Schwartz et al. (2022) for Sediment 1
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Figure 5: Reversible first-order kinetics for Hg and MeHg two-site sorption, Hg reduction, and
methylation considered by Schwartz et al. (2022) for Sediment 2

4.1.2. Joint Distribution of Parameters

Figure 6 and Figure 7 present MCMC results for Sediment 1 and Sediment 2, respectively, as
individual parameter histograms and pairwise joint distributions. R for the converged chains for
all the parameters was approximately equal to 1 in both cases of sediment types. For Sediment
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Figure 6: Joint distributions of parameters obtained from MCMC for model framework
proposed by Schwartz et al. (2022) for Sediment 1

For Sediment 2, the parameters for fast sorption for Hg (k; and k), Hg reduction (ks and kg)
and fast sorption of MeHg (k; and kg) were non-informative and unconstrained, spanning a
null space characterized by a distinct ratio of forward to reverse rate constants (distributions of
ratios shown in Figure 7). This favors replacing the reversible kinetic models for Hg reduction
and fast sorption of Hg and MeHg with corresponding equilibrium models. The non-linear least-
square fitting scheme as adopted in Schwartz et al. (2022) does not offer such insights into
parameter space. The “best-fit” parameters for these subprocess models by Schwartz et al.
(2021a) are one of the many equally good possibilities in the null space, and their local error
estimates stem from perturbations around the “best-fit” parameters. In section 4.2, based on
the insights obtained from MCMC results, improved models are proposed, and parameter
estimation is performed for new models.
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&

4.2. Bayesian Joint Fitting for Updated Models

Based on the insights gained from the MCMC analysis of the Schwartz et al. (2022) model, we
propose improved models and perform Bayesian parameter estimation to obtain joint
parameter distributions and quantify uncertainties for both Sediment 1 and Sediment 2. R for
all the parameters was approximately equal to 1 in both cases of sediment types, except for k,; in
Sediment 1 for which final R is equal to 1.07. Model descriptions, estimated parameters
distributions, summary statistics and predictive uncertainties are presented in the following
subsections.

4.2.1. Sediment 1
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Under the improved model structure for Sediment 1, mercury reduction is modeled as an
equilibrium process parameterized by a single parameter — the dimensionless equilibrium
constant Ks_g [ — |. Note that the subscripts of the equilibrium constant are related to the
corresponding kinetic models in Figure 4 for the sake of clarity and convenience. Additionally,
demethylation is modeled using first-order kinetics with a rate constant k; [T~1]. The model
structure and estimated joint parameter distributions are presented in Figure 8. Marginal
distributions are provided in SI. All parameters are estimated as unimodal distributions. Monod
parameters for methylation exhibit high uncertainty with a thick tail. This ambiguity is
potentially due to time-varying microbial activity due to evolving redox conditions in the
sediments (Schwartz et al., 2022). The summary statistics of parameters are presented in Table
1in the form of 5th, 25th, median, 75th, and 95th percentiles.
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481 Figure 8: Model description (top right) and joint distributions of parameters obtained from

482 MCMC for the improved model for sediment 1
483
484 Table 1: Summary statistics of parameters estimated from MCMC for the improved model for
485 sediment 1
Parameter 5th 25th Median 75th 95th
kl[d_l] 5.3%e2 5.96e2 6.40e2 6.88e2 7.72e2
ko [d_l] 1.08e3 1.2e3 1.30e3 1.41e3 1.60e3
k3 [d_l] 4.11 4.27 4.39 4.50 4.68
k4[d_1] l.41le-1 2.00e-1 2.3%e-1 2.79%e-1 3.40e-1
Ks 6] —] 42.29 44.48 46.13 47.80 50.63
k7[d_1] 51.78 55.82 58.71 61.81 66.42
kg[d_l] 73.86 81.11 87.12 93.60 1.03
kg[d_l] 6.67 7.10 7.44 7.77 8.27
k10[d_1] 1.07 1.22 1.32 1.42 1.58
kmmax[ngd—1] 67.6 93.6 191.8 441.4 795
Kmns[ng] 35.6 282.3 1426.2 4671.5 8874.7
kd[d_l] 1.43 1.68 1.88 2.16 3.08
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489  Figure 9: Median (solid line), bands of 2.5t and 97.5t percentiles (shaded region) of predictions

490 and experimental data (solid dots) for Hg sorption and reduction (gaseous phase is not shown)

491 (a), MeHg sorption (b), and methylation-demethylation experiment (c - d), along with the
492 predicted concentration history of total dissolved of 2°1Hg (e) and 2°2Hg (f) during the
493 methylation-demethylation experiment for sediment 1
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Figure 9 presents the predictive uncertainty plots obtained by generating an ensemble of
sorption and methylation model runs using the parameters sets from MCMC. Model reduction
from kinetic to equilibrium for Hg reduction and from Monod for first-order kinetics for
demethylation was found to be adequate as the model simulation results explain the
experimental data well for both sorption and methylation experiments. The parameter
estimates and thus predictions benefit from the joint fitting of sorption and methylation
datasets and estimating all parameters simultaneously.

4.2.2. Sediment 2

Parameters for the fast-site sorption for Hg and MeHg considered by Schwartz et al. (2022)
exhibited high ambiguity as they contain a null space with a distinctive ratio of forward and
reverse rate constants. In the improved model, sorption of Hg and MeHg on Sediment 2 is
modeled as two-site sorption, i.e. equilibrium and kinetic sorption. Equilibrium sorption
constants for Hg and MeHg are represented by K1_,[ — ] and K;_g[ — ], respectively. Similar
to Sediment 1, Hg reduction in sediment 2 is modeled as an equilibrium process with the
equilibrium constant as K5_¢ [ — ]. Guo et al. (2019) showed that the uncertainty in the
thermodynamic constants for equilibrium processes has an outsized impact on the output
uncertainties, hence it is critical to obtain global uncertainty estimates for these constants. The
joint distribution of estimated parameters in Figure 10 are well-constrained and unimodal. The
summary statistics of estimated parameters are presented in Table 2. Predictive uncertainty
plots in Figure 11 show good agreement between model simulations and experimental data for
both sorption and methylation experiments.
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519 Figure 10: Model description (top right) and joint distributions of parameters obtained from
520 MCMC for the improved model for sediment 2
521
522 Table 2: Summary statistics of parameters estimated from MCMC for the improved model for
523 sediment 1
Parameter 5th 25th Median 75th 95th
Ki—z[—] 4.18 4.46 4.67 4.90 5.27
k3[d—1] 3.98 4.48 4.85 5.25 5.89
ka[d—1] 3.55 4.08 4.48 4.91 5.59
Ks_o[—1] 11.10 12.75 14.16 15.9 19.2
K7_g[—] 13.19 15.38 17.41 20.07 26.15
ko[d—1] 3.03e-1 3.91e-1 4.64e-1 5.48e-1 6.95e-1
kio[d™1] 8.37e-1 1.39 1.81 2.28 3.09
Kkp[d—1] 7.23e-5 9.64e-5 11.38e-5 13.19e-5 15.85e-5
kq[d—1] 5.57e-2 7.01e-2 8.14e-2 9.38e-2 11.46e-2

524



525
526

527
528
529
530
531
532

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

(a) (c) (e)

10 14000

10} — Hdl,
— Hgscia 12000
— Hgl,

0.51.2
10000

S
o

8000

6000

Me?01Hg [ng]
©Hg [ng)

o
i

Fraction of Total Hg

4000
021

2000

00! 8 . ' . ] e ——————"

102 102 107 100 [} ] a 6 8 10 12 14 0 2 4 6 8 10 ) 1
(b) Time (days) Time (days) Time (days)

(d) (f)

Fraction of Total MeHg

o
Y
w
N

o
o

10-? 107! 100 ] 2 a 6 8 10 12 1 9 3 2 6 3 10 12 12
Time (days) Time (days) Time (days)

Figure 11: Median (solid line), band of 2.5t and 97.5t percentiles (shaded region) of
predictions and experimental data (solid dots) for Hg sorption and reduction (gaseous phase is
not shown) (a), MeHg sorption (b), and methylation-demethylation experiment (c - d), along
with the predicted concentration history of total dissolved of 29'Hg (e) and 2°?Hg (f) during the
methylation-demethylation experiment for Sediment 2

5.3.Summary and Conclusions

In this paper, we proposed Bayesian joint fitting, a parameter-estimation workflow, for
biogeochemical systems with two main advancements from traditional methods: 1)
simultaneous fitting of datasets from multiple experiments characterizing competing
subprocesses within the system, 2) mapping full joint distribution of parameters using MCMC.
The efficacy of the proposed method was demonstrated with mercury methylation as a use
case. The method was deployed to reinterpret recently published datasets (Schwartz et al.,
2021b) characterizing mercury methylation on aquatic sediments under the Transient
Availability Model (TAM) framework (Olsen et al., 2018; Schwartz et al., 2022). Rigorous
estimation of parameter uncertainties and improvement in the TAM framework were achieved.

Simultaneous fitting of datasets from sorption and methylation experiments to estimate all
TAM parameters together comprehensively captured interactions between sorption and
methylation processes. This approach allowed the inclusion of the measurement uncertainties
in the sorption experiments (for both Hg and MeHg) into methylation parameters in the TAM
model framework. Another advantage of simultaneously fitting datasets is sorption parameters
were informed by datasets from both sorption and methylation experiments.

Mapping full joint distributions of parameters using MCMC yielded global optimal parameters
and robust uncertainty estimates. Additionally, it revealed deficiencies in the existing model



552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

structure which eluded first-order error estimates. For example, the identification of null spaces
in the original sorption model (Schwartz et al., 2022) in Sediment 2 and the Hg-reduction model
for both sediments proved valuable in simplifying the model from kinetic to equilibrium, thus
reducing the parameter uncertainty arising due to over-parameterization. Similarly, null space
in parameters for Monod demethylation in Schwartz et al. (2022) model suggested replacing it
with first-order kinetics. Note that lumping null space parameters into a single parameter is one
of the many ways of model reduction. This inverse-modeling-based approach simplifies the
model with null-space identification without compromising on the goodness of fit and
prediction uncertainties. The different fast sorption dynamics of the finer-grained Sediment 1
and coarser-grained Sediment 2 is consistent with reduced access to sorption sites due to low
diffusion coefficients in Sediment 2. Such insights can be helpful to guide future experiments
for better resolving processes that exert control on Hg methylation-MeHg demethylation
dynamics in environmental systems. For example, the MeHg concentrations measured in
samples is the net result of the opposing processes of Hg methylation and MeHg
demethylation. The simultaneous fitting approach discriminated among competing models
describing these processes and identified parameters with greater relative uncertainty which, in
turn, will inform future data gathering efforts to design experiments that will decrease
uncertainty in those parameters. Other approaches include using theoretical measures like
Akaike Information Criterion or Bayesian Information Criterion to trade-off the goodness of fit
for the model simplicity.

Bayesian inference from experimental datasets (Schwartz et al., 2021b) revealed different
methylation and sorption dynamics for Sediment 1 and Sediment 2. In Sediment 1, two-site
kinetic sorption (fast and slow) explained the datasets well. In Sediment 2, data did not capture
kinetic behavior for fast sorption making the associated kinetic parameters unidentifiable. The
equilibrium sorption along with slow kinetic sorption resulted in a good fit between the model
and data. For the methylation experiment in Sediment 1, Monod methylation and first-order
demethylation gave a decent fit to the data with unique parameter estimates. The dataset was
unable to uniquely identify Monod parameters for demethylation. In Sediment 2, first-order
kinetics for both methylation and demethylation offered a good match with the data.

In summary, the proposed method of joint fitting of multiple-experiment datasets in the
Bayesian framework and mapping full joint distributions using MCMC were shown to be
effective in improving the parameterization of biogeochemical models, quantifying the
uncertainties in parameters and outputs, and evaluating different model structures. This
approach can be beneficial particularly in a system with multiple competing reactions taking
place at different timescales. Insights into parameter space through joint probability
distributions coupled with domain knowledge guides model improvements. Full quantification
of uncertainties informs the design of future experiments targeted at constraining poorly
constrained parameters, eliminating multimodality or dealing with parameter degeneracy.
Improved model structures and robust uncertainty estimates offer better understanding of
underlying mechanisms and reliable predictions of fate of metals and nutrients in the
environment.
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Parameter estimation using MCMC will not be suitable for models with high runtime as MCMC
requires large number of model runs, raising the computational cost. However, typical reaction
networks are ODEs and even a complex reaction network is relatively fast to solve. Additionally,
with an increased access to computational resources, there is no reason why researcher should
not opt for robust uncertainty estimates using MCMC which offers flexibility of analyzing
multiple experiments together and also guide domain-knowledge-based model improvements
in the process.

The workflow for this approach is coded in Python and scripts are provided in the mode-data
archive at Rathore and Painter (2021). The modular nature of the workflow allows for inclusion
of additional experimental data or a new reaction to the reaction network, conveniently.
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Appendix-A

Here we present mathematical equations for improved models for mercury methylation on
aquatic sediments presented in this manuscript. For variables are described in the main text of
the manuscript.

Sediment 1:
gl Kmmax vy o0 ieHg) — ki[Hgl + kolH ks[Hg] + ky [H
(1) — _Kmhs+[Hg][ gl +kq[MeHg] — kq[Hg] + k2[Hgr] — k3[Hg] + k4 [Hgs]
d[MeHg]
dt .
2) = #%[Hg] —ky[MeHg] — k;[MeHg] + kg[MeHgf] — kg[MeHg] + ki9[Me
[ ] Hyg]
d|H
(3) =1 = kulHg] — ko[Hgy]
d[Hgs] _
4) b k3[Hg] — k4 [Hgs]
d|MeH
o - 9 _ etng) — kol
d[MeHg;]
(6) BT ko[MeHg] — kio[MeHg;]
(7) [Hg] = Ks_6[Hg"]
Sediment 2:
d[Hg]
(1) T —km[Hgl + kq[MeHg] — k3[Hg] + k4 [HYs]
d[MeHg]
(2) T km[Hg] — kq[MeHg] — ko[MeHg] + kqio[MeHgs]
d[Hgs]
@) — = k3[Hg] — k4 [HYs]
d[MeHg;]
4) —ar - ko[MeHg] — kqo[MeHg;]

(5) [Hg]l =K1_2[Hgy]

(6) [Hg] = Ks_e[Hg"]
(7) [MeHg] = K7_g[MeHgy]

Appendix-B

Example plots of residual distribution for the time series of Me?%*Hg and Me?%?Hg in
methylation and demethylation experiments for both Sediment 1 and Sediment 2 are shown
below.
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Figure B.1: Distribution of residuals for Me?%*Hg predictions are different timepoints for
methylation experiment in Sediment 1
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Figure B.2: Distribution of residuals for Me?%?Hg predictions are different timepoints for
demethylation experiment in Sediment 1
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Figure B.3: Distribution of residuals for Me?%'Hg predictions are different timepoints for
methylation experiment in Sediment 2
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Figure B.4: Distribution of residuals for Me2??Hg predictions are different timepoints for
demethylation experiment in Sediment 2
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