

Joint Estimation of Biogeochemical Model Parameters from Multiple Experiments: A Bayesian Approach Applied to Mercury Methylation

Saubhagya S. Rathore^{1*}, Grace E. Schwartz^{1#}, Scott C. Brooks¹, Scott L. Painter¹,

¹Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6038

#Current Affiliation: Department of Chemistry, Wofford College, 429 N. Church St, Spartanburg, SC 29303

*Corresponding Author: Email: rathoress@ornl.gov, Phone: 470-263-1189

1 Bethel Valley Road, Oak Ridge, Tennessee 37830

Disclaimer (not for publication)

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy (DOE). The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).

Keywords:

Bayesian inference, Parameter uncertainty, Mercury methylation

Highlights:

- 1) Jointly fitted sorption and methylation datasets allow information sharing and uncertainty propagation across process models
- 2) Mapping full joint distributions of parameters identified null-spaces and facilitated model simplification
- 3) Sediments collected from near-bank and near-center of the stream exhibited different sorption and methylation kinetics

Software and Data Availability:

The original experimental dataset is archived at Schwartz et al. (2021b). The model-data for this manuscript is archived at Rathore and Painter (2021).

37 **Abstract:**
38
39 To characterize complex biogeochemical systems, results from multiple experiments, where
40 each targets a specific subprocess, are commonly combined. The resulting datasets are
41 interpreted through the calibration of biogeochemical models for process inference and
42 predictions. Commonly used calibration approaches of fitting datasets from individual
43 experiments to subprocess models one at a time is prone to missing information shared
44 between datasets and incomplete uncertainty propagation. We propose a Bayesian joint-fitting
45 scheme addressing the above-mentioned concerns by jointly fitting all the available datasets,
46 thus calibrating the entire biogeochemical model in one go using Markov Chain Monte Carlo
47 (MCMC). The identification of null spaces in the parameter distributions from MCMC guided the
48 simplification of certain subprocess models. For example, fast kinetic sorption was replaced by
49 equilibrium sorption, and Monod demethylation was replaced by first-order demethylation.
50 Joint fitting of datasets resulted in complete uncertainty propagation with parameter estimates
51 informed by all available data.
52

53 **1. Introduction:**

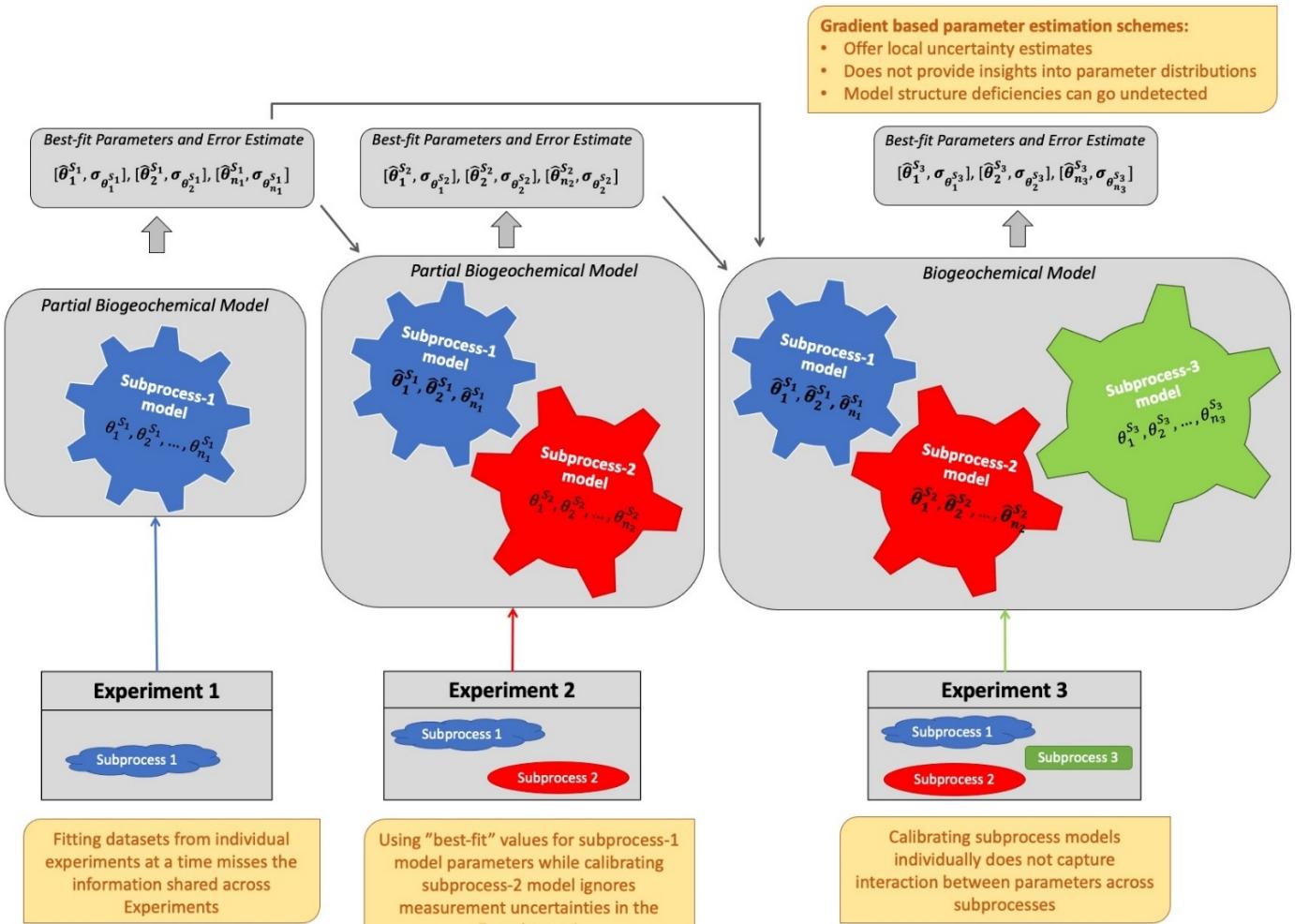
54
55 Many stream ecosystems are under stress due to contamination driven by anthropogenic
56 activities. In particular, trace metals such as mercury, lead and cadmium released from
57 industrial activities pose a serious threat to human and ecosystem health because of their
58 toxicity even at minimum levels and potential of bioaccumulation (Chen and Folt, 2000; Evers et
59 al., 2007; Goodyear and McNeill, 1999; Horowitz, 1991; Mason et al., 2000; Ward et al., 2010).
60 A comprehensive understanding of their transformation in the environment requires
61 considerations of the complex interplay between physical, chemical and biological processes at
62 different spatial and temporal scales. Carefully designed field and laboratory experiments
63 gather critical data about these processes. However, the usefulness of these datasets depends
64 on their reliable interpretations. Empirical relations can fit the data well but can struggle to
65 extrapolate due to a lack of mechanistic underpinnings. Process-based biogeochemical models
66 are developed and calibrated using the experimental data for mechanistically rich process
67 inferences and predictions. There are generally multiple candidate biogeochemical models
68 available to fit the data, e.g., first-order kinetics, equilibrium, Monod, and Tessier. All these
69 models are upscaled phenomenological descriptions of complex biogeochemical processes and
70 do not perfectly represent the biogeochemical system, since the “true” model is unknown
71 (Neumann and Gujer, 2008). Typically, based on preliminary data analysis and expert
72 knowledge, a model is proposed and calibrated to estimate model parameters. However, often
73 initially proposed mechanistic models are overparameterized, needing data-driven methods for
74 model simplification and unique parameter estimates. Commonly used approaches in
75 biogeochemical modeling and calibration are prone to underutilization of the data available
76 from multiple experiments, incomplete uncertainty quantification, and model
77 overparameterization. Below we describe some of the challenges in interpreting data with
78 commonly used biogeochemical modeling approaches and how we aim to address them.
79

80 Characterization of biogeochemical systems often requires multiple experiments targeting a
81 subset of processes in the system (referred henceforth as subprocesses). For example, sorption
82 experiments are performed separately from reaction-focused experiments in various
83 biogeochemical applications (e.g., Haggerty et al., 2008; Lemke et al., 2014; Olsen et al., 2018;
84 Schwartz et al., 2021a). Models for subprocesses, like sorption, are often calibrated first and the
85 resulting best-fit parameters are kept fixed in the subsequent estimation of reaction
86 parameters in a broader model framework. This sequential fitting scheme has two main
87 shortcomings. First, it fails to make full use of all information. Information on subprocesses that
88 are common to multiple experiments is not fully used when subprocess parameters are
89 determined by analysis of one experiment and then held fixed in subsequent analyses. Second,
90 sequential fitting fails to propagate uncertainty from one experiment to the next. For example,
91 fixing sorption parameters when analyzing reaction experiments ignores the fact that the
92 reaction experiments contain information about both sorption and reactions. Moreover, it fails
93 to propagate uncertainty from the analyzed sorption experiment to the analysis of the reaction
94 experiment. Figure 1 shows this sequential fitting scheme in a general biogeochemical model
95 comprising three subprocesses that are calibrated sequentially. We propose that the datasets

96 from multiple experiments should be fitted simultaneously, thus calibrating all subprocess
97 models together. By doing so, we leverage information sharing about subprocesses among
98 datasets. Additionally, this joint-fitting scheme also allows uncertainty propagation among
99 subprocess models. The surface (Kelleher et al., 2019; Knapp and Cirpka, 2017; Lemke et al.,
100 2013; Liao et al., 2013) and subsurface (Luo et al., 2006; Zhao et al., 2018) hydrologists have
101 previously recognized merit in this joint fitting approach. These studies fitted conservative and
102 reactive tracer data from tracer experiments jointly rather than sequentially to leverage shared
103 information and propagate uncertainty fully. Biogeochemical systems, typically more complex
104 with a larger number of highly intertwined subprocesses, can particularly benefit from sharing
105 information because of the different scales and interactions of these subprocesses captured in
106 different experiments.

107
108 A more general problem and very relevant to biogeochemical modeling is the lack of parameter
109 identifiability (Beck, 1987), which essentially means that significantly different parameter values
110 can reproduce the experimental data equally well. This can result from insufficient information
111 in the experimental data to match the model complexity or “incorrect” model structure
112 (Marschmann et al., 2019). Although non-linear least-square schemes can yield parameters that
113 produce a good match between simulations and experimental data in such cases, the model
114 structure deficiency can go undetected leading to non-meaningful local uncertainty estimates
115 and faulty process inferences (Marschmann et al., 2019; Neumann and Gujer, 2008; van
116 Turnhout et al., 2016). Neumann and Gujer (2008) showed that bias related to model-structure
117 in environmental models can be diagnosed through analysis of residuals from non-linear
118 regression schemes. Marschmann et al. (2019) used information geometry to identify model
119 structure limitations and reduce the model complexity in mechanistically rich biogeochemical
120 models suffering from the lack of parameter identifiability. With the advancements in
121 computational capabilities, computationally intensive Bayesian inverse modeling have become
122 accessible to widespread applications including biogeochemical modeling. Mapping full joint
123 distributions of parameters in Bayesian approach can reveal parameter uncertainties,
124 sensitivities, interactions and potential null spaces, which can guide model improvements.
125 Arhonditsis et al. (2008) applied Bayesian calibration using Markov Chain Monte Carlo (MCMC)
126 to rigorously quantify parameter and predictive uncertainty in aquatic-biogeochemical models.
127 Zhang and Arhonditsis (2009), using synthetic aquatic-biogeochemistry datasets, demonstrated
128 the strength of the Bayesian approach in transferring information across systems as priors in a
129 hierarchical calibration scheme. van Oijen et al. (2011) calibrated four different biogeochemical
130 models for Norway spruce forest using MCMC. They compared models through “integrated
131 likelihood” values of the estimated parameter distributions. van Turnhout et al. (2016)
132 developed a toolbox with Bayesian-inference-based criteria for selecting optimal reaction
133 network in Municipal Solid Waste landfills. Davoudabadi et al. (2021) used particle-filter-based
134 advanced Bayesian methods to calibrate high complexity state-space models with soil-carbon
135 sequestration as an example.

136



137
138
139
140
141
142

Figure 1: Sequential calibration of individual subprocesses and gradient-based parameter estimation schemes commonly used to calibrate complex biogeochemical models have several shortcomings, which were encountered by Schwartz et al. (2021a). $\theta_j^{S_i}$ represents j^{th} parameter (out of total n_i parameters) of subprocess model S_i

143 In this paper, we present a holistic framework of Bayesian joint fitting for biogeochemical
144 models leveraging information from multiple experiments, treating uncertainty rigorously, and
145 detecting potential parameterization deficiencies. This approach broadly has two facets. First,
146 we propose that the datasets from multiple experiments should be fitted simultaneously, thus
147 calibrating all subprocess models together. By doing so, we are informing each subprocess
148 model using all the available datasets involving that particular subprocess. Additionally, this
149 joint-fitting scheme also allows uncertainty propagation among subprocess models and
150 different datasets. Second, we map the full joint distribution of parameters using the advanced
151 Markov Chain Monte Carlo (MCMC) method. This approach not only yields robust global
152 uncertainty estimates and but can also identify model deficiencies causing the lack of
153 parameter identifiability. We apply the proposed workflow to a recently published mercury

154 methylation dataset (Schwartz et al., 2021b) to improve data interpretation and advance
155 process inferences.

156

157 Characterization of mercury methylation processes, a use case in this paper, is of significantly
158 high importance as methylmercury (MeHg) poses a great threat to humans and wildlife (Eckley
159 et al., 2020). Occurring in the environment as a natural and anthropogenic pollutant, Hg is
160 methylated to form the neurotoxin MeHg through microbially mediated processes (Clarkson et
161 al., 2003). MeHg ingestion even at a low level has adverse impacts on the development of
162 children. MeHg can get biomagnified in aquatic food webs which makes it particularly
163 concerning (Mergler et al., 2007). Significant experimental and modeling efforts have been
164 made to understand mercury methylation dynamics (Avramescu et al., 2011; Hintelmann et al.,
165 2000; Jonsson et al., 2012; Liem-Nguyen et al., 2016; Mitchell and Gilmour, 2008; Olsen et al.,
166 2018; Rodríguez Martín-Doimeadios et al., 2004; Schwartz et al., 2019).

167

168 Traditionally, first-order reversible kinetics have been used to model mercury-methylation
169 (Hintelmann et al., 2000), however, apparent non-first order kinetic behavior has often been
170 observed in mercury methylation-demethylation data (Avramescu et al., 2011; Jonsson et al.,
171 2012; Olsen et al., 2018). Olsen et al. (2018), studying mercury methylation in periphyton
172 biofilms, suggested that the apparent non-first order behavior does not necessarily imply non-
173 first order kinetics, but can result from other competing processes making Hg and MeHg
174 unavailable for methylation and demethylation, respectively. They proposed the Transient
175 Availability Model (TAM) accounting for competing processes like multisite kinetic sorption of
176 Hg and MeHg and reduction of Hg. Schwartz et al. (2022) extended the TAM framework to
177 aquatic sediment systems to model mercury methylation on two disparate sediments from East
178 Fork Poplar Creek (EFPC) in Oak Ridge, TN, USA. TAM application by Schwartz et al. (2022)
179 considered fully kinetic competing processes for bioavailability with first-order methylation-
180 demethylation for one sediment type, and reversible Monod kinetics for another. With the
181 sequential fitting of sorption and methylation datasets and a gradient-based scheme for
182 parameter estimation, they reproduced experimental data well but obtained non-meaningful
183 error estimates for certain parameters. Using the novel mercury-methylation dataset (Schwartz
184 et al., 2021b), we implement the proposed parameter estimation workflow in the TAM
185 framework.

186

187 Olsen et al. (2018) and Schwartz et al. (2022) studied biologically mediated methylation of
188 mercury (Hg) to the neurotoxin methylmercury (MeHg) on periphyton film and colonized
189 sediments, respectively. Both studies fitted sorption experiment datasets first to estimate
190 sorption parameters, which were then fixed while estimating methylation-demethylation
191 parameters fitting datasets from methylation experiments. However, it is important to
192 recognize that these processes are not independent and methylation-demethylation datasets
193 also contain information about the sorption processes, which is not leveraged in this sequential
194 fitting approach. Additionally, because of using the “best fit” values of sorption parameters, the
195 estimates of methylation-demethylation parameters ignore uncertainties in sorption datasets.
196 In our approach, sorption and methylation datasets are fitted simultaneously and respective
197 parameters are jointly estimated, thus addressing the above-described concerns.

198

199 For the uncertainty-aware parameter estimation, Olsen et al. (2018) and Schwartz et al. (2022)
200 adopted a gradient-based local optimization scheme, which works well in unimodal smooth
201 parameter spaces but can suffer in multimodal or other atypical parameter spaces. Additionally,
202 under such schemes, other model-structure-related issues like overparameterization may go
203 undetected. We adopt a Bayesian approach using MCMC, a global-search scheme yielding a full
204 joint distribution of parameters. The obtained parameter distributions are expected to guide
205 model improvements in addition to offering robust uncertainty estimates.

206

207 With the proposed parameter estimation workflow of Bayesian joint fitting, we aim to improve
208 the interpretation of the rich mercury methylation dataset by Schwartz et al. (2021b). The
209 proposed workflow is easily transferable to other complex biogeochemical systems
210 characterized through multiple experiments for reliable parameter estimates, process
211 inferences, and predictions.

212

213 **2. Overview of Experiments and Datasets**

214 Here we provide a brief overview of the study site and experiments. For more information
215 about the site see Brooks and Southworth (2011); Riscassi et al. (2016) and for experimental
216 details, see Schwartz et al. (2022). Schwartz et al. (2022) collected sediments from EFPC, that
217 have legacy mercury contamination, and performed sorption and mercury methylation
218 experiments to characterize and quantify their methylation and demethylation potential and
219 associated physical, chemical, and microbial processes. Two contrasting sediment types were
220 collected for use in laboratory studies. Sediment 1 – rich in organic matter, relatively anoxic
221 fine sand predominant along the stream edge, and Sediment 2 – a medium to coarse sand
222 lower in organic carbon and less metabolically active than Sediment 1, and predominant in the
223 center of the channel.

224 For Hg and MeHg sorption experiments, isotopically labeled ^{201}Hg or Me^{202}Hg were added to
225 sediment-creek water suspension under air and placed on a reciprocating shaker. The number
226 of time points at which samples were collected for Hg are 12 and 14 for Sediment 1 and for
227 Sediment 2, respectively, and for MeHg, 14 and 15, respectively. Triplicate samples were
228 sacrificed at each time point. In the Hg sorption experiment, Hg in the aqueous phase, total
229 solid-phase Hg, and $\text{Hg}(0)$ were quantified at different time points. Under the oxic conditions of
230 the Hg sorption experiments Hg methylation, an obligately anaerobic microbial process, did not
231 occur. In the MeHg sorption experiments, aqueous Me^{202}Hg quantified at different time points
232 from triplicate samples and total Me^{202}Hg in the system was quantified at select time points to
233 verify the lack of demethylation of the added isotope (Schwartz et al., 2022).

234 Mercury-methylation experiments were conducted on carefully prepared anoxic sediment
235 slurry microcosms. Three treatments were established, one spiked with ^{201}Hg to monitor
236 methylation via production of Me^{201}Hg , the second spiked with Me^{202}Hg to monitor
237 demethylation via loss of Me^{202}Hg , and treatment with no spike added to monitor other
238 biogeochemical parameters of interest (e.g., $\text{Fe}(\text{II})$, sulfide) because the Hg and MeHg analyses
239 were full consumptive and destructive. The experiment for Sediment 2 was run longer because

240 of the low activity initially measured in those sediments. The number of timepoints at which
241 samples were collected is 4 and 3 for Sediment 1 and Sediment 2, respectively. Three
242 microcosms from each treatment were destroyed at each time point for Hg and MeHg analysis.
243 The resulting datasets from mercury-methylation experiments are total Me^{201}Hg and Me^{202}Hg
244 at each time point (Schwartz et al., 2022).

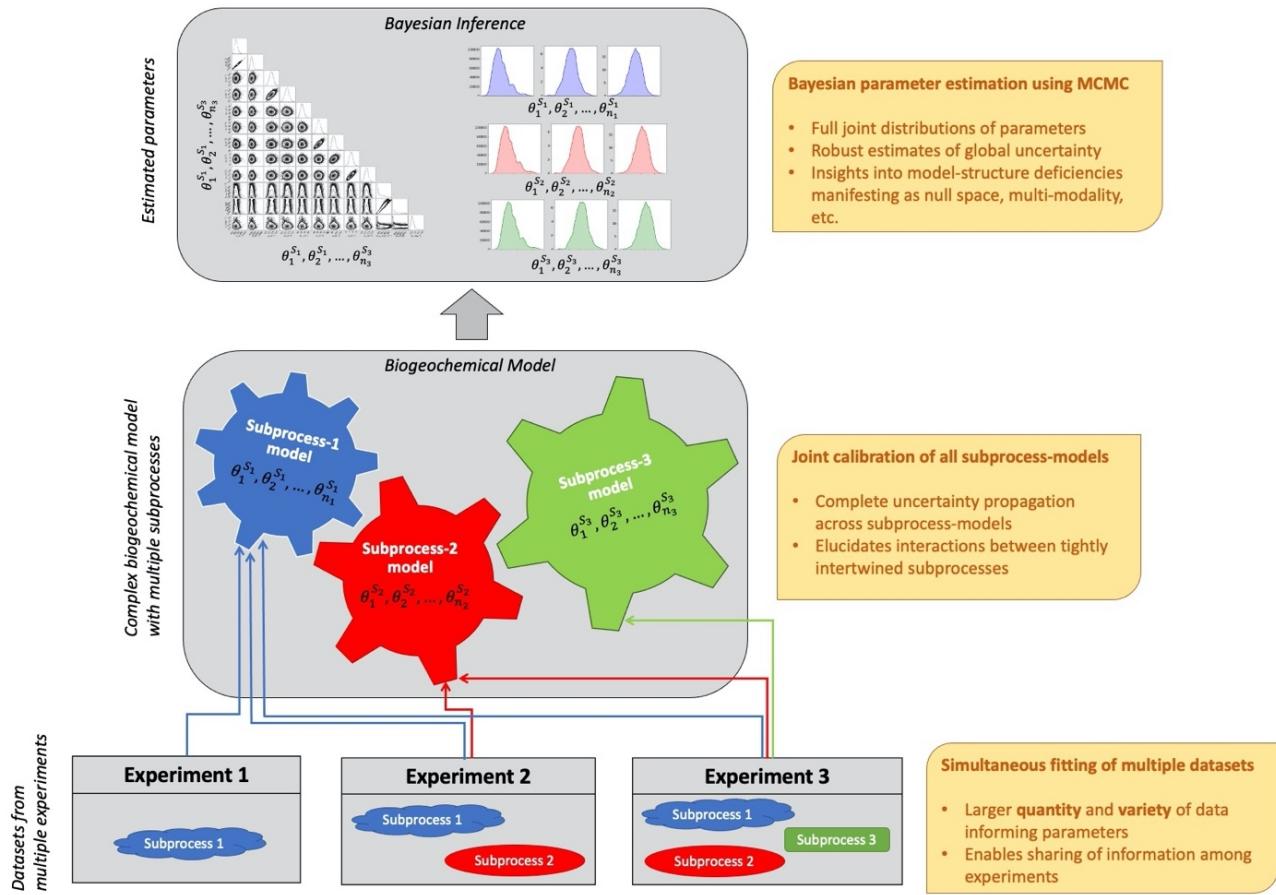
245 **3. Bayesian Joint-Fitting Approach**

246 The data from the experiments by Schwartz et al. (2022) captures information about the
247 biogeochemical processes controlling methylation of mercury on colonized river sediments.
248 Models under the TAM framework are proposed for these biogeochemical processes and
249 calibrated to match the experimental data allowing us to make process inferences and develop
250 prediction capabilities. Experience from the interpretation of mercury methylation datasets by
251 Schwartz et al. (2022) reveals several shortcomings of commonly used biogeochemical model
252 calibration practices which we discussed in the Introduction section (Figure 1).

253

254 Our approach leverages information shared among experiments by joint calibration of
255 subprocesses using all the available datasets. Additionally, full joint distribution of parameters
256 is mapped to get robust uncertainty estimates and detect potential model-structure
257 deficiencies. In Figure 2, we present a schematic of our Bayesian joint-fitting scheme and the
258 advantages of different facets of the scheme. In the following sub-sections, we describe
259 different models considered for sorption and methylation, provide Bayesian formulation, and
260 details of MCMC application.

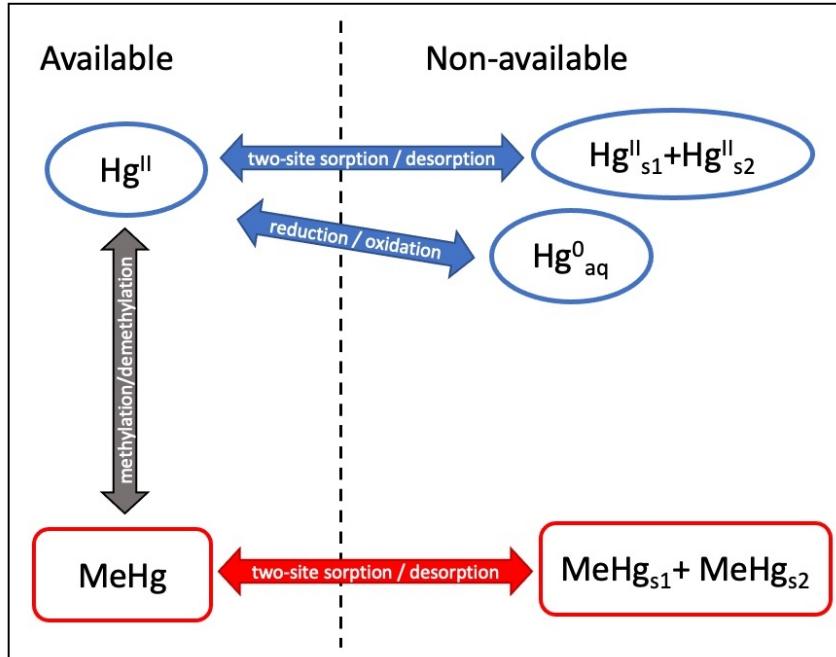
261



262
 263 **Figure 2:** Schematics of Bayesian joint-fitting scheme for calibrating complex biogeochemical
 264 models offer multiple advantages with efficient utilization of datasets, full uncertainty
 265 propagation and robust estimation, and detecting parameterization deficiencies
 266

267 **3.1. Transient Availability Model Framework**

268 The TAM model framework developed by Olsen et al (2018) is used to describe mercury
 269 methylation. Under the TAM model framework, methylation and demethylation of mercury are
 270 strongly influenced by the availability of Hg and MeHg in the aqueous phase. Experiments
 271 suggest that the transient availability of Hg in the aqueous phase is caused by competition with
 272 two-site sorption and reversible reduction of aqueous mercury into elemental mercury, while
 273 that of MeHg is governed by competition with two-site sorption. Figure 3 shows schematics of
 274 the general TAM model framework.
 275



276
277 **Figure 3:** Schematics of TAM framework for mercury methylation representing competing
278 biogeochemical processes (modified from Olsen et al. (2018))
279

280 For both types of sediments, Schwartz et al. (2022) modeled two-site sorption as fast and slow
281 first-order reversible kinetic sorption. Similarly, the reduction of Hg(II) to Hg(0) was also
282 modeled as a first-order reversible kinetic process. For Sediment 1, both methylation and
283 demethylation were modeled using Monod kinetics. For Sediment 2, methylation and
284 demethylation were modeled using first-order kinetics. The uncertainty-aware parameter
285 estimation was performed using a gradient-based scheme (*nlinfit* in Matlab) yielding locally
286 optimal parameter values with first-order error estimates. Schwartz et al. (2022) found large
287 parameter uncertainties and non-unique solution (sensitive to initial values) for Monod kinetics
288 in Sediment 1. Additionally, when they applied Monod kinetics in Sediment 2, the parameter
289 estimation scheme failed to converge without giving any clear insights into the defects in the
290 considered parameterization. This is not surprising as potential overparameterization-related
291 model-structure deficiencies can go undetected with gradient-based non-linear fitting schemes.
292

293 In this study, we first implement the proposed Bayesian joint-fitting scheme, i.e. jointly
294 calibrating sorption and methylation models using MCMC with TAM model in Schwartz et al.
295 (2022). Thereafter, based on the insights from the resulting joint posterior distributions, we aim
296 to improve the TAM model framework for both Sediment 1 and Sediment 2 to explain the
297 experimental data better and obtain robust uncertainty estimates. The system of ODEs in TAM
298 reaction network are solved using *odeint* from *scipy.integrate* package in Python which uses
299 *lsoda* from FORTRAN *odepack* library.
300

301 **3.2. Bayesian Formulation**

302 We estimate all parameters in the TAM framework simultaneously by fitting datasets from
 303 sorption and methylation experiments together. We adopt the Bayesian approach to estimate
 304 distributions of TAM parameters conditioned on the measurements. Measurements from Hg
 305 sorption, MeHg sorption, and methylation experiments are represented by vectors \mathbf{C}_1^{meas} ,
 306 \mathbf{C}_2^{meas} , and \mathbf{C}_3^{meas} , respectively. Measurements for model calibration are triplicate averages at
 307 each time point. Collectively, all model parameters can be represented by vector $\boldsymbol{\theta}$ and
 308 measurements by \mathbf{C}^{meas} . Using Bayes' theorem, conditional probability density function $p(\boldsymbol{\theta} |$
 309 $\mathbf{C}^{meas})$ can be given as:

310

$$p(\boldsymbol{\theta} | \mathbf{C}^{meas}) \propto p(\mathbf{C}^{meas} | \boldsymbol{\theta}) p(\boldsymbol{\theta}) \quad (1)$$

311

312 where $p(\mathbf{C}^{meas} | \boldsymbol{\theta})$ is the likelihood of the measurements \mathbf{C}^{meas} given the parameter set $\boldsymbol{\theta}$,
 313 which represents the constraints imposed by \mathbf{C}^{meas} on $\boldsymbol{\theta}$. The $p(\boldsymbol{\theta})$ is the probability density
 314 function representing the prior knowledge about parameters. Probability $p(\mathbf{C}^{meas} | \boldsymbol{\theta})$ is
 315 composed of contributions from individual experiments as:

316

$$p(\mathbf{C}^{meas} | \boldsymbol{\theta}) = \prod_{i=1}^3 p(\mathbf{C}_i^{meas} | \boldsymbol{\theta}) \quad (2)$$

317

318 \mathbf{C}_i^{meas} for all experiment is assumed to follow multi-gaussian distribution:

319

$$p(\mathbf{C}_i^{meas} | \boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}_i|}} \exp\left(-\frac{1}{2} (\mathbf{C}_i^{meas} - \mathbf{C}_i^{sim})^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{C}_i^{meas} - \mathbf{C}_i^{sim})\right) \quad (3)$$

320

321 where, $\boldsymbol{\Sigma}_i$ represents the covariance matrix of the measurements, $|\boldsymbol{\Sigma}_i|$ represents its
 322 determinant, and n is the number of time points in the dataset. We assume uncorrelated
 323 measurement errors resulting in a diagonal $\boldsymbol{\Sigma}_i$ matrix with measurement variances as diagonal
 324 elements. We assume uniform priors for all parameters with a reasonable range based on
 325 domain knowledge. We do not have any additional information to assume non-uniform priors.
 326 For cases when parameter distribution hit the boundary of the parameter space, analysis is
 327 repeated with expanded range a few times to ensure there is no additional mode beyond
 328 range. We assume a homoscedastic error model and evaluate pooled variance for each dataset
 329 (i.e., variance of different populations with different means with presumably same variance).
 330 This is a reasonable choice as triplicate variances did not show consistent trend with time. It is
 331 important to note, however, that pooled variance calculated this way is still uncertain because
 332 of small sample size. We ignore the uncertainty in variance here but note it could be estimated
 333 in a more robust way by taking the variance as a hyperparameter that is sampled along with
 334 main model parameters.

335

336 For each case, we plotted the distribution of residuals of model fit and found them to be
337 unimodal, almost symmetric and gaussian, except at early timestep in one of the cases. Hence,
338 our assumption of gaussian likelihood is reasonable for these datasets. The example plots of
339 residual distributions for methylation and demethylation in both types of sediments are
340 provided in the Appendix-B.

341

342 **3.3. MCMC Implementation**

343 For most practical cases, it is almost impossible to analytically derive the joint distributions of
344 parameters. Hence, we use the MCMC technique, a family of algorithms designed to
345 approximate posterior distributions of variables of interest by drawing samples from their
346 derived distributions. MCMC has benefitted many fields where posterior inferences about
347 complex systems in the Bayesian framework are desired (Vrugt et al., 2008). MCMC offers
348 globally optimal solutions with full joint distributions of parameters. This allows for the
349 quantification of parameter uncertainties rigorously, assessment of model structure adequacy,
350 and potential for model improvements.

351

352 In this study, we use PyDREAM (Shockley et al., 2018), a python implementation of the
353 DREAM(ZS) (Laloy and Vrugt, 2012) algorithm, which is one of the most advanced adaptions of
354 DiffRential Evolution Adaptive Metropolis (DREAM) (Vrugt et al., 2008). DREAM is a multi-chain
355 MCMC with the automatic adaption of step size and direction of sampler movement.
356 DREAM(ZS) stores past states in archives which are then used to propose new positions making
357 it highly efficient with quick convergence and fewer number of chains needed. With a range of
358 proposal maneuvers, DREAM(ZS) can sample from challenging parameter spaces like
359 multimodality and highly correlated parameters. Key inputs to DREAM(ZS) algorithm includes
360 number of differential pairs equals to 3, gamma levels to 4, probability of unity gamma to 0.2
361 and probability of snooker step to 0.1. For more details about these options, refer to Shockley
362 et al. (2018) and Laloy and Vrugt (2012).

363

364 We provide in the supporting information a modular python workflow in which each
365 experiment is modeled in a separate python script and is accessed by the main python script
366 performing MCMC. Therefore, datasets from additional experiments can be conveniently
367 included in the MCMC analyses. The MCMC results are post-processed, analyzed, and visualized
368 in Jupyter notebooks enabling an efficient and self-documenting workflow. The model-data files
369 are archived at Rathore and Painter (2021).

370

371 **4. Results and Discussion**

372 MCMC runs were performed using 10 parallel communicating chains with at least 25,000
373 generations per chain after chains had converged. The convergence of chain is tested using
374 Reduction Factor (\hat{R}) criteria by Gelman and Rubin (1992) which when below 1.2 indicates the
375 chain convergence. Plots for the evolution of \hat{R} with the progression of chains for each MCMC
376 run can be found in the SI. The posterior distributions of estimated parameters were
377 summarized using at least 250,000 parameter sets yielding a robust estimation. First, we
378 present parameter estimation with models of Schwartz et al. (2022). Based on the insights into

379 the parameter space, we improve the model structure and discuss process inferences.
380 Equations for final improved models are provided in the Appendix-A.
381

382 **4.1. Bayesian Joint-Fitting for Transient Availability Model by Schwartz et al. (2022)**

383 **4.1.1. Model Description**

385 Figure 4(a) depicts models considered by for fitting sorption and methylation experiment data
386 sequentially for both Sediments 1 and 2. Hg sorption experiment is modeled using three first-
387 order reversible kinetic processes, namely, sorption-desorption on fast sites (Hg_{fast}^{II}) with
388 parameters $k_1 [T^{-1}]$ and $k_2 [T^{-1}]$, sorption-desorption on slow sites (Hg_{slow}^{II}) with parameters
389 $k_3 [T^{-1}]$ and $k_4 [T^{-1}]$, and first-order reversible kinetic reduction to Hg_{aq}^0 with parameters k_5
390 $[T^{-1}]$ and $k_6 [T^{-1}]$. MeHg sorption is modeled using first-order reversible kinetic fast-site
391 sorption with parameters $k_7 [T^{-1}]$ and $k_{10} [T^{-1}]$ and slow-site sorption with parameters $k_9 [$
392 $T^{-1}]$ and $k_{10} [T^{-1}]$. They fitted Hg and MeHg models to respective experimental data and
393 reported best-fit parameters and quantified uncertainty as 5th and 95th confidence intervals.
394 Thereafter, the mercury methylation model under the TAM framework was calibrated to
395 estimate methylation and demethylation parameters keeping sorption parameters fixed as
396 best-fit values estimated previously. In Sediment 1, Monod kinetics was used to model
397 methylation and demethylation. For methylation, $k_{mmax} [MT^{-1}]$ and $K_{mhs} [M]$ denote
398 maximum reaction rate and half-saturation constant, respectively. Similarly, for demethylation,
399 Monod parameters are denoted as $k_{dmax} [MT^{-1}]$ and $K_{dhs} [M]$. Monod reactions exhibit first-
400 order behavior at concentrations significantly smaller than K_{hs} and zeroth-order behavior at
401 concentrations significantly greater than K_{hs} . In Sediment 2, reversible first-order kinetics was
402 used for methylation and demethylation with rate constants $k_m [T^{-1}]$ and $k_d [T^{-1}]$,
403 respectively.

404
405 We estimate all parameters together by fitting seven datasets from three experiments
406 (described in section 2) simultaneously using MCMC to obtain full posterior joint distributions.
407 Figures 4(b) and 5(b) maps experimental datasets to the parameters they are informing. This
408 allows for a rigorous treatment of uncertainty in all parameters and full utilization of the
409 information shared among available datasets. In section 4.1.2, joint distributions of parameters
410 of the model by Schwartz et al. (2022) obtained from MCMC are presented for both sediment
411 types. Marginal distributions and predictive uncertainty plots are provided in the SI.

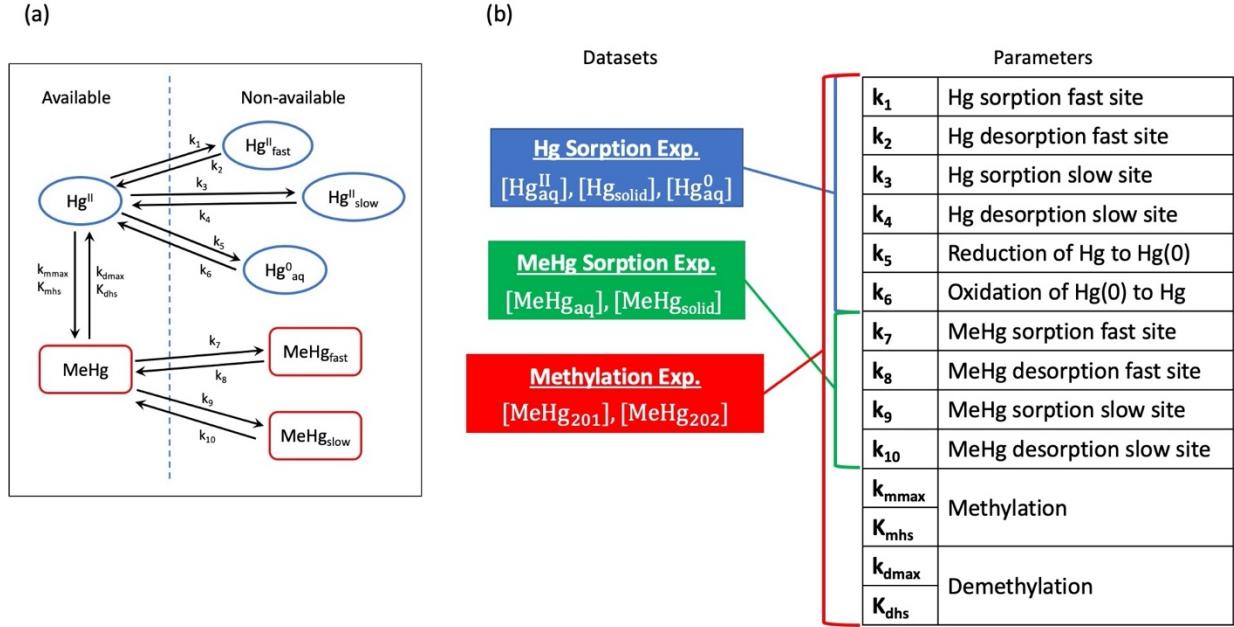
412
413
414
415
416412
413
414
415
416

Figure 4: Reversible first-order kinetics for Hg and MeHg two-site sorption, Hg reduction, and reversible Monod kinetics for methylation considered by Schwartz et al. (2022) for Sediment 1

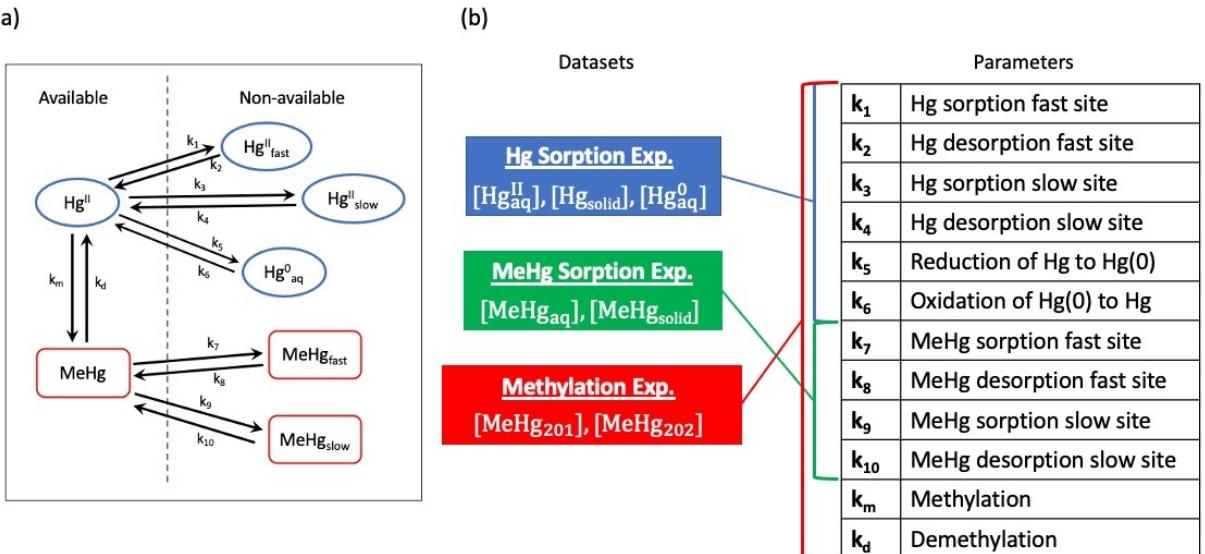
417
418
419
420421
422
423
424
425

Figure 5: Reversible first-order kinetics for Hg and MeHg two-site sorption, Hg reduction, and methylation considered by Schwartz et al. (2022) for Sediment 2

4.1.2. Joint Distribution of Parameters

Figure 6 and Figure 7 present MCMC results for Sediment 1 and Sediment 2, respectively, as individual parameter histograms and pairwise joint distributions. \hat{R} for the converged chains for all the parameters was approximately equal to 1 in both cases of sediment types. For Sediment

426 1 the distributions of parameters are unimodal with reasonable uncertainty, except for Hg
 427 reduction and the Monod parameters. The marginal distributions of the Hg reduction
 428 parameters are almost non-informative. Their joint distribution appears to be unconstrained
 429 with a strong linear correlation suggesting that the parameter space contains a null space
 430 defined by a distinctive k_6/k_5 ratio (distribution presented in Figure 6). This strongly suggests
 431 that for the considered system, Hg reduction should be modeled as an equilibrium reaction.
 432 Similarly, Monod parameters for demethylation, k_{dmax} and K_{dhs} , also span a null space defined
 433 by their distinct ratio, suggesting that the experimental data can be explained by a simpler first-
 434 order kinetic model for demethylation. Monod methylation parameters, k_{mmax} and K_{mhs} , also
 435 exhibit strong linear correlation and high uncertainty with a thick tail, but with some central
 436 tendency as unique peaks. Because of this null space in demethylation-parameter distributions
 437 and highly skewed non-gaussian methylation-parameter distributions, Schwartz et al. (2022)
 438 obtained very large uncertainty estimates and non-unique solutions for Monod methylation-
 439 demethylation parameters.

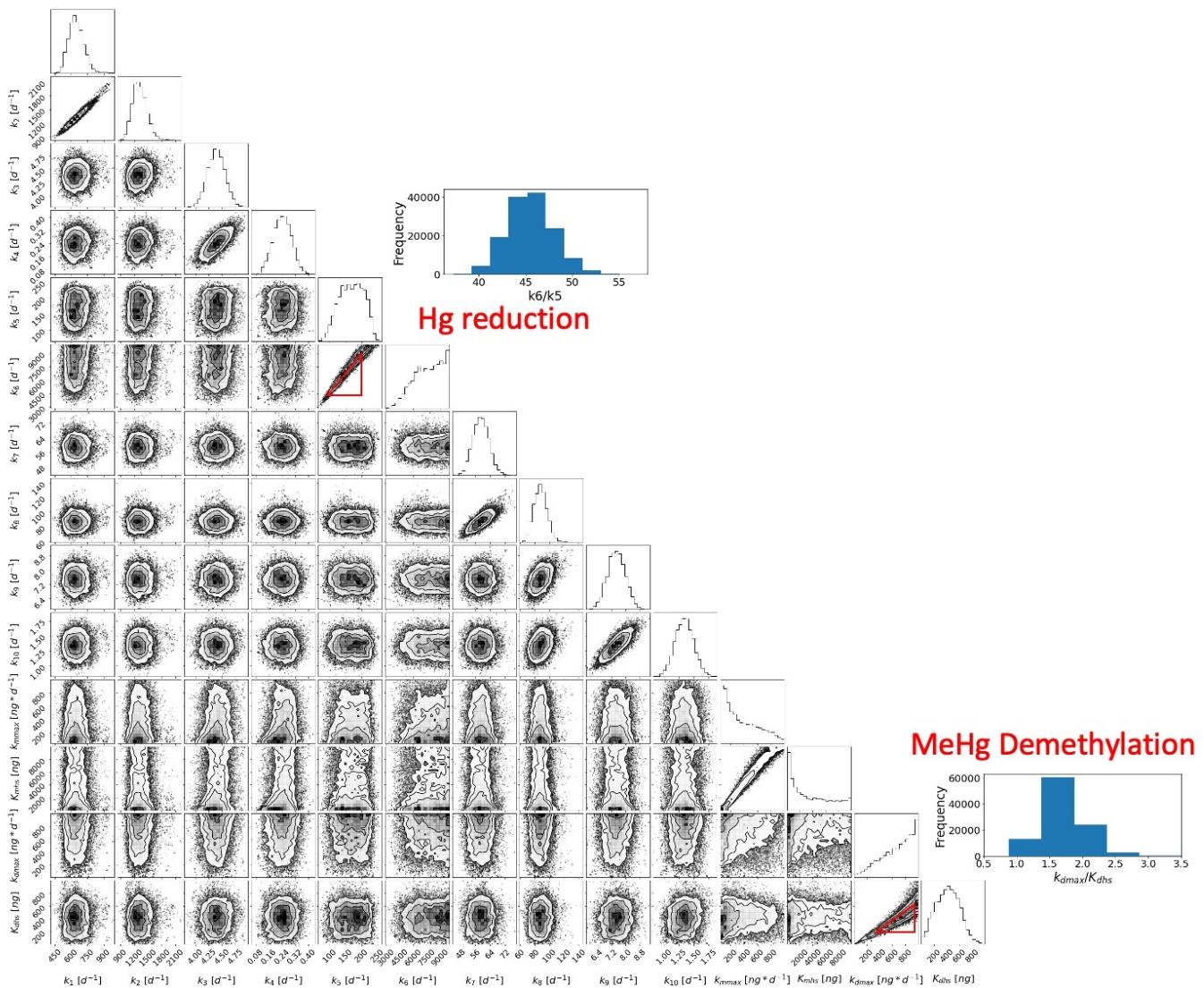
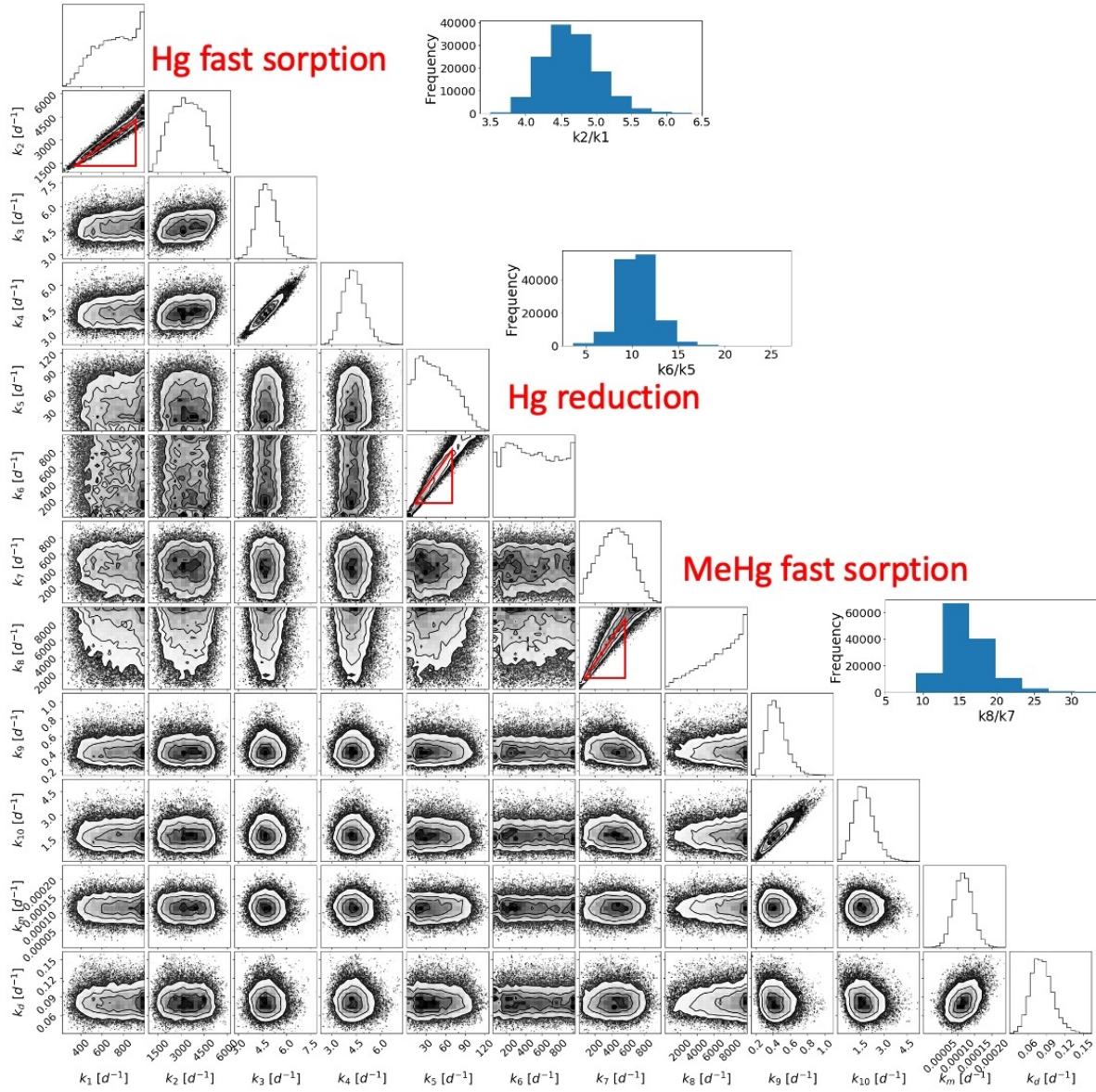


Figure 6: Joint distributions of parameters obtained from MCMC for model framework proposed by Schwartz et al. (2022) for Sediment 1

444 For Sediment 2, the parameters for fast sorption for Hg (k_1 and k_2), Hg reduction (k_5 and k_6)
 445 and fast sorption of MeHg (k_7 and k_8) were non-informative and unconstrained, spanning a
 446 null space characterized by a distinct ratio of forward to reverse rate constants (distributions of
 447 ratios shown in Figure 7). This favors replacing the reversible kinetic models for Hg reduction
 448 and fast sorption of Hg and MeHg with corresponding equilibrium models. The non-linear least-
 449 square fitting scheme as adopted in Schwartz et al. (2022) does not offer such insights into
 450 parameter space. The “best-fit” parameters for these subprocess models by Schwartz et al.
 451 (2021a) are one of the many equally good possibilities in the null space, and their local error
 452 estimates stem from perturbations around the “best-fit” parameters. In section 4.2, based on
 453 the insights obtained from MCMC results, improved models are proposed, and parameter
 454 estimation is performed for new models.



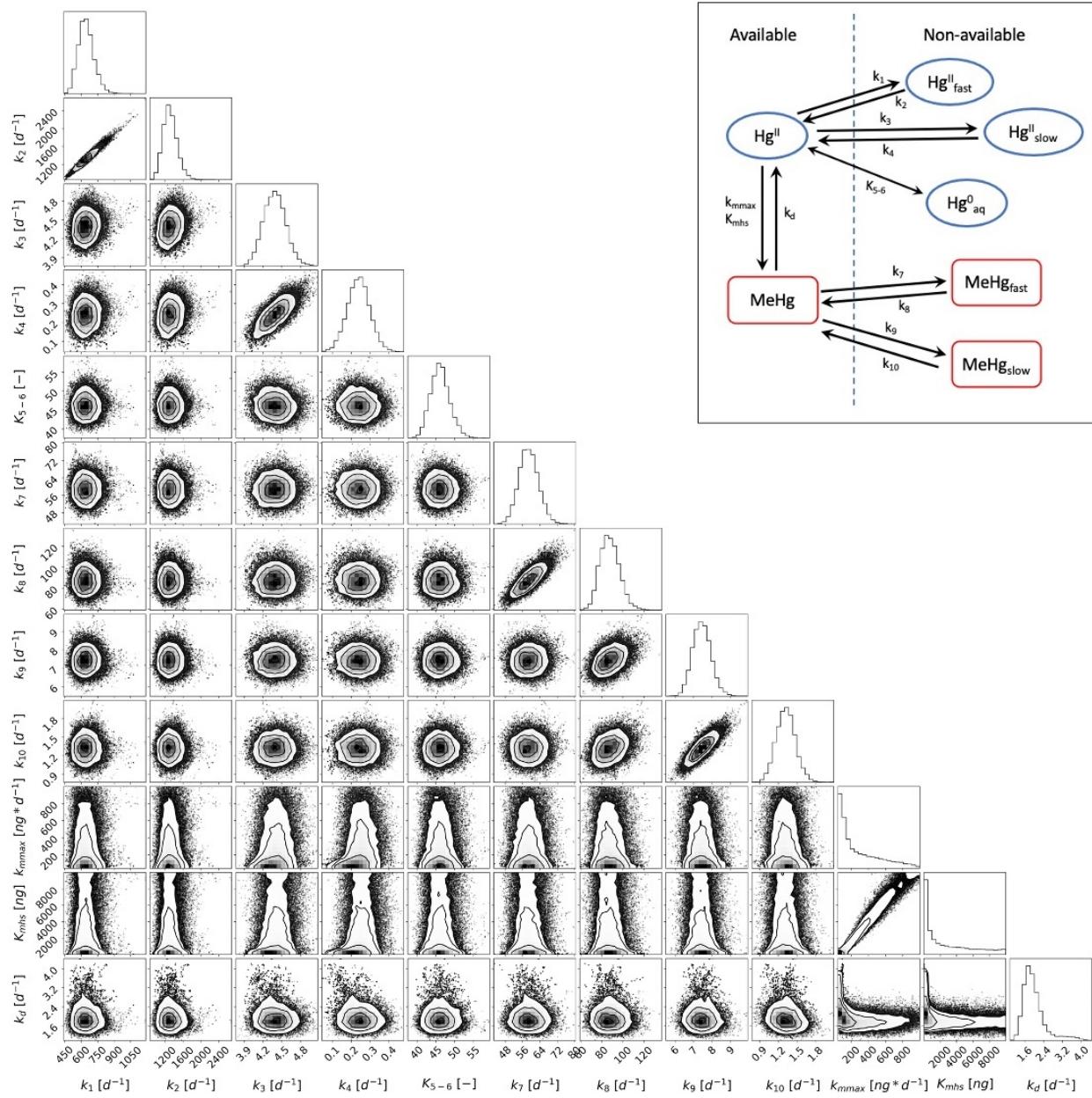
455
456 **Figure 7:** Joint distributions of parameters obtained from MCMC for model framework
457 proposed by Schwartz et al. (2022) for Sediment 2
458

459 **4.2. Bayesian Joint Fitting for Updated Models**

460 Based on the insights gained from the MCMC analysis of the Schwartz et al. (2022) model, we
461 propose improved models and perform Bayesian parameter estimation to obtain joint
462 parameter distributions and quantify uncertainties for both Sediment 1 and Sediment 2. \hat{R} for
463 all the parameters was approximately equal to 1 in both cases of sediment types, except for k_d in
464 Sediment 1 for which final \hat{R} is equal to 1.07. Model descriptions, estimated parameters
465 distributions, summary statistics and predictive uncertainties are presented in the following
466 subsections.

467 **4.2.1. Sediment 1**

468 Under the improved model structure for Sediment 1, mercury reduction is modeled as an
 469 equilibrium process parameterized by a single parameter – the dimensionless equilibrium
 470 constant K_{5-6} [–]. Note that the subscripts of the equilibrium constant are related to the
 471 corresponding kinetic models in Figure 4 for the sake of clarity and convenience. Additionally,
 472 demethylation is modeled using first-order kinetics with a rate constant k_d [T^{-1}]. The model
 473 structure and estimated joint parameter distributions are presented in Figure 8. Marginal
 474 distributions are provided in SI. All parameters are estimated as unimodal distributions. Monod
 475 parameters for methylation exhibit high uncertainty with a thick tail. This ambiguity is
 476 potentially due to time-varying microbial activity due to evolving redox conditions in the
 477 sediments (Schwartz et al., 2022). The summary statistics of parameters are presented in Table
 478 1 in the form of 5th, 25th, median, 75th, and 95th percentiles.
 479



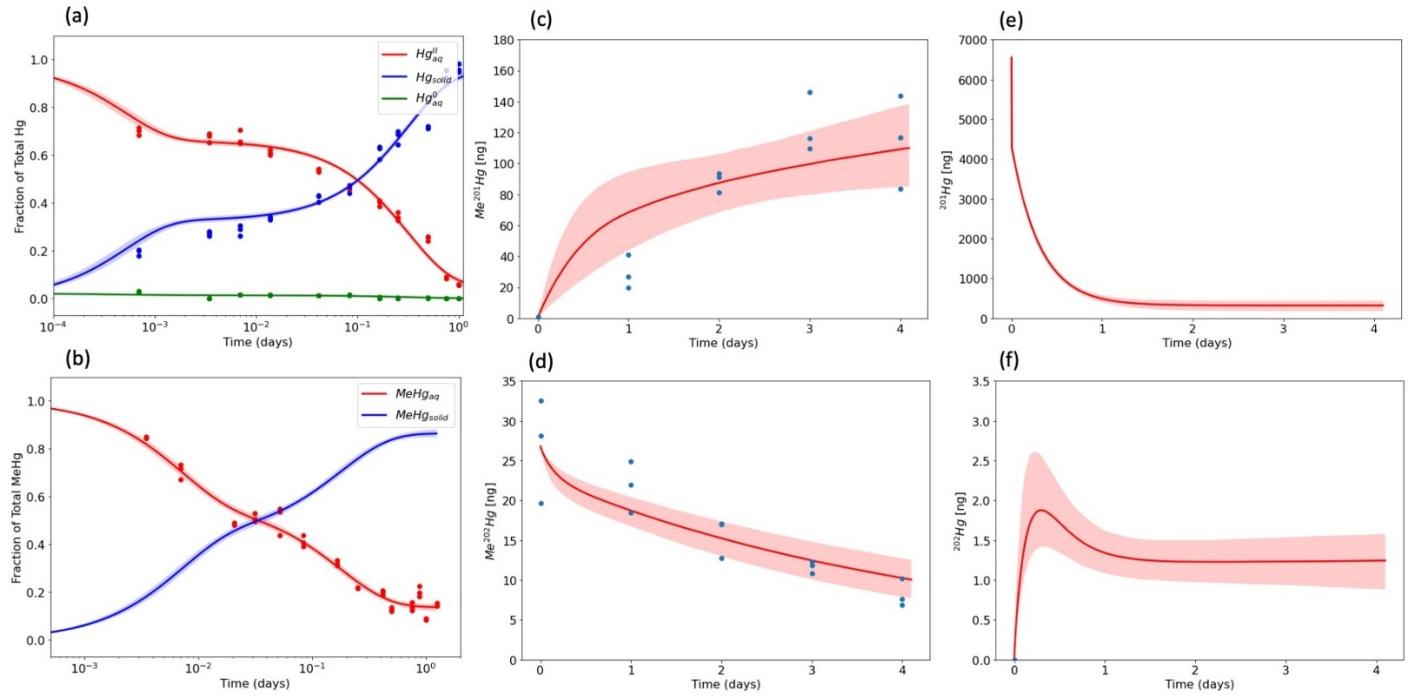
480

481 **Figure 8:** Model description (top right) and joint distributions of parameters obtained from
482 MCMC for the improved model for sediment 1
483

484 **Table 1:** Summary statistics of parameters estimated from MCMC for the improved model for
485 sediment 1

Parameter	5 th	25 th	Median	75 th	95 th
$k_1[d^{-1}]$	5.39e2	5.96e2	6.40e2	6.88e2	7.72e2
$k_2[d^{-1}]$	1.08e3	1.2e3	1.30e3	1.41e3	1.60e3
$k_3[d^{-1}]$	4.11	4.27	4.39	4.50	4.68
$k_4[d^{-1}]$	1.41e-1	2.00e-1	2.39e-1	2.79e-1	3.40e-1
$K_{5-6}[-]$	42.29	44.48	46.13	47.80	50.63
$k_7[d^{-1}]$	51.78	55.82	58.71	61.81	66.42
$k_8[d^{-1}]$	73.86	81.11	87.12	93.60	1.03
$k_9[d^{-1}]$	6.67	7.10	7.44	7.77	8.27
$k_{10}[d^{-1}]$	1.07	1.22	1.32	1.42	1.58
$k_{mmax}[ngd^{-1}]$	67.6	93.6	191.8	441.4	795
$K_{mhs}[ng]$	35.6	282.3	1426.2	4671.5	8874.7
$k_d[d^{-1}]$	1.43	1.68	1.88	2.16	3.08

486
487



488
489 **Figure 9:** Median (solid line), bands of 2.5th and 97.5th percentiles (shaded region) of predictions
490 and experimental data (solid dots) for Hg sorption and reduction (gaseous phase is not shown)
491 (a), MeHg sorption (b), and methylation-demethylation experiment (c - d), along with the
492 predicted concentration history of total dissolved of ^{201}Hg (e) and ^{202}Hg (f) during the
493 methylation-demethylation experiment for sediment 1
494

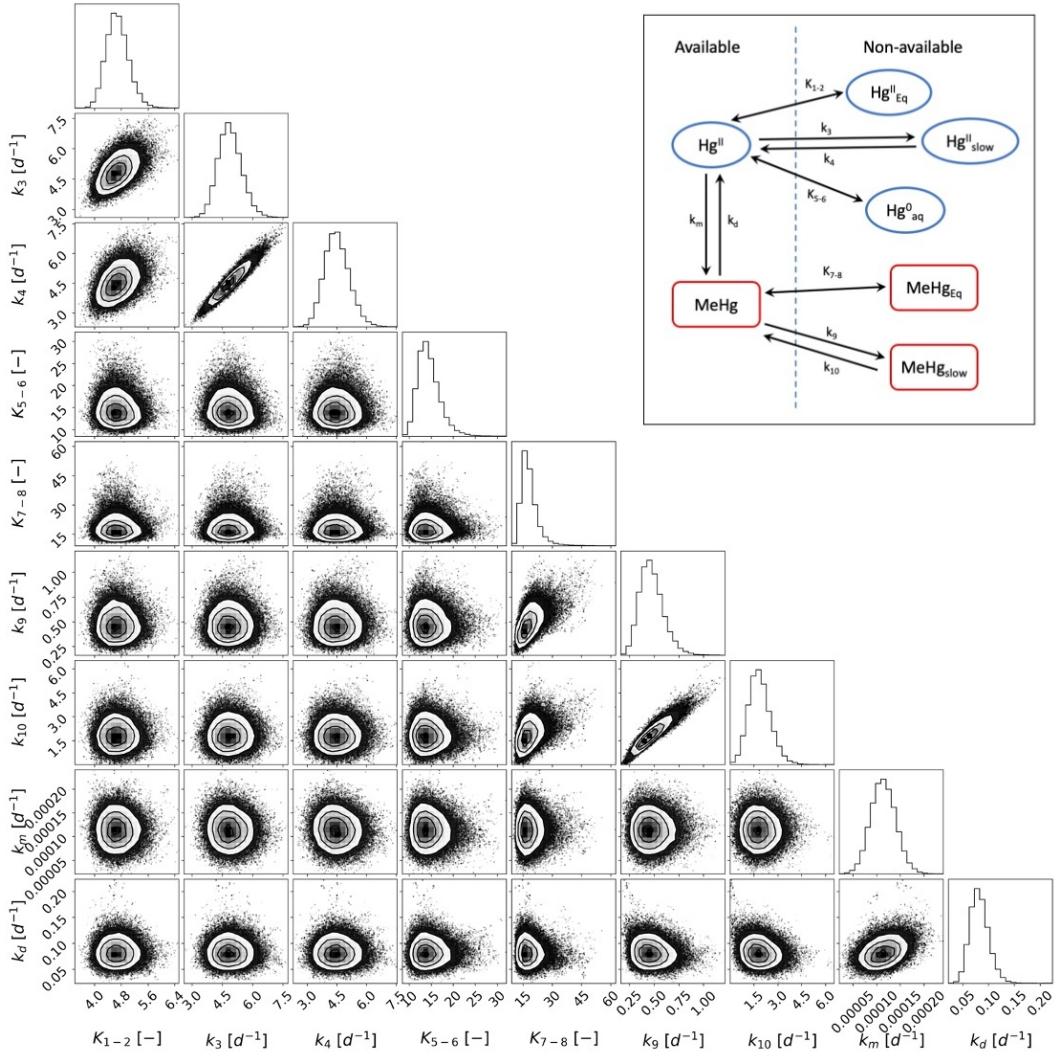
495 Figure 9 presents the predictive uncertainty plots obtained by generating an ensemble of
496 sorption and methylation model runs using the parameters sets from MCMC. Model reduction
497 from kinetic to equilibrium for Hg reduction and from Monod for first-order kinetics for
498 demethylation was found to be adequate as the model simulation results explain the
499 experimental data well for both sorption and methylation experiments. The parameter
500 estimates and thus predictions benefit from the joint fitting of sorption and methylation
501 datasets and estimating all parameters simultaneously.

502

503 *4.2.2. Sediment 2*

504 Parameters for the fast-site sorption for Hg and MeHg considered by Schwartz et al. (2022)
505 exhibited high ambiguity as they contain a null space with a distinctive ratio of forward and
506 reverse rate constants. In the improved model, sorption of Hg and MeHg on Sediment 2 is
507 modeled as two-site sorption, i.e. equilibrium and kinetic sorption. Equilibrium sorption
508 constants for Hg and MeHg are represented by K_{1-2} [—] and K_{7-8} [—], respectively. Similar
509 to Sediment 1, Hg reduction in sediment 2 is modeled as an equilibrium process with the
510 equilibrium constant as K_{5-6} [—]. Guo et al. (2019) showed that the uncertainty in the
511 thermodynamic constants for equilibrium processes has an outsized impact on the output
512 uncertainties, hence it is critical to obtain global uncertainty estimates for these constants. The
513 joint distribution of estimated parameters in Figure 10 are well-constrained and unimodal. The
514 summary statistics of estimated parameters are presented in Table 2. Predictive uncertainty
515 plots in Figure 11 show good agreement between model simulations and experimental data for
516 both sorption and methylation experiments.

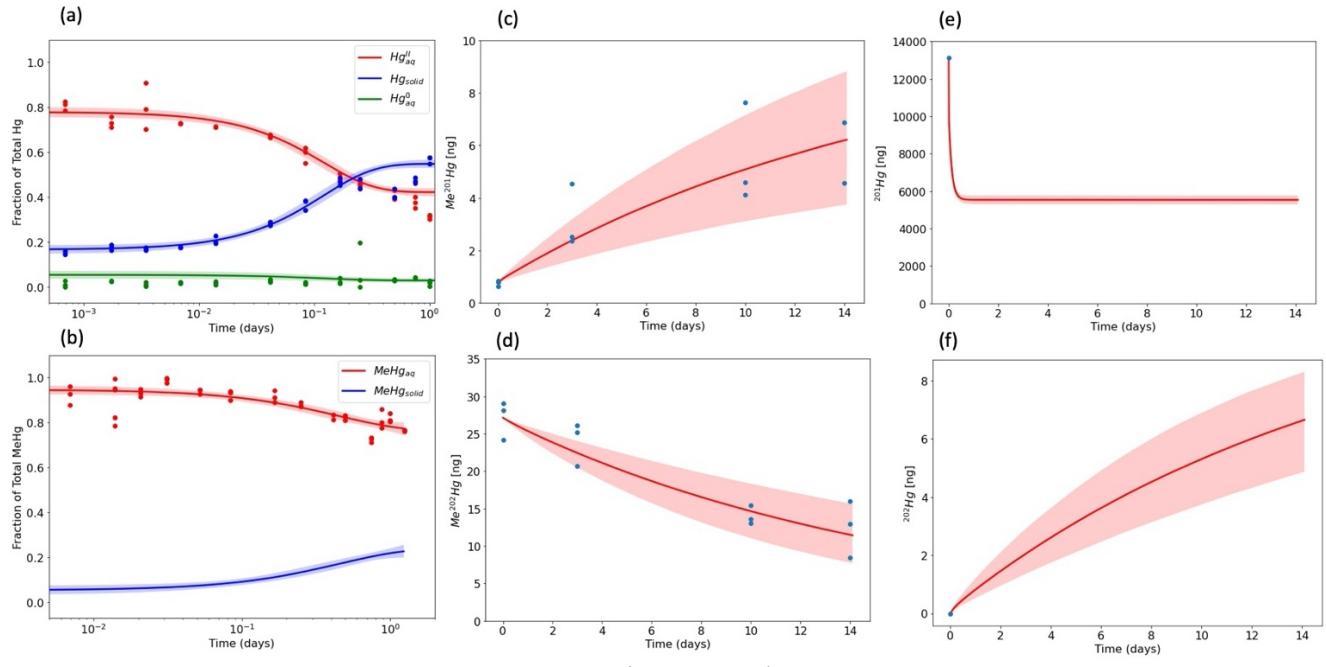
517



518
519 **Figure 10:** Model description (top right) and joint distributions of parameters obtained from
520 MCMC for the improved model for sediment 2
521

522 **Table 2:** Summary statistics of parameters estimated from MCMC for the improved model for
523 sediment 1

Parameter	5 th	25 th	Median	75 th	95 th
$K_{1-2}[-]$	4.18	4.46	4.67	4.90	5.27
$k_3[d^{-1}]$	3.98	4.48	4.85	5.25	5.89
$k_4[d^{-1}]$	3.55	4.08	4.48	4.91	5.59
$K_{5-6}[-]$	11.10	12.75	14.16	15.9	19.2
$K_{7-8}[-]$	13.19	15.38	17.41	20.07	26.15
$k_9[d^{-1}]$	3.03e-1	3.91e-1	4.64e-1	5.48e-1	6.95e-1
$k_{10}[d^{-1}]$	8.37e-1	1.39	1.81	2.28	3.09
$k_m[d^{-1}]$	7.23e-5	9.64e-5	11.38e-5	13.19e-5	15.85e-5
$k_d[d^{-1}]$	5.57e-2	7.01e-2	8.14e-2	9.38e-2	11.46e-2



525
526 **Figure 11:** Median (solid line), band of 2.5th and 97.5th percentiles (shaded region) of
527 predictions and experimental data (solid dots) for Hg sorption and reduction (gaseous phase is
528 not shown) (a), MeHg sorption (b), and methylation-demethylation experiment (c - d), along
529 with the predicted concentration history of total dissolved of ^{201}Hg (e) and ^{202}Hg (f) during the
530 methylation-demethylation experiment for Sediment 2
531

532 5.3. Summary and Conclusions

533 In this paper, we proposed Bayesian joint fitting, a parameter-estimation workflow, for
534 biogeochemical systems with two main advancements from traditional methods: 1)
535 simultaneous fitting of datasets from multiple experiments characterizing competing
536 subprocesses within the system, 2) mapping full joint distribution of parameters using MCMC.
537 The efficacy of the proposed method was demonstrated with mercury methylation as a use
538 case. The method was deployed to reinterpret recently published datasets (Schwartz et al.,
539 2021b) characterizing mercury methylation on aquatic sediments under the Transient
540 Availability Model (TAM) framework (Olsen et al., 2018; Schwartz et al., 2022). Rigorous
541 estimation of parameter uncertainties and improvement in the TAM framework were achieved.
542

543 Simultaneous fitting of datasets from sorption and methylation experiments to estimate all
544 TAM parameters together comprehensively captured interactions between sorption and
545 methylation processes. This approach allowed the inclusion of the measurement uncertainties
546 in the sorption experiments (for both Hg and MeHg) into methylation parameters in the TAM
547 model framework. Another advantage of simultaneously fitting datasets is sorption parameters
548 were informed by datasets from both sorption and methylation experiments.

549
550 Mapping full joint distributions of parameters using MCMC yielded global optimal parameters
551 and robust uncertainty estimates. Additionally, it revealed deficiencies in the existing model

552 structure which eluded first-order error estimates. For example, the identification of null spaces
553 in the original sorption model (Schwartz et al., 2022) in Sediment 2 and the Hg-reduction model
554 for both sediments proved valuable in simplifying the model from kinetic to equilibrium, thus
555 reducing the parameter uncertainty arising due to over-parameterization. Similarly, null space
556 in parameters for Monod demethylation in Schwartz et al. (2022) model suggested replacing it
557 with first-order kinetics. Note that lumping null space parameters into a single parameter is one
558 of the many ways of model reduction. This inverse-modeling-based approach simplifies the
559 model with null-space identification without compromising on the goodness of fit and
560 prediction uncertainties. The different fast sorption dynamics of the finer-grained Sediment 1
561 and coarser-grained Sediment 2 is consistent with reduced access to sorption sites due to low
562 diffusion coefficients in Sediment 2. Such insights can be helpful to guide future experiments
563 for better resolving processes that exert control on Hg methylation-MeHg demethylation
564 dynamics in environmental systems. For example, the MeHg concentrations measured in
565 samples is the net result of the opposing processes of Hg methylation and MeHg
566 demethylation. The simultaneous fitting approach discriminated among competing models
567 describing these processes and identified parameters with greater relative uncertainty which, in
568 turn, will inform future data gathering efforts to design experiments that will decrease
569 uncertainty in those parameters. Other approaches include using theoretical measures like
570 Akaike Information Criterion or Bayesian Information Criterion to trade-off the goodness of fit
571 for the model simplicity.

572
573 Bayesian inference from experimental datasets (Schwartz et al., 2021b) revealed different
574 methylation and sorption dynamics for Sediment 1 and Sediment 2. In Sediment 1, two-site
575 kinetic sorption (fast and slow) explained the datasets well. In Sediment 2, data did not capture
576 kinetic behavior for fast sorption making the associated kinetic parameters unidentifiable. The
577 equilibrium sorption along with slow kinetic sorption resulted in a good fit between the model
578 and data. For the methylation experiment in Sediment 1, Monod methylation and first-order
579 demethylation gave a decent fit to the data with unique parameter estimates. The dataset was
580 unable to uniquely identify Monod parameters for demethylation. In Sediment 2, first-order
581 kinetics for both methylation and demethylation offered a good match with the data.

582
583 In summary, the proposed method of joint fitting of multiple-experiment datasets in the
584 Bayesian framework and mapping full joint distributions using MCMC were shown to be
585 effective in improving the parameterization of biogeochemical models, quantifying the
586 uncertainties in parameters and outputs, and evaluating different model structures. This
587 approach can be beneficial particularly in a system with multiple competing reactions taking
588 place at different timescales. Insights into parameter space through joint probability
589 distributions coupled with domain knowledge guides model improvements. Full quantification
590 of uncertainties informs the design of future experiments targeted at constraining poorly
591 constrained parameters, eliminating multimodality or dealing with parameter degeneracy.
592 Improved model structures and robust uncertainty estimates offer better understanding of
593 underlying mechanisms and reliable predictions of fate of metals and nutrients in the
594 environment.

595 Parameter estimation using MCMC will not be suitable for models with high runtime as MCMC
596 requires large number of model runs, raising the computational cost. However, typical reaction
597 networks are ODEs and even a complex reaction network is relatively fast to solve. Additionally,
598 with an increased access to computational resources, there is no reason why researcher should
599 not opt for robust uncertainty estimates using MCMC which offers flexibility of analyzing
600 multiple experiments together and also guide domain-knowledge-based model improvements
601 in the process.

602 The workflow for this approach is coded in Python and scripts are provided in the mode-data
603 archive at Rathore and Painter (2021). The modular nature of the workflow allows for inclusion
604 of additional experimental data or a new reaction to the reaction network, conveniently.

605 **Acknowledgments**

606 This work was funded by the U.S. Department of Energy, Office of Science, Biological and
607 Environmental Research, Subsurface Biogeochemical Research (SBR) Program, and is a product
608 of the Critical Interfaces Science Focus Area (SFA) at ORNL and the IDEAS-Watersheds project.
609 This research used resources of the Compute and Data Environment for Science (CADES) at the
610 Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S.
611 Department of Energy under Contract No. DE-AC05-00OR22725. We thank the editor and
612 anonymous reviewer for their constructive feedback on the paper.

613 **References:**

614 Arhonditsis, G.B., Papantou, D., Zhang, W., Perhar, G., Massos, E., Shi, M., 2008. Bayesian
615 calibration of mechanistic aquatic biogeochemical models and benefits for environmental
616 management. *Journal of Marine Systems* 73(1) 8-30.
617 doi:<https://doi.org/10.1016/j.jmarsys.2007.07.004>

618 Avramescu, M.-L., Yumvihoze, E., Hintelmann, H., Ridal, J., Fortin, D., R.S. Lean, D., 2011.
619 Biogeochemical factors influencing net mercury methylation in contaminated freshwater
620 sediments from the St. Lawrence River in Cornwall, Ontario, Canada. *Science of The Total
621 Environment* 409(5) 968-978. doi:<https://doi.org/10.1016/j.scitotenv.2010.11.016>

622 Beck, M.B., 1987. Water quality modeling: A review of the analysis of uncertainty. *Water
623 Resources Research* 23(8) 1393-1442. doi:<https://doi.org/10.1029/WR023i008p01393>

624 Brooks, S.C., Southworth, G.R., 2011. History of mercury use and environmental contamination
625 at the Oak Ridge Y-12 Plant. *Environmental Pollution* 159(1) 219-228.
626 doi:<https://doi.org/10.1016/j.envpol.2010.09.009>

627 Chen, C.Y., Folt, C.L., 2000. Bioaccumulation and Diminution of Arsenic and Lead in a
628 Freshwater Food Web. *Environmental Science & Technology* 34(18) 3878-3884.
629 doi:10.1021/es991070c

630 Clarkson, T.W., Magos, L., Myers, G.J., 2003. The Toxicology of Mercury — Current Exposures
631 and Clinical Manifestations. *New England Journal of Medicine* 349(18) 1731-1737.
632 doi:10.1056/NEJMra022471

633 Davoudabadi, M.J., Pagendam, D., Drovandi, C., Baldock, J., White, G., 2021. Advanced Bayesian
634 approaches for state-space models with a case study on soil carbon sequestration.
635 *Environmental Modelling & Software* 136 104919.
636 doi:<https://doi.org/10.1016/j.envsoft.2020.104919>

637 Eckley, C.S., Gilmour, C.C., Janssen, S., Luxton, T.P., Randall, P.M., Whalin, L., Austin, C., 2020.
638 The assessment and remediation of mercury contaminated sites: A review of current
639 approaches. *Science of The Total Environment* 707 136031.
640 doi:<https://doi.org/10.1016/j.scitotenv.2019.136031>

641 Evers, D.C., Han, Y.-J., Driscoll, C.T., Kamman, N.C., Goodale, M.W., Lambert, K.F., Holsen, T.M.,
642 Chen, C.Y., Clair, T.A., Butler, T., 2007. Biological Mercury Hotspots in the Northeastern United
643 States and Southeastern Canada. *BioScience* 57(1) 29-43. doi:10.1641/B570107

644 Gelman, A., Rubin, D.B.J.S.s., 1992. Inference from iterative simulation using multiple
645 sequences. *Statistical Science* 7(4) 457-472.

646 Goodyear, K.L., McNeill, S., 1999. Bioaccumulation of heavy metals by aquatic macro-
647 invertebrates of different feeding guilds: a review. *Science of The Total Environment* 229(1) 1-
648 19. doi:10.1016/S0048-9697(99)00051-0

649 Guo, L., Painter, S.L., Brooks, S.C., Parks, J.M., Smith, J.C., 2019. A probabilistic perspective on
650 thermodynamic parameter uncertainties: Understanding aqueous speciation of mercury.
651 *Geochimica et Cosmochimica Acta* 263 108-121.

652 Haggerty, R., Argerich, A., Martí, E., 2008. Development of a “smart” tracer for the assessment
653 of microbiological activity and sediment-water interaction in natural waters: The resazurin-
654 resorufin system. *Water Resources Research* 44(4). doi:10.1029/2007wr006670

655 Hintelmann, H., Keppel-Jones, K., Evans, R.D., 2000. Constants of mercury methylation and
656 demethylation rates in sediments and comparison of tracer and ambient mercury availability.
657 *Environmental Toxicology and Chemistry* 19(9) 2204-2211. doi:10.1002/etc.5620190909

658 Horowitz, A.J., 1991. A primer on sediment-trace element chemistry, Open-File Report, 2nd.
659 ed., rev. ed.

660 Jonsson, S., Skyllberg, U., Nilsson, M.B., Westlund, P.-O., Shchukarev, A., Lundberg, E., Björn, E.,
661 2012. Mercury Methylation Rates for Geochemically Relevant HgII Species in Sediments.
662 *Environmental Science & Technology* 46(21) 11653-11659. doi:10.1021/es3015327

663 Kelleher, C., Ward, A., Knapp, J.L.A., Blaen, P.J., Kurz, M.J., Drummond, J.D., Zarnetske, J.P.,
664 Hannah, D.M., Mendoza-Lera, C., Schmadel, N.M., Datry, T., Lewandowski, J., Milner, A.M.,
665 Krause, S., 2019. Exploring Tracer Information and Model Framework Trade-Offs to Improve
666 Estimation of Stream Transient Storage Processes. *Water Resources Research* 55(4) 3481-3501.
667 doi:10.1029/2018wr023585

668 Knapp, J.L.A., Cirpka, O.A., 2017. Determination of hyporheic travel time distributions and other
669 parameters from concurrent conservative and reactive tracer tests by local-in-global
670 optimization. *Water Resources Research* 53(6) 4984-5001. doi:10.1002/2017wr020734

671 Laloy, E., Vrugt, J.A., 2012. High-dimensional posterior exploration of hydrologic models using
672 multiple-try DREAM(ZS) and high-performance computing. *Water Resources Research* 48(1).
673 doi:10.1029/2011wr010608

674 Lemke, D., González-Pinzón, R., Liao, Z., Wöhling, T., Osenbrück, K., Haggerty, R., Cirpka, O.J.H.,
675 Sciences, E.S., 2014. Sorption and transformation of the reactive tracers resazurin and resorufin
676 in natural river sediments. 18(8).

677 Lemke, D., Liao, Z., Wöhling, T., Osenbrück, K., Cirpka, O., 2013. Concurrent conservative and
678 reactive tracer tests in a stream undergoing hyporheic exchange. *Water Resources Research*
679 49(5) 3024-3037. doi:10.1002/wrcr.20277

680 Liao, Z., Lemke, D., Osenbrück, K., Cirpka, O.A., 2013. Modeling and inverting reactive stream
681 tracers undergoing two-site sorption and decay in the hyporheic zone. 49(6) 3406-3422.
682 doi:10.1002/wrcr.20276

683 Liem-Nguyen, V., Jonsson, S., Skyllberg, U., Nilsson, M.B., Andersson, A., Lundberg, E., Björn, E.,
684 2016. Effects of Nutrient Loading and Mercury Chemical Speciation on the Formation and
685 Degradation of Methylmercury in Estuarine Sediment. Environmental Science & Technology
686 50(13) 6983-6990. doi:10.1021/acs.est.6b01567

687 Luo, J., Cirpka, O.A., Fienen, M.N., Wu, W.-m., Mehlhorn, T.L., Carley, J., Jardine, P.M., Criddle,
688 C.S., Kitanidis, P.K., 2006. A parametric transfer function methodology for analyzing reactive
689 transport in nonuniform flow. Journal of Contaminant Hydrology 83(1) 27-41.
690 doi:<https://doi.org/10.1016/j.jconhyd.2005.11.001>

691 Marschmann, G.L., Pagel, H., Kügler, P., Streck, T., 2019. Equifinality, sloppiness, and emergent
692 structures of mechanistic soil biogeochemical models. Environmental Modelling & Software 122
693 104518.

694 Mason, R.P., Laporte, J.M., Andres, S., 2000. Factors Controlling the Bioaccumulation of
695 Mercury, Methylmercury, Arsenic, Selenium, and Cadmium by Freshwater Invertebrates and
696 Fish. Archives of Environmental Contamination and Toxicology 38(3) 283-297.
697 doi:10.1007/s002449910038

698 Mergler, D., Anderson, H.A., Chan, L.H.M., Mahaffey, K.R., Murray, M., Sakamoto, M., Stern,
699 A.H., 2007. Methylmercury Exposure and Health Effects in Humans: A Worldwide Concern.
700 AMBIO: A Journal of the Human Environment 36(1) 3-11, 19.

701 Mitchell, C.P.J., Gilmour, C.C., 2008. Methylmercury production in a Chesapeake Bay salt marsh.
702 Journal of Geophysical Research: Biogeosciences 113(G2). doi:10.1029/2008JG000765

703 Neumann, M.B., Gujer, W., 2008. Underestimation of Uncertainty in Statistical Regression of
704 Environmental Models: Influence of Model Structure Uncertainty. Environmental Science &
705 Technology 42(11) 4037-4043. doi:10.1021/es702397q

706 Olsen, T.A., Muller, K.A., Painter, S.L., Brooks, S.C., 2018. Kinetics of Methylmercury Production
707 Revisited. Environmental Science & Technology 52(4) 2063-2070. doi:10.1021/acs.est.7b05152

708 Rathore, S.S., Painter, S.L., 2021. Model-Data for Joint Estimation of Biogeochemical Model
709 Parameters from Multiple Experiments: A Bayesian Approach Applied to Mercury Methylation.
710 ORNL Mercury Science Focus Area (SFA) Data Collection. doi:10.12769/1805731

711 Riscassi, A., Miller, C., Brooks, S., 2016. Seasonal and flow-driven dynamics of particulate and
712 dissolved mercury and methylmercury in a stream impacted by an industrial mercury source.
713 Environmental Toxicology and Chemistry 35(6) 1386-1400. doi:10.1002/etc.3310

714 Rodríguez Martín-Doimeadios, R.C., Tessier, E., Amouroux, D., Guyoneaud, R., Duran, R.,
715 Caumette, P., Donard, O.F.X., 2004. Mercury methylation/demethylation and volatilization
716 pathways in estuarine sediment slurries using species-specific enriched stable isotopes. *Marine*
717 *Chemistry* 90(1) 107-123. doi:<https://doi.org/10.1016/j.marchem.2004.02.022>

718 Schwartz, G.E., Muller, K.A., Rathore, S.S., Wilpiszeski, R.L., Carrell, A.A., Cregger, M.A., Elias,
719 D.A., Podar, M., Painter, S.L., Brooks, S.C., 2021a. Incorporating Variable Sediment Microbial
720 Activity into Methylmercury Production Kinetics Modeling.

721 Schwartz, G.E., Muller, K.A., Rathore, S.S., Wilpiszeski, R.L., Carrell, A.A., Cregger, M.A., Elias,
722 D.A., Podar, M., Painter, S.L., Brooks, S.C., 2022. Incorporating concentration-dependent
723 sediment microbial activity into methylmercury production kinetics modeling. *Environmental*
724 *Science: Processes & Impacts*.

725 Schwartz, G.E., Muller, K.A., Wilpiszeski, R.L., Carrell, A.A., Cregger, M.A., Elias, D.A., Podar, M.,
726 Brooks, S.C., 2021b. [Dataset] Incorporating Variable Sediment Microbial Activity into
727 Methylmercury Production Kinetics Modeling doi:10.12769/1797572

728 Schwartz, G.E., Olsen, T.A., Muller, K.A., Brooks, S.C., 2019. Ecosystem Controls on
729 Methylmercury Production by Periphyton Biofilms in a Contaminated Stream: Implications for
730 Predictive Modeling. *Environmental Toxicology and Chemistry* 38(11) 2426-2435.
731 doi:<https://doi.org/10.1002/etc.4551>

732 Shockley, E.M., Vrugt, J.A., Lopez, C.F., 2018. PyDREAM: high-dimensional parameter inference
733 for biological models in python. *Bioinformatics* (Oxford, England) 34(4) 695-697.
734 doi:10.1093/bioinformatics/btx626

735 van Oijen, M., Cameron, D.R., Butterbach-Bahl, K., Farahbakhshazad, N., Jansson, P.E., Kiese, R.,
736 Rahn, K.H., Werner, C., Yeluripati, J.B., 2011. A Bayesian framework for model calibration,
737 comparison and analysis: Application to four models for the biogeochemistry of a Norway
738 spruce forest. *Agricultural and Forest Meteorology* 151(12) 1609-1621.
739 doi:<https://doi.org/10.1016/j.agrformet.2011.06.017>

740 van Turnhout, A.G., Kleerebezem, R., Heimovaara, T.J., 2016. A toolbox to find the best
741 mechanistic model to predict the behavior of environmental systems. *Environmental Modelling*
742 & Software 83 344-355. doi:<https://doi.org/10.1016/j.envsoft.2016.05.002>

743 Vrugt, J.A., Hyman, J.M., Robinson, B.A., Higdon, D., Ter Braak, C.J., Diks, C.G., 2008.
744 Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive
745 randomized subspace sampling. Los Alamos National Lab.(LANL), Los Alamos, NM (United
746 States).

747 Ward, D.M., Nislow, K.H., Folt, C.L., 2010. Bioaccumulation syndrome: identifying factors that
748 make some stream food webs prone to elevated mercury bioaccumulation. *Annals of the New*
749 *York Academy of Sciences* 1195 62-83. doi:10.1111/j.1749-6632.2010.05456.x

750 Zhang, W., Arhonditsis, G.B., 2009. A Bayesian hierarchical framework for calibrating aquatic
751 biogeochemical models. Ecological Modelling 220(18) 2142-2161.
752 doi:<https://doi.org/10.1016/j.ecolmodel.2009.05.023>

753 Zhao, Y., Rathore, S.S., Liu, M., Luo, J., 2018. Joint Bayesian inversion for analyzing conservative
754 and reactive breakthrough curves. Journal of Hydrology 567 446-456.
755 doi:<https://doi.org/10.1016/j.jhydrol.2018.10.029>

756

757

Appendix-A

758

759

760 Here we present mathematical equations for improved models for mercury methylation on
 761 aquatic sediments presented in this manuscript. For variables are described in the main text of
 762 the manuscript.

763 Sediment 1:

$$764 (1) \frac{d[Hg]}{dt} = \frac{-k_{mmax}}{K_{mhs} + [Hg]} [Hg] + k_d [MeHg] - k_1 [Hg] + k_2 [Hg_f] - k_3 [Hg] + k_4 [Hg_s]$$

$$\frac{d[MeHg]}{dt}$$

$$765 (2) = \frac{k_{mmax}}{K_{mhs} + [Hg]} [Hg] - k_d [MeHg] - k_7 [MeHg] + k_8 [MeHg_f] - k_9 [MeHg] + k_{10} [MeHg_s]$$

$$766 (3) \frac{d[Hg_f]}{dt} = k_1 [Hg] - k_2 [Hg_f]$$

$$767 (4) \frac{d[Hg_s]}{dt} = k_3 [Hg] - k_4 [Hg_s]$$

$$768 (5) \frac{d[MeHg_f]}{dt} = k_7 [MeHg] - k_8 [MeHg_f]$$

$$769 (6) \frac{d[MeHg_s]}{dt} = k_9 [MeHg] - k_{10} [MeHg_s]$$

$$770 (7) [Hg] = K_{5-6} [Hg^0]$$

771 Sediment 2:

$$772 (1) \frac{d[Hg]}{dt} = -k_m [Hg] + k_d [MeHg] - k_3 [Hg] + k_4 [Hg_s]$$

$$773 (2) \frac{d[MeHg]}{dt} = k_m [Hg] - k_d [MeHg] - k_9 [MeHg] + k_{10} [MeHg_s]$$

$$774 (3) \frac{d[Hg_s]}{dt} = k_3 [Hg] - k_4 [Hg_s]$$

$$775 (4) \frac{d[MeHg_s]}{dt} = k_9 [MeHg] - k_{10} [MeHg_s]$$

$$776 (5) [Hg] = K_{1-2} [Hg_f]$$

$$777 (6) [Hg] = K_{5-6} [Hg^0]$$

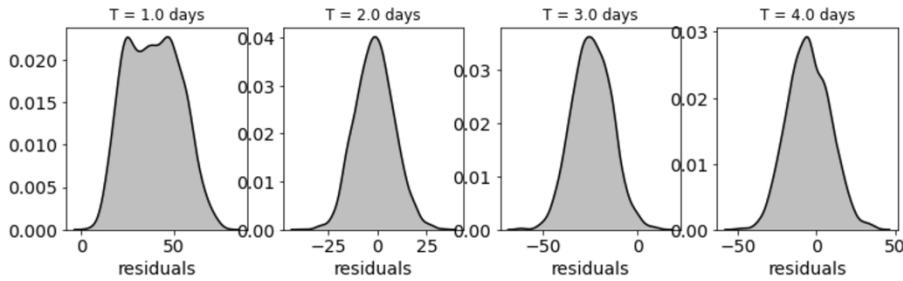
$$778 (7) [MeHg] = K_{7-8} [MeHg_f]$$

779

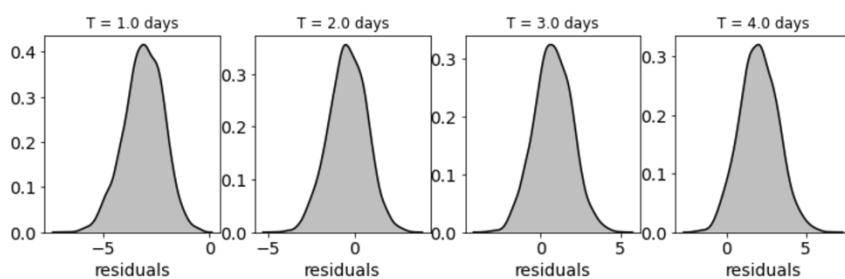
Appendix-B

780 Example plots of residual distribution for the time series of $Me^{201}Hg$ and $Me^{202}Hg$ in
 781 methylation and demethylation experiments for both Sediment 1 and Sediment 2 are shown
 782 below.

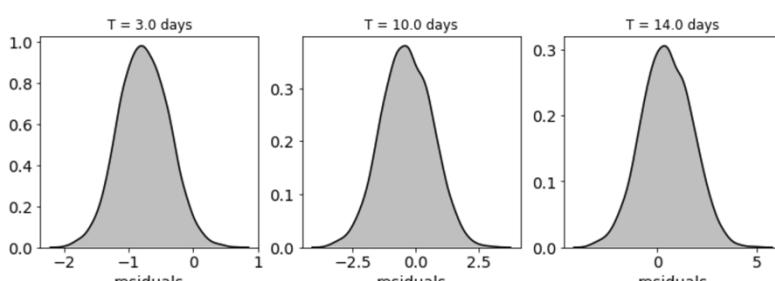
783



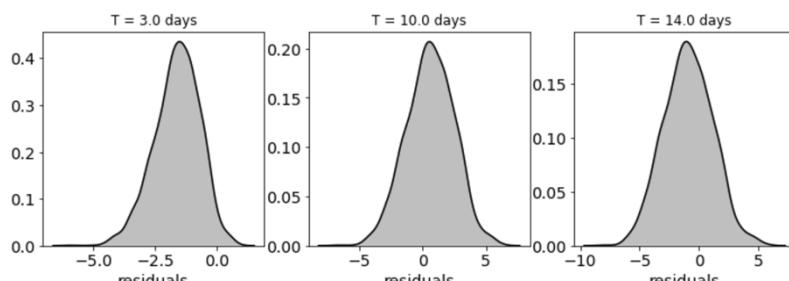
784
785 Figure B.1: Distribution of residuals for Me^{201}Hg predictions are different timepoints for
786 methylation experiment in Sediment 1
787



788
789 Figure B.2: Distribution of residuals for Me^{202}Hg predictions are different timepoints for
790 demethylation experiment in Sediment 1
791



792
793 Figure B.3: Distribution of residuals for Me^{201}Hg predictions are different timepoints for
794 methylation experiment in Sediment 2
795
796



797
798 Figure B.4: Distribution of residuals for Me^{202}Hg predictions are different timepoints for
799 demethylation experiment in Sediment 2
800
801
802

