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Why Non-volatile memory and future logic ?
2
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• Pathways to post-CMOS computer architecture 
• Hybrid systems where emerging devices integrated alongside new 

ones: e.g. , NVM caches alongside storage class memory [SCM]

• Different devices compete  on different levels of memory /compute hierarchy 

• Enabling components for on-chip matrix algebra in 
neural accelerators
• Goal : perform machine-learning (ML) tasks e.g. regression, classification, 

and anomaly detection in embedded, low power hardware systems

• Advantages :

• Memory: tunable programmable resistors

• Have non-volatility (unlike SRAM arrays)

• Logic: new frontiers in basic energy efficiency and speed

• Potential radiation resilience v. charge-based approaches

• Post-CMOS devices need high endurance ,low latency

• Memory ideal device behavior: <10ns read/write, 1010+ cycles, highly 
resistive, with many internal states

• Logic ideal behavior: <5 fJ elementary switching cost; <10ns speed

Phase change memory

Conducting bridge memory

Source: Nikonov, et al  https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7076743

Source: Marinella, et al. "Radiation Effects in Advanced and Emerging Nonvolatile Memories."

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7076743
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Why use spintronic junctions for  memory/ logic?

• Extreme endurance
• Not charge based ( spin reflectance at interface modulates 

resistance ) 

• Very low latency 
• Typically <10nanoseconds, academic work shows <1 

nanosecond operation

• Readily compatible with CMOS processes
• Thin film deposition completed on back-end-of-the-line (BEOL) 

after CMOS layers

• Variants of spintronic memory/logic devices:
• Perpendicular anisotropy for lower switching current
• Spin-transfer torque (STT): current passes through tunnel junction

• Spin-orbit torque (SOT): current is orthogonal to free layer

• Hybrid SOT/STT operations, e.g. composite spintronic devices

• Domain-wall magnetic tunnel junction: racetrack along 
underlayer; switching MTJ bit

• Can readily implement a NAND gate

• Moving domain wall (DW-MTJ ON state, DW-MTJ OFF state ) , lead to 
multifunctional spin switches (inverter, buffer…)

Source: Shiokawa et al, AIP Advances 2029

Courtesy: J. Incorvia



Application of Domain wall magnetic tunnel junctions
• Promising post-CMOS memory devices

• Demonstration of multi-state , fast, analog DW-MTJ synapse/memories have 
recently been made

• Promising post-CMOS logic devices
• DW devices implement NAND cascaded logic with DW buffers

• Energy efficiency , speed of system driven  critically by tunneling 
magnetoresistance (TMR), required tunneling current

• Question: how resilient will such a system be as compared to CMOS baseline?

• Radiation resilience including gamma/electron, proton, and heavy ion sources must be benchmarked

4

Source: Xiao, Bennett, et al, IEEE, JxDC, 2019 Source: Alamdar et al, APL, 2021 https://aip.scitation.org/doi/full/10.1063/5.0038521

Source: Liu et al, 2021, APL

https://aip.scitation.org/doi/full/10.1063/5.0038521


Spintronic junctions putatively resilient to proton/gamma irradiation 
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• MTJs are very robust against total ionizing dose (TID)
• 10Mrad shows no effect on critical field for switching bits or 

TMR (effectively On/Off ratio)

• > 100 Mrad causes breaking and visible damages

• MTJs are relatively robust against proton irradiation 
• Magnetic moments are unaffected and very slight effect in 

coercivity

• Proton beam energy 20MeV up to 1e18 fluence

• However, impacts of TID in working devices are often more 
significant than in films/solo junctions 

Source: Ren, et al IEEE 2012

Source: Park , et al, Thin Solid Films, 2019Source: Wang, et al, IEEE, 2019



Earlier DW-MTJ results & research hypothesis
• Immediate predecessor to this work analyzed impact of a) gamma irradiation and b) 

heavy ion (Ta) on Spin-orbit-torque (SOT) DW device thin films
• High resilience to TID (1Mrad), but are  susceptible to displacement damage

• Magnetic coercivity was used as proxy , but these were not fully functioning devices 

• Hypothesis: high dose may cause additional issues in fully functioning DW-MTJ 
devices due to thermal and/or diffusion  effects. 
• Sub-study 1: re-confirming TID resilience in switching DW-MTJ devices

• Sub-study 2: exposing working DW-MTJ bits to more aggressive dose environments
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Source: Alamdar et al, NSREC 2020, (Published 2021), https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9378556

Relative resilience to TID Strong impacts from heavy ions

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9378556


Methods:  STT Logic bits exposed to gamma radiation7

• Studied chip consists of thin films fabricated at Applied materials, with primary STT DW-MTJ 
device stack fabricated at UT-Austin, and final processing step at Sandia

• 32 devices on chip total, with 17/32 devices initially switching
• Lithography mismatch issue in y dimension created a pad contacting issue in many devices.

• H-loops conducted on all switching devices, with 11 devices total profiled with high 
tunneling magneto resistance (TMR ) >50% . 

• Pad structure of all devices on chip allows for both 2 point measures (emulating use in logic circuit) 
and 4 point (allowing us to electrically infer the TMR values via Kelvin measures
• For speed /reliability of switching, following pre/post measures used 2 point measures
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Results: 1Mrad Gamma irradiation
• Functioning STT DW devices profiled (5) are  overall, resilient to TID (1Mrad) using a Co60 gammacell

• No profiled devices cease to shift or show an H-loop collapse

• Some devices show slight changes in Rp ,Rap in changes that exceed standard cycle-to-cycle variability 
• Most (3/5 devices ), shown as pink and orange series below, are within statistical estimates normal variability 

• 2 of 5 devices  (black, light brown) show statistically different values in On/Off resistance

• May relate to accumulated charge in the composite device from TID

Device 1 Device 2 



Methods: Electron beam irradiation 

• Motivation: 
• E-beam is capable of targeting particular layers of interest (in 

our case (MgO) and not entire stack

• E-beam can put more dose in less time 

• The effect of total dose changes at high rate

• Calibration
• Penelope calculations estimate electron impact energy given 

actual DW-MTJ spin-transfer torque stack

• Ion beam energy is calibrated to peak ionization in structure, 
yielding beam energy of 30 keV

• Experimental execution
• Pre, post and 2 intermediate H-loop measures made during 

progressive e-beam irradiation of devices (4 total measures)

• 6 initial devices targeted for profiling, with only 3 /6 surviving all 
tests (electrostatic and/or fragile pad events, e.g. shorting)

• 2 point measurements made in semi-automated H-loops for 
speed and accuracy at 4 checkpoints
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Results: Electron beam irradiation 1/2
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• Devices were individually targeted using electron beam at 
Sandia’s Ion Beam Lab (IBL)

• Cumulative changes were observed throughout the ongoing 
e-beam irradiation , with substantial changes in Rp ,Rap visible 
but without  device failure (bit flip/H collapse)
• Greater than gamma 𝞓R consistent with estimated total dose 

from e-beam using Penelope:
• Post 1: < 1Mrad(MgO)

• Post2: ~8 Mrad(MgO)

• Post3: ~30 Mrad(MgO)

Pre

Post2

Post3

Pre

Device 1 (4,5)

Post1

Post2
Post3

Device 2 (4,0)

Post1

Electromagnet 
Current (A)

Perpendicular 
Magnetic Field

-10 ~ -75mT

-5 ~ -37.5 mT

0 ~0.2 mT

5 37.5 mT

10 ~75 mT

15 ~ 108 mT

Image of focused electron beam on 1 device



Results: Electron beam irradiation 2/211

Post3a
Post3b

Post3c

Pre

Post1: <1Mrad

Post2: ~ 8Mrad

Post3: ~30Mrad 

• One of three devices showed not only characteristic /slight change in 
resistance, but a dramatic resistance change at the last irradiation level 

• More significantly, H-loop shape and structure also changed in this device, 
implying a potential interface/structural change due to irradiation

• Several post-3 cycles were taken to confirm this was not an artefact of the 
electrical measures 



Discussion on physical origin of observed effects
• Since e-beam was targeted for maximum impact at critical junction for switching (MgO), this is primary site of 

further analysis 

• Past literature on radiolysis damage in MgO exists and can shed light on results 
• Irradiation of MgO crystal samples with  5kEV electron beam showed large prototypical response

• 1) Fast-electron irradiation might result in hot holes and possibly drive diffusion along MgO interface
• Minor diffusion could drive increases in resistances observed in most devices

• 2) Thermal effects may be possible and result in degraded interfaces
• Thermal intermixing at MgO interface is possible and would degrade perpendicular anisotropy

• May have contributed to collapsed H-loop visible in 1/3 e-beam device

• Profiling of thermal effects well established in ONO stacks, but may be needed for DW-MTJs
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Source: Liu et al, AIP, https://aip.scitation.org/doi/pdf/10.1063/1.5051813 Source: Luschick et al, , Nuclear Instruments and Methods in Physics Research B

https://aip.scitation.org/doi/pdf/10.1063/1.5051813


Conclusions & Future work13

Questions?

Feel free to contact me at cbennet@sandia.gov with questions asynchronously. 

• DW-MTJ logic devices are a promising post-CMOS candidate but need to be more 
thoroughly analyzed for susceptibility to full suite of radiation effects

• Composite DW-MTJ logic devices were subjected to both gamma dose and electron beam, 
resulting in perceptible effects following total ionizing dose
• Characteristic On/Off logic states (Rp ,Rap  ) showed gradual increase with irradiation 

• Electron beam interactions were more significant, and for one profiled device, showed significant 
change in actual bit switching 

• Next steps for analysis
• Existing devices will be exposed to combination of in-plane and out-of-plane fields to better 

understand potential changes in anisotropy 

• EELS or imaging (e.g. TEM) techniques may be necessary to better understand intermixing or 
thermal events that contributed to radiation induced changes in these devices  

mailto:cbennet@sandia.gov


Appendix slides 
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Spintronic junctions are affected by heavy ion damage15

• Industrial quality (Everspin) MTJ parts using perpendicular anisotropy 
(pMJTs) bombarded with a Ta beam over a variety of fluences

• Ensemble statistics demonstrate that large heavy ion fluences totally 
degrade switching performance
• At > 10e12 fluences, magnetic H loops begin to collapse 

• Electron spin polarization is reduced as interface is structurally 
damaged, resulting in a lower coercive field

• Structural damage affects perpendicular magnetic anisotropy

109 1010 1011 1012 1013 1014

Source: Xiao, Bennett, et al, IEEE, Transactions on Nuclear Science, 2021
Single device examples


