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Abstract: The modernization of existing and new nuclear power plants with digital instrumentation 

and control systems (DI&C) is a recent and highly trending topic. However, there lacks strong 

consensus on best-estimate reliability methodologies by both the United States (U.S.) Nuclear 

Regulatory Commission (NRC) and the industry. This has resulted in hesitation for further 
modernization projects until a more unified methodology is realized. In this work, we develop an 

approach called Orthogonal-defect Classification for Assessing Software Reliability (ORCAS) to 

quantify probabilities of various software failure modes in a DI&C system. The method utilizes 
accepted industry methodologies for software quality assurance that are also verified by experimental 

or mathematical formulations. In essence, the approach combines a semantic failure classification 

model with a reliability growth model to predict (and quantify) the potential failure modes of a DI&C 
software system. The semantic classification model is used to address the question: How do latent 

defects in software contribute to different software failure root causes? The use of reliability growth 

models is then used to address the question: Given the connection between latent defects and software 

failure root causes, how can we quantify the reliability of the software? A case study was conducted on 
a representative I&C platform (ChibiOS) running a smart sensor acquisition software developed by 

Virginia Commonwealth University (VCU). The testing and evidence collection guidance in ORCAS 

was applied, and defects were uncovered in the software. Qualitative evidence, such as condition 
coverage, was used to gauge the completeness and trustworthiness of the assessment while quantitative 

evidence was used to determine the software failure probabilities. The reliability of the software was 

then estimated and compared to existing operational data of the sensor device. It is demonstrated that 

by using ORCAS, a semantic reasoning framework can be developed to justify if the software is reliable 
(or unreliable) while still leveraging the strength of the existing methods. 

 

 

1. INTRODUCTION 
 

In recent years, there has been considerable effort to modernize existing and new nuclear power plants 
with digital instrumentation and control systems (DI&C). However, there has also been a considerable 

concern both by industry and regulatory bodies on the risk and consequence analysis of these systems. 

The lack of a strong consensus on best-estimate methodologies by both the United States (U.S.) Nuclear 

Regulatory Commission (NRC) and the industry [1] has led to a hesitation for further modernization 
projects. In branch technical position (BTP) 7-19 [2], the NRC has also cited concerns that DI&C 

systems can be vulnerable to common cause failures (CCFs) because of software errors in logic or 

implementation that could reduce defense-in-depth capability in existing hardware redundant 
architectures. Such software errors can manifest due to inadequacies in either the design requirements 

specifications or the implementation of the design. 

 

While many new methods have been proposed to identify potential software events, such as Systems 
Theoretic Process Analysis (STPA) [3], Hazard and Consequence Analysis for Digital Systems 

(HAZCADS) [4], etc., these methods are focused on the qualitative identification of failure modes in a 

fault tree with very little guidance on direct quantification. Typically, software failure modes are 
identified by potential unsafe control actions (UCA) made by the system [3]. The UCAs can lead to 

stakeholder losses and are traceable to a particular system level event which can be integrated as basic 
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events within fault trees [5]. Supplemental assessments to HAZCADS, such as the Digital Reliability 
Assessment Methodology (DRAM) [6], have been used to address the risk of UCA by assigning Risk 

Reduction Targets (RRTs) and Control Methods (CMs) to bound the risk of software basic events. The 

risk to the system is determined by the Safety Integrity Level (SIL) [7] intended for the device. 

However, RRTs and CMs are qualitative methods at risk mitigation. Specifically, the approach helps 
identify failure mechanisms and pathways that can lead to UCAs and methods to address them. CMs 

listed in DRAM are scored qualitatively based on implemented type and effectiveness by expert 

experience ad belief. However, the improvement in reliability by CMs and RRTs are difficult to 
quantify.  Nonetheless, DRAM provides a useful qualitative support identification framework for design 

activities.  

 
Aside from bounding estimate methods, other more direct risk and reliability quantification methods 

include software reliability growth models (SRGMs) [8]. These well-known methods attempt to predict 

the anticipated reliability of the software through historical failure data and has historically good 

generalization across multiple industries. However, conventional use of SRGMs are to measure the 
wholistic reliability of software and rather than specific subsystems (due to the lack of failure data). In 

cases where failure data is limited, which is especially true for safety critical systems, the uncertainty 

in the SRGMs can render predictions meaningless [9]. Our research thus aims to provide more 
acceptable risk and reliability information on DI&C systems without losing specificity or generalization 

capability. Furthermore, we attempt to collect qualitative evidence to support reliability conclusions.  

 
In this work, we present the idea of Orthogonal-defect Classification for Assessing Software Reliability 

(ORCAS) to formalize and provide actionable evidence for the reliability quantification of DI&C 

system. The method utilizes accepted industry testing methodologies for software quality assurance that 

have also been verified by experimental or mathematical formulations. A pseudo-exhaustive testing 
[10] approach is adopted to reduce the cost of testing while maintaining a similar level of coverage 

confidence. In essence, ORCAS combines a semantic failure classification model with a reliability 

growth model to predict (and quantify) potential failure modes of a DI&C software system. The 
semantic classification model is used to address the question: How do latent defects in software translate 

to different software failure modes? For example, suppose a defect was discovered that fails to check a 

variable’s contents before using it in an equation. The direct impact of this defect on the software is 

difficult to gauge; it may have no impact or have serious consequences in calculation. By translating 
discovered defects into defined independent categorical types, the impact to software reliability can be 

generalized and modeled. Here, the use of reliability growth models is more applicable: Given that we 

know how latent defects contribute to different software failure modes, the risk (or reliability) of the 
DI&C system can be predicted. In addition, derived qualitative evidence from the ORCAS methodology 

is used to determine the confidence in our assessment and whether the results are trustworthy.  

 
A case study was conducted on a representative software platform (ChibiOS) [11] running a sensor 

acquisition software developed by Virginia Commonwealth University (VCU) [12]. The testing and 

evidence collection guidance in ORCAS was applied. Defects were uncovered in the software. 

Qualitative evidence, such as condition coverage, was used to gauge the completeness and 
trustworthiness of the assessment while quantitative evidence was used to determine software failure 

probabilities. The reliability of the software was then estimated and compared to existing operational 

data of the sensor device. It is demonstrated that by using ORCAS, a semantic reasoning framework 
can be developed to justify software reliability (or unreliability) while still leveraging the strength of 

existing methods. 

 

2. THEORETIC BACKGROUND  
 

Before presenting the methodology, the theory behind this work is first discussed. The most important 
theory being that ‘failures’ in software are ill-defined. In STPA, the authors treat software ‘failures’ as 

misbehaviors or unintended consequences due to inadequate (but deliberate) specification of constraints 

and requirements of the system [3]. In this respect, the software never truly ‘fails’ but rather performs 

actions that are undesirable while still conforming to existing requirements. Hence, the development of 
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UCA in STPA. In this work, the same ideology is utilized, where the different categories of UCA are 
referred to as software failure modes. In brief, the failure modes are: (1) control action is missing when 

needed (UCA-A); (2) a control action is provided when not needed (UCA-B); (3) a control action is 

provided but too early, too late, or out of order (UCA-C); and (4) a control action is stopped too soon 

or applied too long (UCA-D). However, it is unclear how latent defects in the software translate to each 
failure mode. For example, missing conditional statement are a common software defect but their 

relationships to a particular UCA is uncertain. In ORCAS, this relationship is refined with Orthogonal 

Defect Classification (ODC). 
 

The second theory used in this work is ODC [13]. In ODC, discovered defects are the root causes of 

software failure modes. However, the cause-and-effect relationship between these root causes and 
failure mode is not always clear unless explicit cases can be demonstrated. Here ODC acts as a semantic 

classification bridge between these cause-and-effect relationships by sorting defects into generalized 

groups. Specifically, by grouping defects with shared characteristics, the characteristics of the failure 

caused by individual defects can also be generalized. For example, if checking defects are detected, it 
suggests inadequacy in data or condition verification in the source code. This can then be traced to 

higher UCA-A probability based on derived correlations. The exact correlations are discussed in the 

methods section. In brief, the defect groups are function, assignment, algorithm, checking, interface, 
relationship, and timing [14]. These groups are assumed to be independent and mutually exclusive from 

each other and cover all known to-date potential defects in the software. In addition, a defect can only 

be assigned one defect class, but may cause multiple UCAs. In ORCAS, the defect classes are used as 
qualitative evidence to assess software reliability and causality to software failure modes.  

 

Another application of ODC is the identification of the necessary environmental and input conditions 

required to uncover or detect defects. These conditions are known as triggers and can also be used to 
assess when all conditions have been considered. From a conventional perspective, testing conditions 

as triggers are difficult to measure and compare with each other as tests are not equivalent. Here, ODC 

also can be used to semantically categorize triggers that are needed for comprehensive software testing. 
In brief, the groups for implementation triggers are simple and complex path; test coverage, variation, 

sequence, and interaction; volume/stress; recovery; configuration; startup/restart; and normal mode 

[14]. These trigger groups are extensive and cover most relevant scenarios, but it is not a complete list. 

For instance, they do not explicitly consider cybersecurity vulnerabilities as a condition for defects. 
Nonetheless, from a development perspective, the trigger groups represent an adequate scope for 

required testing conditions and have been used extensively by the industry [15]. In ORCAS, triggers 

are used as qualitative evidence to assess the completeness of the testing effort. 
 

This work is part of the Light Water Reactor Sustainability (LWRS) project, “DI&C Risk Assessment”. 

The object of this project is to provide effective quantitative and qualitative measurement tools to gauge 
the risk and reliability of modernization projects in existing and novel nuclear reactors [16] [17] [18]. 

In the LWRS-developed framework for DI&C risk assessment, ORCAS is developed and used to 

quantify the probability of STPA-identified UCAs [19] [20] [21]. 

 

3. METHODOLOGY 
 
The basis for ORCAS is to use pseudo-exhaustive test-based approaches [10] to generate a historical 

failure database. Defects that are detected and removed are classified based on ODC theory. Each defect 

class is then modeled to quantify probabilities of different software failure modes. Qualitative evidence 

collected throughout this process is then used to gauge how complete and confident we are in the 
assessment. The overall workflow of the method (and meaningful extensions) can be seen in Figure. 1. 

Items in the dashed box are all elements pertaining to the ORCAS methodologies. In general, the outputs 

of ORCAS are the software failure mode probabilities and confidence in the assessment. The qualitative 
evidence derived from ORCAS include the requirement traceability matrix (RTM), trigger coverage 

assessment (TCA), structural path coverage, and reliability modeling stability. The quantitative 

evidence include the defect reports used to determine failure probability. 
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3.1 Stages of ORCAS 

It is important to note that the assessment of software reliability should be continuously evolving with 

the implementation and design of the system. For instance, the target and scope of the analysis may not 
be fully known at the start of the assessment due to inherent complexity of the software system. Missed 

relevant items will require returning to the prior stage for further refinement. For example, when a 

defect is detected and classified in stage 3, it is expected to be repaired before the software is deployed. 

This will require returning to stage 2 for defect removal activities. Imperfect knowledge and discovery 
at any individual stage suggests that revisiting a prior stage is anticipated.  
 

 
Figure. 1 Overall workflow of ORCAS. 

In stage 0, the relevant information and details pertaining to the system are collected. This step is 

assumed to occur in any assessment and thus not described in detail. The information that can be 

collected at this stage can include formal documentation (i.e., IEEE 29148, IEEE 829, IEC 61508, etc.), 
defect and anomaly reports, design, and requirements specifications. Exact documents are not specified; 

however, information pertaining to the functional and non-functional requirements, implementation 

design, and test verification and validation are required for further stages. 
 

In stage 1, the scope and testing adequacy requirements are defined. Here the desired modules and 

functions of the system are outlined and what type of testing is required. As software can be incredibly 

complex, initially assigning the scope to the entire system can be overwhelming and uninformative. 
Rather, it is advised that a fault tree approach is adopted to assess exactly what the stakeholders are 

concerned about (via top events) and how it may impact operational goals. The fault tree provides 

structure, but also linear relationships between software failures to loss events. HAZCADS can be one 

method to develop the qualitative fault tree; however, in this work, the REdundancy-guided Systems-
theoretic Hazard Analysis (RESHA) [22] [23]is utilized to deconstruct the DI&C systems. In RESHA, 

failures in the control systems are based on physical separation of components and devices to emphasize 

the focus on control processes. For instance, an analog to digital converter integrated circuit is a physical 
component where its hardware and software failures can be modeled in an integrated fault tree. In 

addition, recent work in RESHA also introduces unsafe information flows (UIFs) as a software failure 

mechanism. UIFs are relevant for information-based, control-absent systems such as monitoring 

systems. In essence, UIFs mimic UCAs in failure categories but deals with information/feedback 
dependencies. The failure modes are: (1) failure to provide feedback when needed (UIF-A); (2) 

providing feedback when not needed (UIF-B); (3) the feedback that is provided comes too early, too 

late, or out of sync/sequence (UIF-C); and (4) the feedback value is low, high, not-a-number (NaN), or 
infinity (Inf) (UIF-D). Further details can be found in [17]. Lastly, RESHA fault tree construction 

follows an STPA top-down systems theoretic approach. This can help constrain the size of the tree to 

only basic failure events relevant to the stakeholders. Once the relevant aspects for analysis are 
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identified, the target software can be assessed based on testing completeness (adequacy) and satisfaction 
of test formulation requirements. The purpose of these testing adequacy requirements is to determine 

what tests should have been implemented for verification and how complete the testing is. In this work, 

the adequacy of requirements is outlined in a three-level test suite hierarchy, as shown in Figure 2. Each 

level specifies defect triggers that need to be considered during test implementation and activities that 
should be conducted to address the testing adequacy. Recommended methodologies, such as T-way 

combinatorial testing [24], modified condition decision coverage (MCDC) [25], boundary value 

analysis (BVA) [26], and equivalence partitioning (EP) [26] have been proven to be experimentally 
effective and are recommended to complete each activity. However, quantitative test metrics alone are 

not adequate at predicting software reliability, as discovered in [27]. Hence, the need for qualitative 

evidence to assess trustworthiness and completeness in the assessment.  

In stage 2, the testing adequacy requirements identified in the previous stage are compared to the testing 

efforts conducted by the development team. For activities involving T-way combinatorial testing, BVA, 

and EP, the specific range, variation, edges cases etc. of the parameters were identified in the previous 
stage. These need to be traceable to test cases implemented by the developer. For path analysis, tests 

should exist that consider different path conditions. For the RTM, both functional and non-functional 

requirements of the software should be traced to associated test cases that demonstrate conformance. 
The completeness of the RTM, TCA, and structural coverage is used as qualitative evidence for testing 

completeness. These metrics also serve to identify areas requiring further testing. For instance, if 

function variation was not considered during testing, the associated tests can be implemented to satisfy 
this metric. The defects from testing are collected from two sources. The first source are the existing 

defect reports during the development process. The second source is the additional defect removal 

process, which is initiated due to inadequate test coverage. 

 
 

   
Figure 2. Three-tier software testing requirements with recommended activities and methods. 

In stage 3, the defect reports are collected and categorized based on ODC theory [28]. An analysis of 

defects involves understanding what went wrong and how it was resolved. Importantly, defects are 

classified based on shared characteristics of the resolution or solution. It should be noted that if widely 
different solutions exist for the same problem, it may be an indication of inadequate requirements and 

constraints specification for the problem. After the classification of defects, the defect reports are 

assigned to specific software failure modes based on data-driven causality relationships. 
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The relationship between defect class and software failure mode is based on quantitative data collected 
from various open-source Github repositories namely, the MongoDB, Cassandra, Apache HBase, 

Zephyr, and OpenPilot repositories. The first three are all NoSQL database management systems; data 

can be found at [29]. Zephyr is a scalable small-footprint real-time operating system while OpenPilot 

is a semi-autonomous driving system. For each issue report in the databases, the defect class was 
determined first, followed by how it impacted the software. The impact to the users/stakeholders was 

generalized into the four UCA/UIF software failure modes. The contribution by each class to specific 

UCA/UIF then was counted and used to determine conditional probabilities (e.g., 

𝑃(UCA-A|Function defect)). In this work, 402 defect reports were used in total to form the conditional 

probabilities. In Figure 3, the various conditional probabilities with UCA/UIF can be seen. Darker color 

indicates greater correlation between defect class and UCA/UIF failure mode. For example, suppose a 
new assignment defect was detected in the software. Based on historical data, it has a 66.7% chance to 

cause a UCA/UIF-B under the worst environmental conditions. However, it is not as useful to discuss 

discovered defects, as they will have been removed/repaired. Therefore, the probability of remaining 

undetected defects by class is desirable. 
 

 
Figure 3. Causality of software failure modes (UCA/UIFs) and orthogonal defect classes 

  

In stage 4 of ORCAS, the probability of specific defect classes are determined. The methodology behind 

reliability growth models is not discussed in detail as extensive literature already exists. However, for 
ODC class specific SRGM, the author recommends Ref. [28]. In essence, each defect that is identified 

and classified requires the time or effort during testing. There are two important outcomes from this 

stage. The first is the predicted failure probability of each defect class and the second is the usefulness 

of the model. The second outcome is highly dependent on the amount of failure data required to generate 
reasonably accurate predictions on the remaining number of defects. Stability is used as a qualitative 

attribute to gauge usefulness. Generally, in stable models, the total number of predicted defects should 

not vary significantly from week to week. If variations are large, the resulting predictions also have a 
large variation thus rendering the model useless. In Ref. [30], this was the issue for their safety critical 

DI&C system as there was insufficient failure data for convergence. A 10% maximum variation 

allowance is recommended and shown to be effective [31]. This value also informs developers when 

sufficient failure data has been collected and testing can be stopped.  
 

It is anticipated that reliability growth modeling will be difficult and not always applicable in every 

software development life cycle (SDLC). The measurement of effort can be difficult to accurately 
determine due to a range of factors. Development groups may batch repair defects together or the 

software development may be proprietary, making SRGM parameter estimation difficult. In such cases, 

a bounded failure probability estimation approach can be adopted. In bounded estimation, it is assumed 
that most defects have already been removed. Following reliability growth theory, further testing effort 

only reduces the probability of a defect existing; thus, the failure probability will only decrease. If such 

an approach is used, it is recommended only after the SDLC where testing has been conducted. The 

probability is determined approximately by counting the number of defects by class and dividing by the 
total testing effort. For failure-on-demand, the test effort is the number of tests conducted. For 

continuous failure probability, the test effort is the product of the test duration by the number of tests. 

The output is the failure probability of each defect class (e.g., 𝑃(Defect)). 
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Finally, the probability of specific UCA/UIF classes can be determined by multiplying the conditional 
probabilities of each class with an individual class probability, as shown in Eqn.(1. Recall the 

conditional probability was pre-determined through the historical defect data. Only the second term, 

𝑃(Defect) needs to be determined by the users. The result is the probability of each UCA/UIF mode 

(Eqn.1). The total software failure probability can be found through the sum of all UCA/UIF modes. 
 

𝑃(UCAX) = 𝑃(UCAX|Alg. )𝑃(Alg. ) + ⋯ + 𝑃(UCAX|Timing. )𝑃(Timing. ) (1) 

The last stage of ORCAS is the qualification of the software development process. Recall that the 

qualitative information derived from the method include the RTM, the TCA, the structural path 

coverage, and the stability of the reliability modeling. The developers and users can assess the 
completeness of the testing effort by reviewing how complete each qualitative factor is and which areas 

need further refinement. For instance, the RTM informs the developers whether each requirement was 

tested, while the TCA informs the developers that every scenario considered. The developers can then 

return to those software sections and conduct further testing. 
 

3.1 Assumptions and Limitations 

 
This method has several assumptions and limitations. The most concerning limitation is the use of 

reliability growth modeling in highly critical systems. In Ref. [30], insufficient software failure data 

was cited as one reason why this method is infeasible. When operational failure data is limited, the 
model is oversensitive, and the predictions have large uncertainties. While this may not be the case for 

all software, the lack of failure data is a highly relevant and limiting scenario. ORCAS only partially 

addresses this issue. When testing completeness is sufficient, but failure data is insufficient (i.e., all 

triggers are considered but no defects were discovered), ORCAS defers to a different methodology, 
which is known as Bayesian and Human-reliability-analysis Aided Method for the reliability Analysis 

of Software (BAHAMAS) [32]. The qualitative evidence derived from ORCAS can also be used to 

support BAHAMAS. This is seen in Figure. 1, where low assessment confidence leads to BAHAMAS. 
 

The second major assumption is that causality between defect classes and UCAs/UIFs do not differ 

significantly between different types of software. In this work, while this assumption held for several 

different types of assessed software (i.e., database management, embedded OS, vehicle control), further 
verification of this relationship is required for all software. While ODC suggests that software defect 

classes are process and development agnostic, more evidence is required to justify this claim.  

 

4. CASE STUDY   
 

In this work, the ORCAS methodology was applied to an embedded smart sensor developed by VCU. 
The sensor is a barometric pressure and temperature sensing device that originates from the VCU 

Unmanned Aerial Vehicle (UAV) Laboratory [12]. The device consists of mature design and code, 

including the Software Requirements Specification (SRS) and Software Design Description (SDD) 
documentation, with over 10,000 hours of tested flight time. The software is written in GNU11 C 

programming language for the application code and runs on top of the ChibiOS Version 17.6.4 Real-

Time Operating System (RTOS) [12]. The software was tested extensively using a pseudo-exhaustive 
test-based approach developed by VCU [10] and incorporates methodologies such as combinatorial 

testing, boundary value assessment, equivalence partitioning, and MCDC structural path coverage.  

 

4.1. Pseudo Exhaustive Testing Results 

 

The tests conducted by VCU were collected and assessed for testing completeness. The SRS and SDD 

documents were reviewed; and test tracing was conducted. In total, 10,687 tests were conducted on 
three functions: (1) ‘circular_buffer_read;’ (2) ‘get_current_pressure;’ and (3) ‘kalman_filter.’ 

Duplicate tests in T-way testing were not counted. Fault injection testing was completed by VCU; 

however, details on test formulation were not available, and thus, not counted. However, no new defects 
were detected through fault injection that were not originally caught by T-way combinatorial testing. 
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The defects that were discovered can be seen in Table 1. In column one and two, the testcase failure 
and root cause is described and conducted by VCU. In column 3, the defect class and resolution are 

specified via ORCAS.  

 

Table 1. Software failures, defect class, and resolution from VCU test data. 

 

4.2. Qualitative Evidence 

 
The qualitative evidence collected in this case study include the RTM, as shown in  

Table 2, the TCA, as shown in Table 3, and structural path coverage. The requirements were derived 

from the SRS document provided by VCU. In total, ten high-level requirements were identified. 

Additional requirements were also specified in the SDD, but are refinements of the original ten. In 
column one, the requirement tag is provided, followed by a brief description in column two. In column 

three, tests that were implemented for each requirement were traced. If targeted tests for that 

requirement existed, a ‘complete’ grade (or 1) is assigned. Similarly, if no targeted tests were created, 
an ‘incomplete’ grade (or 0) is assigned. If tests that required part of the requirement existed, but were 

targeted at other requirements, an ‘indirect’ grade (or 0.5) is assigned. For example, the data averaging 

requirement (REQ-7) had direct tests associated and was completed with T-way combinatorial testing. 
For REQ-7 to be tested, collection of sensor data (REQ-1) must have been functional too. However, no 

tests were explicitly designed for REQ-1; therefore, only partial indirect testing was conducted on REQ-

1 via testing of REQ-7. Of the ten high-level requirements, five had tests directly associated with them, 

four had indirect testing, and one had no tests.  
 

For trigger coverage assessment, all three levels of software testing were assessed (Table 3). From right 

to left, the columns include the level of testing, the recommended activities, the triggers to be covered, 
VCU’s implemented method for each activity, and the completeness score. Both component and 

subsystem testing were complete and had various types of tests associated. However, there were 

inadequate tests developed for the system level. Specifically, no tests were found for configuration or 

workload/stress testing. This corresponds with the RTM as no tests were traced to REQ-3. The 
startup/restart trigger also only had indirect tests (as the device had to be turned ON to run). 

 

TestCase Failure Root Cause Defect Class and Resolution 

Unable to fill the buffer completely. Can 

only fill buffersize-1 elements. 

Incorrect buffer full 

check. 

Algorithm defect, traversal method 

through circular buffer changed to 

check all elements. 

TestExecution Timeout – Buffer overflow 
and corruption of neighboring memory 

addresses cause the ‘Memcpy’ function to 

hang when called with a length greater 

than the destination buffer size. 

Missing destination 
buffer overflow check. 

Checking defect, limit on size of 
buffer implemented via IF statement 

and truncation. 

Indicates successful data read operation 

even with invalid configurations of buffer, 

‘size of buffer,’ ‘head,’ and ‘tail’ pointers. 

Invalid buffer 

configurations not 

handled. 

Algorithm defect, changed true 

statement to false when invalid 

configuration branch taken. 

Returns varying negative values of buffer 

read length when requested ‘number of 

bytes’ is negative. 

Invalid negative values of 

the number of bytes to be 

read is not handled. 

Checking defect, limit on negative 

inputs implemented via IF statement. 

Negative values of buffer size are accepted 

during buffer initialization and buffer is 

filled with negative size value. 

Invalid buffer size is not 

considered during buffer 

initialization. 

Checking defect, limit on negative 

inputs implemented via IF statement. 

Actual output value indicates ‘Infinity.’ Missing divide by zero 

check. 

Checking defect, try catch for divide 

by zero exception added. 

Actual output value indicates ‘NaN’ (not a 
number). 

Missing overflow check 
in float computation. 

Checking defect, try catch for 
overflow exception added. 

Function processes input values outside 

the valid range. 

Missing invalid input 

value handling. 

Checking defect, limit on inputs 

implemented via IF statement. 
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For the structural path coverage, VCU’s team demonstrates that the use of T-way combinatorial testing 
can achieve 100% MCDC coverage [10]. Additional path assessment conducted via ORCAS agrees 

with VCU’s results and revealed 12 unreachable but extraneous/benign code segments.  

 

4.3. Quantitative Evidence 

 

The quantitative evidence that was collected includes the eight defect reports from testing, as observed 

in Table 1, and the 10,687 tests. Each test was assumed to correspond to 1 hour of effort. In addition, 
reliability growth models could not be used for the VCU data as the timeline of effort required to create 

and run the tests was not measured. Therefore, the bounded failure probability estimation approach is 

adopted. The software failure modes are determined from the SRS and SDD documentation. Based on 

specifications, one of the hazards to the system was determined to be ‘Incorrect pressure above ±1% 

of true value was provided to dependent devices causing unstable altitude adjustments.’ The possible 

UIFs includes A, C, and D corresponding to a pressure reading that is missing when needed, a pressure 

reading that is asynchronous to reality, and a pressure reading that is too high or too low, NaN or Inf 
invalid values. UIF-B is not applicable for continuous monitoring systems as the value will always be 

needed. 

 
Using the correlations shown in Figure 3, the individual UIF failure probabilities are determined, 

observed in Table 4. Defects with zero failure probability (or not detected) are excluded from the table. 

The total software failure probability was determined to be 5.854E-4 per hour (bottom right sum in 

Table 4). The probabilities of each UIF can be seen in the last row, which is the sum contribution of the 
individual probabilities.  

 

Table 2. Abridged Requirements Traceability Matrix 

Specified Requirements Functional Description  Test Complete Scoring 

Collection of Sensor Data 

(REQ-1) 

ASCII format starting with six calibration 

constants followed by float point data. 

Indirect 0.5 

Transmission of Data 
(REQ-2) 

I2C protocol transmitting [temp., pressure, KF-
pressure]. 

Indirect 0.5 

Device Reconfiguration 

(REQ-3) 

Capability at updating parameters of MS5611. Incomplete 0 

Re-ranging of Data (REQ-

4) 

Valid differential pressure (-1) to (+1) psi, valid 

absolute pressure range (0) to (15) psi, capability 

to re-scale pressures to defined ranges. 

Complete 1 

Temperature-effect 

Compensation (REQ-5) 

Valid range (-40) to (125) ⁰C, capability to adjust 

Temp. to valid range. 

Complete 1 

Transmitter Calibration 

(REQ-6) 

Recalibrate [min, max] of internal ranging and 

compensation parameters. 

Complete 1 

Data Averaging (REQ-7) Analog data is converted using moving avg. 

Kalman filter with size of window updatable as 

user parameter. 

Complete 1 

Data Conversion (REQ-8) Float to int conversion and rounding must be exist 

with error correction. 

Complete 1 

Data Output (REQ-9) Manage serial transmission to host via UART. Indirect 0.5 

Data Logging/Clocking 

(REQ-10) 

Host update rate must be greater than 2 Hz, with 

three commands to shell program. 

Indirect 0.5 

 
4.4. ORCAS Results 

 

The VCU smart sensor was designed to be a representation of a safety critical smart sensor device. As 
such, a thorough design, documentation, and development environment of the software was conducted. 

The device also had extensive operational hours justifying reliability. However, from the ORCAS 

assessment, we can conclude two specific things. From qualitative evidence, the inadequate areas of 

testing verification were identified. These primarily include the system level configurable options, 
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stress, and communication with peripherals. In addition, while many conditions were tested, 
approximately 76%, this value may be unacceptable and used as an argument against software 

reliability. From the quantitative evidence, a maximum failure probability of 5.854E-4 per hour was 

determined based on the number of tests and number of detected defects. Note this value is for any 

software failure regardless of severity. While this value may seem acceptable, the qualitative evidence 
suggests that additional hidden defects may exist due to incomplete testing.  

 

Table 3. Abridged Trigger Coverage Assessment 

 Activity Defect Triggers Required Implemented Method Score 

Component Unit Test Simple Path MCDC (Complete) 1/1 

Function Test Coverage, Variation, 

Sequence 

T-way, BVA, EP, Sequence 

testing (Complete) 

3/3 

Subsystem  Unit Test Simple Path, Complex Path MCDC (Complete) 2/2 

Function Test Coverage, Variation, 
Sequence, Interaction 

T-way, BVA, EP, Sequence 
testing, Interaction verification 

(Complete) 

4/4 

System System Test Startup/Restart (Indirect) 0.5/1 

System Test Recovery/Exception 

Normal Mode 

T-way, BVA, EP, fault injection 

(Complete) 

2/2 

System Test Configuration 

Workload/Stress 

(Incomplete) 0/2 

 

Table 4. Probabilities of each UIF with sum totals 

 UIF – A UIF – B UIF – C  UIF – D  Total 

Algorithm 5.989E-5 0 6.550E-5 3.556E-5 1.609E-4 

Checking 2.021E-4 0 1.437E-4 7.860E-5 4.244E-4 

Total 2.620E-4 0 2.092E-4 1.142E-4 5.854E-4 

  

5. CONCLUSION 
 

A novel approach to determining software reliability and supporting evidence is discussed in this work. 
Software failure data from VCU’s smart sensor device was collected and used to demonstrate the 

methodology. While a pseudo-exhaustive test-based approach was utilized (as recommended by 

ORCAS), it was shown that not all requirements and defect triggering scenarios were considered. These 
are areas where further testing effort are recommended. Software failure probabilities per UIF mode 

were also determined. A linear correlation between defect class and UCA/UIF was determined from 

402 defect reports acquired from various open-source repositories. The individual and total UIF 

probabilities were determined from this correlation. By using ORCAS, the developer can identify areas 
where further work and the necessary methods are still needed to implement. They will also be able to 

provide evidence to stakeholders toward software reliability based on the qualitative and quantitative 

results. Future work includes collecting data from different types of software to further verify the 
UCA/UIF correlation developed in Figure 3.  
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