SAND2022-8704

SAND2022-8704
Printed June 29, 2022

National
Laboratories

SANDIA REPORT)

Inverse Methods — Users Manual — 5.8

Sierra Inverse Methods Development Team:
Volkan Akcelik, Wilkins Aquino, Andrew Kurzawski, Cam McCormick, Clay
Sanders, Chandler Smith, Ben Treweek, and Tim Walsh

Latest Software Release:
5.8-Release 2022-06-27

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the
United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.
Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech
Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NYSE,

Natfional Neclear Security Admvinisfration

ABSTRACT

The inverse methods team provides a set of tools for solving inverse problems in structural
dynamics and thermal physics, and also sensor placement optimization via Optimal
Experimental Design (OED). These methods are used for designing experiments, model
calibration, and verification /validation analysis of weapons systems. This document
provides a user’s guide to the input for the three apps that are supported for these
methods. Details of input specifications, output options, and optimization parameters are
included.

This page intentionally left blank.

CONTENTS

1. Inverse Methods in Sierra/SD oL 1
1.1. Inverse Solution Methods in Sierra/SD............. 1
1.2. DirectFRF-Inverse Solution Case 1

1.2.1. Load Identification 2
1.2.2. Material Identification 4
1.2.3. Multi-Experiment Material Identification 4
1.2.4. Circuit Parameter Identification For Piezoelectric Modeling .. 5
1.3. Eigen-Inverse Solution Case 6
1.3.1. Eigenvalue Material Identification 7
1.3.2. Eigenvector Material Identification 7
1.4. ModalFRF-Inverse Solution Case 10
1.4.1. Load Identification 11
1.4.2. PSD Load Identification 12
1.5. ModalTransient-Inverse Solution Case............................. 14
1.6. Transient-Inverse Solution Case 16
1.6.1. Load Identification 17
1.6.2. Material Identification 18
1.7. Inverse Options in Sierra/SD i L. 19
1.7.1. Optimization 20
1.7.2. Inverse-Problem 24
1.7.3. Inverse Data Files 26
1.7.4. Block section for Material Identification 33
1.7.5. Material section for Material Identification 34
1.7.6. Loads section for Load Identification...................... 41
1.7.7. Limitations for Inverse Load Problems 43
1.7.8. ROL Output for Inverse Problems 43
1.8, Example Inverse Problems....... 44
1.9. Experimental Data 44
1.10. Inverse Problems - Load-ID 44
1.10.1. Experimental Model 44
1.10.2. Forward Problem 45
1.10.3. Inverse Problem with known loads........................ 45
1.10.4. Inverse Problem with unknown loads 46
1.10.5. Verification. 46
1.11. Inverse Problems - Material-ID 47
1.11.1. Experimental Model 47
1.11.2. Inverse Problem input format 47

1.11.3. Running the Inverse Problem 49

1.11.4. Verification.o 49

2. Inverse Methods with InverseAria, 50
2.1. Introduction 50

2.2 0utline 50
2.2.1. Beta Capabilities and Limitations o1

2.2.2. Getting Started with Inverse Aria 52

2.3. Inverse Problems 52

2.4. Thermal Conductivity i 53

2.5. Steady Boundary Heat Flux 55

2.6. Transient Boundary Heat Flux 56

2.7. Arrhenius Source Terms with Finite Differences 58

3. Optimal Experimental Design 59
3.1, Imput Deck o 59

3.2, OED .. 59
3.2.1. Optimality Type 60

3.2.2. Initial Design o 60

3.3. Linear Model e 61
3.3.1. General Framework. 61

3.3.2. Frequency Domain i 62

3.3.3. Time Domain. 63

3.4. Executing OED and Results 64
3.4.1. OED executable 64

3.4.2. Parallel Runs 64

3.4.3. Results 65

3.5, Greedy Algorithm 65

3.6. Baseline Senors. 66

3.7, Tutorial Seripts 66
Index . .o 67

ii

LIST OF FIGURES

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.

Figure 1-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.

Figure 2-14.

Sample Data Truth Table Input for Acoustic Problem 28
Example Data Truth Table for Structural-only problem 28
Example data truth table for Structural Acoustics..................... 28
Sample Real Data File Input for an acoustics-only problem 29
Sample Real Data File Input for a structural-only problem 30
Sample Real Data File Input for a data type moduli problem 31
Sample Transient Data File Input for a structural-only problem 32
Example of ROL__Messages.tst file for Inverse Problem Solution 44
Inverse Football Problem Geometry 45
Foam block model with finite element mesh and force location 47
Domain of the example thermal conductivity inverse problem. 53
Objective function and gradient norm at each iteration of the optimizer. . 55

Domain of the example heat flux inverse problem (left) and residuals for
the inverse problem (right). 56
Transient heat flux with inverse solution (left) and residuals for the inverse
problem (right).o 58

iii

LIST OF TABLES

Table 1-1.
Table 1-2.
Table 1-3.
Table 1-4.
Table 1-5.
Table 1-6.
Table 1-7.
Table 1-8.
Table 1-9.

Table 1-10.
Table 1-11.
Table 1-12.
Table 1-13.
Table 1-14.
Table 1-15.
Table 1-16.
Table 1-17.
Table 1-18.
Table 3-19.

Inverse Solution Types.. 1
DirectFRF-Inverse Solution Case Parameters. 1
Eigen-Inverse Solution Case Parameters. 6
ModalFRF-Inverse Solution Case Parameters. 10
ModalTransient-Inverse Solution Case Parameters. 14
Transient-Inverse Solution Case Parameters. 16
Optimization Section Parameters 23
Optimization Section Parameters for Line Search 23
Optimization Section Parameters for Trust Region 24
Inverse-Problem parameters. i 25
Block Section Parameters for Material Inversion 33
Material Section Parameters for Material Inversion..................... 35
Block Section Parameters for Material Inversion 36
Table of Supported Material Parameters for Inverse Methods 39
Parameters in material section for Damage Identification 40
Parameters in inverse-problem section for Damage Identification 40
Loads Section Parameters for Force Inversion.......................... 41
Inverse Load Type Options i 42
Optimality Criteria 60

v

1. Inverse Methods in Sierra/SD

1.1. Inverse Solution Methods in Sierra/SD

Sierra/SD supports a wide variety of different analyses or solution methods. Input
consists of an Exodus mesh file and a text input file. Solution methods are specified in the
text input file in the solution section. For details on using Sierra/SD, including analysis
types and solution methods not related to inverse problems, the reader is directed to the
Sierra/SD User’s Manual [12].

The Solution section of the input file defines the type of physics to simulate. Analysis
types relevant to inverse problems are shown in Table 1-1.

Table 1-1. — Inverse Solution Types.

Solution Type Description

eigen-inverse Inverse solution to find material properties to pro-
duce given eigen solution

ModalFrf-inverse Inverse solution to find load or power spectral density
(PSD) to produce given modal frf

modaltransient-inverse Inverse solution to find load to produce given modal
transient

directfrf-inverse Inverse solution to find load or material properties
to produce given frequency response

transient-inverse Inverse solution to find load or material properties
to produce given transient solution

1.2. DirectFRF-Inverse Solution Case

Parameter Type Default | Description

Table 1-2. — DirectFRF-Inverse Solution Case Parameters.

The directfrf-inverse solution method is used to solve an inverse problem for a direct
frequency response analysis. As in a forward solution, most of the parameters of an inverse
frequency response method are found in other sections'. The user provides complex
displacements and /or pressures at a set of nodes in the model, and the solution to the
inverse problem is a set of loads, materials, etc. that best correspond with the user’s
input.

IThe forward solution supports a Padé expansion. This is not supported for inverse methods.

1

The forward problem is defined in Eq. (1.1)

K +iwC —w?M | 1= f(w) (1.1)
=A(w)

where 7 is the Fourier transform of the response u, and f is the Fourier transform of the
applied force.The inverse equation is identical, but must be solved with optimization
subject to regularization because measurements are available only at a subset of the
analysis degrees of freedom.

The basic requirements for a directfrf-inverse simulation are as follows:

Optimization: Control over the optimization problem is specified in the optimization
block. See Sec. 1.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the
measurement data. It is also where design_variable is specified (e.g., load,
material, etc.).

Truth Table: The truth table data_truth_table from the inverse-problem block is a
list of the indices of the global node numbers (a.k.a. target nodes) where

displacements or acoustic pressures are measured. See Sec. 1.7.3 for file format
details.

Data File: Experimentally determined “target” displacements are read from
real data_file and imaginary_data_file specified in the inverse-problem
block. See Sec. 1.7.3 for file format details.

Frequency: The frequencies at which the problem is solved are specified in the frequency
block.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems.
During the optimization solution ROL writes an output file, ROL Messages.txt that
contains convergence information. Section 1.7.8 contains a discussion of the output file that
is written by ROL.

1.2.1. Load ldentification
solution
directfrf-inverse
end

inverse-problem
design_variable = load
data_truth table = ttable.txt
real data file = dataReal.txt
imaginary_data_file = dataImag.txt
end

optimization
% optimization_package = ROL_lib
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 20
Use FD _hessvec = false
Use_inexact_hessvec = false
opt_tolerance = le-12
opt_iterations = 2
end
loads
sideset 301
inverse_load_type = spatially_constant
pressure=10
function = 1

end

Input 1.1. Direct frequency response load identification example input

Specifying design_variable = load applies inverse methods to determine sideset loads
which best correspond with the measured displacements and /or acoustic pressures provided
by the user. The material and model parameters do not change during the solution. For
structures, the loads are pressures or tractions?, and for acoustics, the loads are acoustic
accelerations. Note that for structures, inversion is based on the signed magnitudes of the
tractions; the direction of each traction is fixed.

An example input deck is given in input 1.1. In addition to the input blocks discussed in
the beginning of this section, there are several others specific to
design_variable = load:

Loads: See Sec. 1.7.6 for a description of the inverse parameters in the loads block for
load identification problems.

Frequency: For unknown loads, the frequencies at which the problem is solved are
independent. That is, a separate load identification is performed at each frequency.

Pressure or traction load identification through modal frequency response is also supported
for structures (see Sec. 1.4.1). Because modal solutions are significantly cheaper than direct
solutions, one approach might be to begin the inverse optimization with
modalfrf-inverse, then use the output as the initial guess for a follow-up
directfrf-inverse case. Section 1.7.7 contains a discussion of the current limitations
with inverse load methods.

2Moments and point forces are not currently supported.

3

1.2.2. Material ldentification

Specifying design_variable = material with the directfrf-inverse method applies
inverse methods to determine material parameters when provided with both loads and
structural displacements and/or acoustic pressures in a given finite element model®. The
load parameters do not change during the solution. As in the previous section, the forward
problem is defined in Eq. (1.1), and the inverse equation is identical but must be solved
with optimization subject to regularization because measurements are available only at a
subset of the analysis degrees of freedom. The solution provides the material parameters
for elements in the model that are specified to have unknown materials.

In addition to the input blocks discussed at the beginning of this section, there are several
others specific to design_variable = material:

Block: See Sec. 1.7.4 for a description of the block specifications for material inverse
problems.

Material: See Sec. 1.7.5 for a description of the provides material specifications for
material inverse problems.

Frequency: For unknown materials, the same set of material properties apply for every
frequency in the simulation, except in the case of frequency-dependent material
properties.

Viscoelastic material identification is also supported using measured homogenized complex
bulk and shear moduli. This capability is limited to structural-only problems where all
material blocks are isotropic viscoelastic.

1.2.3. Multi-Experiment Material Identification

In the same manner as design_variable = material described in the previous section,
design variable = multi_material may be used to apply inverse methods in the
frequency domain to determine material parameters. Here, multiple inverse problems are
combined. For instance, if two different load and displacement conditions result in two
separate responses for the same set of material properties, this method will use both
responses to determine a single set of material properties.

Most parameters for a multi-experiment inverse frequency method are similar to those for a
single-experiment inverse frequency method. The differences occur in the following
sections:

Loads: The loads block must be empty for this solution case; anything the user specifies
here will be overwritten by what they specify in the load block.

Load: Each load block provides a separate set of loads for each experiment individually.

3 As the system matrices (and consequently the modes) change at every inverse iteration, design_variable
cannot be set to material for modalfrf-inverse problems.

4

Inverse-Problem: In addition to the parameters discussed earlier, the inverse-problem
section must include values for nresponses for the number of experiments and
loadlID to specify a list of loads, one for each experiment.

1.2.4. Circuit Parameter Ildentification For Piezoelectric Modeling

In piezoelectric modeling with electric circuits, the circuit parameters are real constants,
and can be any combination of resistance, capacitance and inductance values. Specifiying
inverse_material_ type = homogeneous in a circuit block input can be used to identify
these constants. This capability is currently only supported for the directfrf-inverse
solution case. User must also specify upper and lower bounds for each circuit parameter
used in a given circuit block. For example, input 1.2 inverts for three circuit parameters
defined in Block 1. The keyword inverse material type = homogenous declares that
circuit parameters in this block are treated as inverse parameters. The upper and lower
bounds for each parameters are specificed with keywords capacitance_bounds,
resisance_bounds and inductance_bounds. The upper and lower constants are user
specified real values.

If needed, user can also identify circuit parameters concurrently with material model as
decribed in 1.2.2.

BLOCK 1
electrical_circuit
inverse_material type = homogeneous
capacitance = le-9

resistance = 50
inductance = le-6
capacitance_bounds = le-12 le-6
resistance _bounds = 1 100
inductance_bounds = le-9 1le-3

END

Input 1.2. Directfrf circuit parameter identification example input

1.3. Eigen-Inverse Solution Case

Parameter Type Default | Description
nmodes Integer 10 Number of modes to extract.
Shift to apply to matrix system to
shift Real _1.0e6 PRy | * 5y
allow solving singular systems.
untilfreq Real Inf Target frequency to reach.
ModalFilter string none Modal filter to define modes to
retain.
dalAdioint Select solver for the inverse problem
MOCALAQIOM™ | o dsw| camp| both camp (eigenvector material identification
Solver only

Table 1-3. — Eigen-Inverse Solution Case Parameters.

The eigen-inverse solution method is used to solve an inverse problem for an eigen
analysis. In this solution method, only material identification is currently supported.
Specifying design_variable = material applies inverse methods in the modal domain to
determine material properties on a block or element when provided with modal frequencies
and mode shapes. The user specifies some of the lowest modes of the structure, and
optionaly the mode shapes of the structure at locations in the model.

The standard parameters for modal analysis also apply here. Modal filters may not be
applied in eigen-inverse analysis. The analysis requires input both for measurement data
and for control of various optimization parameters. See the following sections for details:

Optimization: Control over the optimization problem is specified in the optimization
block. See Sec. 1.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the
measurement data. Of particular importance are the parameters modal _data file
and modal_weight_table, which are described further in Sec. 1.7.3. Also necessary
is the parameter design_variable = material.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems.
During the optimization solution ROL writes an output file, ROL_Messages.txt that
contains convergence information. Section 1.7.8 contains a discussion of the output file that
is written by ROL.

1.3.1. Eigenvalue Material Identification

solution

eigen-materialid
nmodes=12
shift=-1eb

end

inverse-problem
design variable = material
modal_data_file modal_data.txt
modal truth table = modal truth.txt

end

optimization
optimization_package = ROL_1lib
ROLmethod = trustregion
TRstep = secant
scaleDesignVars = yes
Max_iter_Krylov = 50
Use FD hessvec = false
Use_inexact hessvec = true
opt_tolerance = le-10
opt_iterations = 30

end

Input 1.3. Eigen material identification example input

In the case of eigenvalue optimization, only the modal frequencies are included in the
objective function. An example input is shown in input 1.3. The theory for this problem is
available in [3]. The objective function for the eigen value problem is given as:

=IOV
J(Au,p) =" [g (M)

1=1

+R(p). (1.2)

Where m is the number of modes, f3; is zero or one, \; is the computed eigenvalue, \,; is
the measured eigenvalue, and R(p) is the regularization term.

1.3.2. Eigenvector Material Identification

In this case, both the eigenvalues (modal frequencies) and eigenvectors (mode shapes) are
matched in the inverse solution. A detailed description of the theory and implementation
details of this solution case is given in [3]. To use this capability, it is necessary to specify
the keywords data_file and data_truth_table for the eigenvector data and eigenvector
truth table, respectively, which specify the modal shape amplitude data and truth table

7

information. The latter allows one to differentiate between a tri-axial and uni-axial
accelerometer.

The objective function extends Eq. (1.2) by adding the eigenvector term.

&(Ai—xmif i l[ui —wmilg
2

N
J(Au,p) =
2 i) T2 il

] +R(p), (1.3)

where u; is the computed eigenvector, u,,; is the measured eigenvector, and @ is the
observation matrix obtained from the truth table.

The issues an implementation must handle include repeated modes, crossing modes, the
singular adjoint linear system, and eigenvector scaling.

1.3.2.1. Repeated Modes When the computed or measured data contain two repeated
eigenvalues, the associated eigenvectors are not determanistic and steps are taken to
orthogonalize these modes with respect to the measured data. The measured data must be
sufficient enough for this orthogonalization for the inverse problem to converge. Note that
repeated modes can occur at iterations in the inverse process even when no repeated modes
are present in the measured data.

1.3.2.2. Mode Swapping/Crossing If the computed eigenvalues of a structure are
ordered from smallest to largest, the ordering of mode shapes will typically change as the
material parameters are varied. This also causes 10non-differentiability in the objective
function, which causes difficulties in gradient-based optimization. Mode tracking refers to
maintaining a correspondence of eigenpairs (eigenvalue and eigenvectors) between an
original and an updated system throughout changes in the eigenproblem. Measured data is
often incomplete, having only a few measured data points (physical accelerometer
locations) on a model with millions of degrees of freedom. An incorrect mode swap results
in a discontinuity in the slope of the objective function.

A mode tracking algorithm is used to minimize eigenvector misfit at each optimization
step.

1.3.2.3. Singular Solve The Adjoint Solution is singular due to the fact that the
eigenvector u; is in the kernel of the coefficient matrix. In order for a solution to exist, the
right hand side must be orthogonal to u; . Additionally, if rigid body modes (A =0) or
repeated mode are present, components of the corresponding eigenvectors must also be
removed from the right hand side before the solve. Even when this is done, however, the
resulting system of equations is singular and a Helmholtz (indefinite) problem, which
presents significant computational cost and robustness challenges for iterative linear
solvers.

The modalAdjointSolver = camp (default for eigenvector inversion) option enables a new
solver that uses a modal superposition of the previously computed eigenvectors to solve

8

this system of equations. When using the camp solver, it is recommended to request more
modes than contained in the measured data, and use the truth table file to remove these
modes from the optimization part of the solution.

The CAMP block is used to define the parameters for the camp solver.

CAMP
SC_OPTION 0
END

Input 1.4. CAMP solver block

Note that it is recommended to set the sc_ option parameter to 0 for the camp solver.

1.3.2.4. Computed Eigenvector Scaling An important consideration in eigenvector
optimization is that the mode shapes computed in Sierra/SD are by default mass
normalized. Measured modal shape amplitudes, on the other hand, could present with very
different scalings, since any eigenvector can be scaled by an arbitrary scale factor and will
still be a valid eigenvector. Thus, the eigen-inverse solution method includes an automatic
re-scaling of the computed mode shapes in the optimization so that they have the same
norm as the measured mode shapes. This re-normalization allows them to be properly
differenced in the objective function. We note that this internal re-scaling requires no user
intervention.

If the norms of the measured eigenvectors differ substantially from the norms of the
eigenvectors computed in Sierra/SD, then the re-scaling described in the previous
paragraph is necessary to correctly determine the next iteration of the design variables.
The scaled computed eigenvector u; can be written as

ﬁ,i = o;U;, (1.4)

where «; = |upm;|/|u;| such that the norm of @; is identical to the norm of eigenvector wy,;.
With this change, the eigenvector term in Eq. (1.3) becomes

2y ot —
K 1 mu Q
Juy=SmI e (1.5)
=2 Huml||2Q

A corresponding change to the gradient J,, is also required, but this change is not discussed
here.

1.4. ModalFRF-Inverse Solution Case

Parameter Type Default | Description
nmodes Integer 10 Number of modes to extract.
shift Real 1,006 Shift to apply jco matrix system to
allow solving singular systems.
untilfreq Real Inf Target frequency to reach.
ModalFilter string Hone Mod.al filter to define modes to
retain.
Exclude any modes below this
f f th dal
Ifcutoff Real nf | CHeney O e mocd

computation. Often used to exclude
rigid body modes.

Table 1-4. — ModalFRF-Inverse Solution Case Parameters.

The modalfrf-inverse solution method is used to solve an inverse problem for a modal
frequency response analysis. The modal FRF method is similar to the direct FRF method,
except the user must specify the number of modes nmodes. As in a forward solution, most
of the parameters in an inverse modal frequency response analysis are found in other
sections, and as in a directfrf-inverse problem, the user provides complex
displacements and /or acoustic pressures at a set of nodes in the model.

The forward problem is defined in equation (1.1). The inverse equation is identical, but
must be solved with optimization subject to regularization because measurements are
available only at a subset of the analysis degrees of freedom.

The basic requirements for a modalfrf-inverse simulation are as follows:

Optimization: Control over the optimization problem is specified in the optimization
block. See Sec. 1.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the
measurement data. It is also where design_variable is specified (e.g., load,
material, etc.).

Truth Table: The truth table data_truth_table from the inverse-problem block is a
list of the indices of the global node numbers (a.k.a. target nodes) where
displacements or acoustic pressures are measured. See Sec. 1.7.3 for file format
details.

10

Data File: Experimentally determined “target” displacements are read from
real data_file and imaginary_data_file specified in the inverse-problem
block. See Sec. 1.7.3 for file format details.

Frequency: The frequencies at which the problem is solved are specified in the frequency
block.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems.
During the optimization solution ROL writes an output file, ROL Messages.txt that
contains convergence information. Section 1.7.8 contains a discussion of the output file that
is written by ROL.

1.4.1. Load ldentification

solution
modalfrf-inverse
nmodes 100
end
inverse-problem
design_variable = load
data_truth table = ttable.txt
real data file = data.txt
imaginary_data_file = data_im.txt
end
optimization
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 50
Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = 1le-10
opt_iterations = 2
end
loads
sideset 6
inverse_load_type
pressure=1
function =1
sideset 6
inverse_load_type
ipressure=1
function = 2

spatially_constant

spatially_ constant

end
function 1
type linear

11

data 1 3
data 2 4
end
function 2
type linear
data 1 5
data 2 6
end

Input 1.5. Modal frequency response load identification example input

Specifying design_variable = load applies inverse methods to determine sideset loads
which best correspond with the measured displacements and /or acoustic pressures provided
by the user. The material and model parameters do not change during the solution. For
structures, the loads are pressures or tractions?, and for acoustics, the loads are acoustic
accelerations. Note that for structures, inversion is based on the signed magnitudes of the
tractions; the direction of each traction is fixed.

An example input deck is given in input 1.5. In addition to the input blocks discussed in
the beginning of this section, there are several others specific to design_variable =
load:

Loads: See Sec. 1.7.6 for a description of the inverse parameters in the loads block for
load identification problems.

Frequency: For unknown loads, the frequencies at which the problem is solved are
independent. That is, a separate load identification is performed at each frequency.

Section 1.7.7 contains a discussion of the current limitations with inverse load methods.

1.4.2. PSD Load ldentification

solution
modalfrf-inverse
nmodes 100

end

inverse-problem
design variable = psd_load
data_truth_table = ttable.txt
data_file = data.txt

end

optimization
ROLmethod = trustregion
TRstep = truncatedcg

4Moments and point forces are not currently supported.

12

Max_iter_Krylov = 50
Use_FD_hessvec = false
Use_inexact hessvec = false
opt_tolerance = 1le-10
opt_iterations = 2
end
loads
sideset 6
inverse_load_type = spatially_constant

pressure=1
function = 1
sideset 6
inverse_load_type
ipressure=1
function = 2

spatially_constant

end

function 1
type linear
data 1 3
data 2 4

end

function 2
type linear
data 1 5
data 2 6

end

Input 1.6. Modal frequency response PSD load identification example input

Specifying design_variable = psd_load applies inverse methods to determine a load
PSD (power spectral density) as an output when provided with the PSD of acoustic
pressures or structural displacements and a finite element model. The input is similar to
modal FRF load identification, with two exceptions. First, the design variables must be
defined such that there are independent real and imaginary parts of the force, traction, or
pressue. Thus, there should be twice the number of design variables as the dimension of
load PSD, corresponding to real and imaginary parts of the load. These design variables
must be entered into the input file in the order of the load index. Furthermore, for each
load index, the design variable for the real part should be immediately followed by the
design variable for the imaginary part. Second, a different data file format is required,
although the truth table format is identical. See Sec. 1.7.3 for further details.

An example input deck is given in input 1.6. In addition to the input blocks discussed in
the beginning of this section, there are several others specific to design_variable =
psd_load:

13

Data File: Experimentally determined “target” response PSDs are read from the
psd_data_file described in Sec. 1.7.3.

Loads: See Sec. 1.7.6 for a description of the inverse parameters in the loads block for
load identification problems. loads block.

Frequency: For unknown loads, the frequencies at which the problem is solved are
independent. That is, a separate load identification is performed at each frequency.

1.5. ModalTransient-Inverse Solution Case
Parameter Type Default | Description
nmodes Integer 10 Number of modes to extract.
Shift to apply to matrix system to
shift Real -1.0e6 11 O APDLY B0 IHAHX SySteil
allow solving singular systems.
untilfreq Real Inf Target frequency to reach.
ModalFilter string nowe Moqal filter to define modes to
retain.
Exclude any modes below this
frequency from the modal
lfcutoff Real -Inf computation. Often used to exclude
rigid body modes.
time__step Real Time step size.
nsteps Integer Number of time steps to take.
start time Real 0.0 Solution case start time.
nskip Integer 1 Results output frequency.
rho Real 1 Select time integrator.
load Integer Load to apply during solution case.
write_files al'l/ none| output| Al antrols Wthh re.sult ﬁlgs are
history written during this solution.

Table 1-5. — ModalTransient-Inverse Solution Case Parameters.

solution
modaltransient-inverse
nsteps = 100
time_step = 1le-3

14

nskip = 1
nmodes = 100
end
inverse-problem
design variable = load
data_truth table = ttable.txt
data_file = dataReal.txt
tikhonovParameter 1.0e-5
end
optimization
%» optimization_package = ROL_1lib
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 20
Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = le-12
opt_iterations = 2
end
loads
sideset 301
inverse_load_type = spatially_constant
pressure=10
function =1

end

Input 1.7. Modal transient load identification example input

The modaltransient-inverse solution method is used to solve an inverse problem for a
modal transient analysis. In this solution method, only load identification is supported.
Specifying design_variable = load applies inverse methods to determine sideset loads
with best correspond with measured displacements and/or acoustic pressures provided by
the user in the modal time domain. This capability differs from load identification in a
transient-inverse problem (Sec. 1.6.1) only in that modal superposition is used to
reduce computation time. As with forward analysis, the modaltransient solution will
converge to the direct solution as the number of modes increases. See the SierraSD
verification manual for an example of this convergence[13].

The parameters for load identification in a direct transient-inverse problem also apply
in the modaltransient-inverse case. The latter also requires the parameter nmodes, the
number of eigen modes calculated in the forward solve, as well as any additional
parameters needed for the eigen solution case. The eigen modes need only be calculated
once, and then can be re-used for each inverse iteration. Note that the Tikhonov parameter
can be used to mollify instability in the early time history.

15

An example is shown in input 1.7. The following input blocks are needed for
modaltransient-inverse with design_variable = load:

Optimization: Control over the optimization problem is specified in the optimization
block. See Sec. 1.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the
measurement data. It is also where design variable = load must be specified.

Truth Table: The truth table (data_truth_table from the inverse-problem block is a
list of the indices of the global node numbers (a.k.a. target nodes) where
displacements or acoustic pressures are measured. See Sec. 1.7.3 for file format
details.

Data File: Experimentally determined “target” displacements are read from data file
specified in the inverse-problem block. See Sec. 1.7.3 for file format details.

Loads: See Sec. 1.7.6 for a description of the inverse parameters in the loads block for
load identification problems.

Section 1.7.7 contains a discussion of the current limitations with inverse load methods.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems.
During the optimization solution ROL writes an output file, ROL Messages.txt that
contains convergence information. Section 1.7.8 contains a discussion of the output file that
is written by ROL.

1.6. Transient-Inverse Solution Case
Parameter Type Default | Description
time__step Real Time step size.
nsteps Integer Number of time steps to take.
start__time Real 0.0 Solution case start time.
nskip Integer 1 Results output frequency.
rho Real 1 Select time integrator.
load Integer Load to apply during solution case.
wite_fies | gl on][y Com il

Table 1-6. — Transient-Inverse Solution Case Parameters.

16

The transient-inverse solution method is used to solve in inverse problem for a time
domain analysis. With a few exceptions, the parameters for the forward transient solution
case apply to this solution method as well. The user provides a time series of displacements
and/or pressures at a set of nodes in the model, and the solution to the inverse problem is
a set of loads, materials, etc. that best correspond with the user’s input.

The basic requirements for a transient-inverse simulation are as follows:

Optimization: Control over the optimization problem is specified in the optimization
block. See Sec. 1.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the
measurement data. It is also where design_variable is specified (e.g., load,
material, etc.).

Truth Table: The data_truth_table from the inverse-problem block is a list of the
indices of the global node numbers (a.k.a. target nodes) where displacements or
acoustic pressures are measured. See Sec. 1.7.3 for file format details.

Data File: Experimentally determined “target” displacements are read from data_file
specified in the inverse-problem block. See Sec. 1.7.3 for file format details.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems.
During the optimization solution ROL writes an output file, ROL Messages.txt that
contains convergence information. Section 1.7.8 contains a discussion of the output file that
is written by ROL.

1.6.1. Load Identification
solution
transient-inverse
nsteps = 100
time_step = le-3
nskip = 1
end

inverse-problem
design variable = load
data_truth table = ttable.txt
data file = dataReal.txt

end

optimization

%» optimization_package = ROL_1lib
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 20
Use_FD_hessvec = false
Use_inexact_hessvec = false

17

opt_tolerance = le-12
opt_iterations = 2
end
loads
sideset 301
inverse_load_type = spatially_constant
pressure=10
function =1

end

Input 1.8. Transient Load Identification Example

Specifying design variable = load applies inverse methods to determine sideset loads
which best correspond with the measured displacements and/or acoustic pressures provided
by the user. The material and model parameters do not change during the solution. For
structures, the loads are pressures or tractions®, and for acoustics, the loads are acoustic
accelerations. Note that for structures, inversion is based on the signed magnitudes of the
tractions; the direction of each traction is fixed.

An example input deck is given in input 1.8. In addition to the input blocks discussed in
the beginning of this section, there is another that is specific to design_variable =
load:

Loads: See Sec. 1.7.6 for a description of the inverse parameters in the loads block for
load identification problems.

Section 1.7.7 contains a discussion of the current limitations with inverse load methods.

1.6.2. Material Identification

Specifying design_variable = material with the transient-inverse method applies
inverse methods to determine material parameters when provided with both loads and
structural displacements and/or acoustic pressures in a given finite element model® The
load parameters do not change during the solution, which provides the material parameters
for elements in the model that are specified to have unknown materials.

In addition to the input blocks discussed in the beginning of this section, there are several
others specific to design_variable = material:

Block: See Sec. 1.7.4 for a description of the block specifications for material inverse
problems.

Material: See Sec. 1.7.5 for a description of the provides material specifications for
material inverse problems.

SMoments and point forces are not currently supported.
6As the system matrices (and consequently the modes) change at every inverse iteration, design_variable
cannot be set to material for modaltransient-inverse problems.

18

1.7. Inverse Options in Sierra/SD

Inverse problems optimize parameters to reproduce experimental results. Inverse methods
include transient and direct frequency response load identification, direct frequency
response material identification, and material identification from eigenvalues. The methods
are based on solving optimization problems, with the goal to minimize the norm of the
difference between measured and predicted data. More detail is provided in the references
found in the theory notes. Inverse methods for identifying an unknown material (1.3, 1.2.2)
or an unknown load (1.2.1, 1.6.1) require solution block input. There may be additional
input required, such as the specification of test data results 1.7.3 and the specification of
the parameters in the Optimization 1.7.1 and Inverse Problem 1.7.2 sections. Input 1.9
illustrates a partial input for a “directfrf-materialid” problem. Highlighted portions of the
input are outlined below.

Sierra/SD uses the Rapid Optimization Library (ROL) as an optimization engine.
Portions of the ROL documentation can be found on the Trilinos website.”

solution
directfrf-inverse

end

optimization
optimization_package = ROL_lib
ROLmethod = trustregion
TRstep = secant
opt_tolerance = 1le-10

end

inverse-problem
design_variable = material
data_truth_table = ttable.txt
real_data_file = data.txt
imaginary_data_file = data_im.txt

end

block 1
inverse_material_type=homogeneous
material 1

end

block 2
inverse_material_type=known
material 2

end

material 1
isotropic

7 VL https://trilinos.org/packages/rol
19

density 10
G 1
K1

end

material 2

isotropic

density 1
G 2
K 2

end

Input 1.9. Sample “directfrf-inverse” input for material identification. Portions
of the input that are specific to inverse methods are emphasized.

1.7.1. Optimization

The optimization section provides options to control the optimization strategy as part of
an inverse method such as material identification. Parameters for the optimization section
are listed in Table 1-7, and an example is shown in input 1.11.

Sierra/SD uses the Rapid Optimization Library (ROL) [9], which is a Trilinos [7] package
for large-scale optimization. ROL is particularly well suited for the solution of optimal
design, optimal control and inverse problems in large-scale engineering applications. The
currently supported methods are trust region and line search, and the corresponding
parameters for these methods are listed in Tables 1-7, 1-8 and 1-9. These are only a subset
of the parameters available in ROL. We note that in tables 1-8 and 1-9, the abbreviations
tr and Is stand for trust region and line search, respectively. We use these abbreviations to
keep the parameter names succinct.

We note that for source inversion problems that involve directfrf-inverse ,
transient-inverse or modaltransient-inverse solution cases, we recommend using
Krylov-based methods such as line search with the newton-krylov option, or trust region
with truncatedcg option. An example for that case is given in 1.10.

optimization
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 50
opt_tolerance = le-8
opt_iterations = 5
scaleDesignVars = yes | no

END

20

Input 1.10. Optimization Section Example for Source Inversion

In the case of material inversion problems, the best algorithm is problem-dependent, and
may require some experimentation to arrive at the optimal parameters. We note that for
material inverse problems, the parameter scaleDesignVars has been shown to
significantly help convergence. This parameter defaults to no, but can be set to yes to
facilitate convergence.

Sierra/SD currently uses ROL methods for unconstrained and bound-constrained
optimization with line searches and trust regions (ROLmethod, boundConstraints,

Table 1-7). To provide the context for the parameter tables, we review some notation and
provide references to optimization textbooks.

Suppose X is a Hilbert space of functions mapping = to R. For example, = C R" and

X =L*Z)or Z={1,...,n} and X = R". We assume that the objective function f: X — R
is twice continuously Fréchet differentiable and that the bound constraints a, b € X are
given with a < b almost everywhere in =. We focus on methods for solving unconstrained
and bound-constrained optimization problems,

minimize f(z) and minimize f(z) subject to a<x<b,

respectively. The methods implemented in ROL utilize derivative information and two
strategies for guaranteed (global) convergence from remote starting points, line searches
and trust regions. We use the notation V f(z) to the note the gradient of f at z and
V2f(z) to denote the Hessian of f at x.

Line-search methods. Let x; be the k-th optimization iterate. For unconstrained
problems, line search methods compute an update to x; in the form of

Tpyl = T+ QfSk,

where sj, is a descent vector, and ;. > 0 is a scalar. The vector s; can be computed using a
variety of methods, including steepest descent, nonlinear conjugate gradients,
quasi-Newton (secant) methods and Newton-Krylov methods, see [11, Ch. 3, 5, 8 and 6,
resp.] and [6, Ch. 6.3]. Table 1-8 lists the parameters corresponding to the choice of the
method to compute the descent vector s; (LSstep, Table 1-8). To compute the scalar ay, a
line search approximately minimizes the one-dimensional function ¢ («) = f(zx + asg),
i.e., it approximately solves the optimization problem

minimize op(a) = f(xg+asg).

In general, the approximate minimizer «; must satisfy sufficient decrease and curvature
conditions to guarantee global convergence [11, Ch. 3|. Sierra/SD uses the cubic
interpolation line search from ROL, which includes a backtracking procedure that satisfies
the Armijo sufficient decrease condition

O (o) < or(0) + cra,0%(0) — flrp+agsk) < flog) +aron(V (o), se)x
21

where 0 < ¢ < 1, and does not require a curvature condition. An initial guess for the
line-search parameter can be specified if steepest descent or nonlinear conjugate gradient
methods are used for the computation of the descent vector sy (initial LS _Par,

Table 1-8). For bound constrained problems, the line search is a projected search. That is,
the line search approximately minimizes the one-dimensional objective function

or(a) = f(Pay(r+ask)),

where Py, j denotes the projection onto the upper and lower bounds. Such line-search
algorithms result in projected gradient, projected quasi-Newton and projected Newton
algorithms (see below).

Trust-region methods. For unconstrained problems, given the k-th iterate xj
trust-region methods compute the trial step s; by approximately solving the trust-region
subproblem

1
minimize §<Bk3,s)x +(gr, S)x subject to sl < A,
where By, € L(X,X) is an approximation of V2f(x}), gx approximates V f(zy), and Ay >0

is the trust-region radius. The approximate minimizer s must satisfy the fraction of
Cauchy decrease condition

1 : x|l x
——(Bis,8)x — {9k, s)x = Kol|gr || x min { Ay,
2 L+ | Brll nx,x)

for some kg > 0 independent of k. ROL implements several trust-region methods, including
Cauchy point, dogleg, double dogleg, and truncated conjugate gradient methods, see [11,
Ch. 4] and [6, Ch. 6.4]. Table 1-9 lists the parameters corresponding to the choice of the
method (TRstep, Table 1-9). Additionally, the user can specify the initial trust-region
radius, Ag (initial TR_ Radius, Table 1-9). For bound constrained problems, ROL
employs projected gradient, projected secant, and projected Newton-type methods. These
methods prune variables based on the binding set (see below) and run standard
trust-region subproblem solvers on the remaining variables. To ensure sufficient decrease,
ROL then performs a modified projected line search.

Bound Constraints. The bound constraint methods in ROL require the active set of an
iterate g,

A ={6€E: a1(§) = a() }N{E € ar(§) = b() }-

The active set is the subset of = corresponding to points in which zj, is equal to the upper
or lower bound. The complement of the active set (called the inactive set),

T = A, = =\ Ay, is the subset of = corresponding to points in which zy, is strictly between
a and b. Given A and the gradient g = V.J(z}), we define the binding set as

By ={¢€Z: xx(§) = alf), —gr(§) <0FN{E €= 1(§) = b(§), —gr(§) >0},

The binding set contains the values of £ € = such that if x(§) is equal to either the upper
and lower bound, then (zj — gx)(£) will violate bound. For both projected line-search and

22

trust-region methods, the step is computed by fixing the variables in the active set and
only optimizing over the inactive variables. That is,

skla, =0 and sz, are free.

Considering active, inactive and binding variables results in poor overall performance. To
circumvent this behavior, ROL employs € variations of this set. Namely, if € > 0, then

F=1E€E ()
B, ={{ €= m()

<a(&)+epn{e T a(€)
<a(§)+e —gr(€) <0}n{¢

Zb(§) =€}
€E: ap(€) 2 b(§) —€, —gr(§) >0}

(11

The € inactive set is similarly defined as the complement of the € active set. ROL
dynamically controls € so that as an algorithm approaches the optimal solution, € decreases

to zero. [8, 2, 10, 4, 5].

Krylov methods. Both line-search and trust-region methods may involve iterative
methods of the Krylov type in the step computation. If such methods are requested, the
stopping conditions for these sub-solvers can be defined through the parameters

Absolute Krylov_ tol, Relative Krylov_tol and Max_iter Krylov described in Table 1-7.
Scenarios requiring Krylov methods are triggered, for instance, if TruncatedCG is selected
for a trust-region algorithm or if newtonkrylov is selected for a line-search algorithm.

Parameter type | default | Description

ROLmethod select | required | LineSearch, TrustRegion

boundConstraints Yes/No Yes Bound constraints on design variables

scaleDesignVars Yes/No o (?ontrols scaling of design Vari.ables ‘by ini-

tial guess to make them nondimensional

opt__ tolerance real le-10 | Gradient tolerance

opt_iterations - 20 Maximum iterations; an iteration may in-
- clude one solve of the Newton system

objective tolerance real 1le-20 | Objective function tolerance

Absolute_ Krylov_ tol real le-6 Krylov absolute tolerance

Relative Krylov_ tol real le-3 Krylov relative tolerance

Max_ iter Krylov int 20 Krylov iteration limit

Table 1-7. — Optimization Section Parameters

Parameter type | default | Description
nonlinearcg, steepest, secant, new-
LSstep select | secant | tonkrylov, newton (require useTransfer-
Matrix=on 1-10)
initial LS Par | real 1.0 only applicable for nonlinearcg and steepest.

Table 1-8. — Optimization Section Parameters for Line Search

23

Parameter type default Description
. TruncatedCG, CauchyPoint, Dogleg, Dou-
TRstep select | Cauchypoint bleDogleg
initial TR Radius | real 1 initial radius; if -1, ROL computes an ini-
- tial value

Table 1-9. — Optimization Section Parameters for Trust Region

optimization
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 50
opt_tolerance = le-8
opt_iterations = 5

END

Input 1.11. Optimization Section Example

1.7.2. Inverse-Problem

The inverse-problem block of the input deck connects externally defined data describing
the test. The format for the files is described in the Inverse Data Files section (1.7.3). This
section also controls parameters of the optimization (such as regularization). Options for
the inverse-problem section are included in Table 1-10.

1.7.2.1. Regularization Parameters

gradientSurfaceRegParameter a penalty term, penalizing jumps in load input parameters
between neighboring patches. Increasing the regularization parameter decreases
checker-boarding on multi-patch outputs.

tikhonovParameter a penalty term penalizing large values of the design variables. A
larger term forces smaller design variables.

MECE_penalty a penalty term, penalizes the size of the misfit error between the
measured and predicted data. Unlike least squares methods, MECE methods to not
strive to exactly reproduce the measured data. Increasing the penalty term decreases
the misfit error.

24

Inverse Problem Parameters Load Id Material Id
Transient ‘ FRF | FRF ‘ Eigen
General Parameters
design_ variable R R R R
data file R NA NA NA
data_truth table R R R NA
data_weight table NA NA NA -
real data_file NA R R NA
imaginary data_file NA R R NA
modal data_file NA NA NA R
modal weight_table NA NA NA R
data_ type - - - -
useTransferMatrix NA - - NA
Regularization Parameters
gradientSurfaceRegParameter - - NA NA
tikhonovParameter - - - -
gradientTikhonovRegularizationParameter NA NA - -
MECE_ penalty NA NA - NA
Multi- Experiment Parameters
nresponses NA NA NA NA
loadID NA NA - NA

Table 1-10. — Inverse-Problem parameters. Items marked with “-” are optional. Items marked
'R’ are required, and items marked NA are not applicable.

25

1.7.2.2. Multi-Experiment Parameters

nresponses the number of experients in a multi-experiment inverse problem. If not
specified by the user, this parameter defaults to 1. This parameter must match the
number of data files listed for ‘real data_file’ and ‘imaginary data_ file’

loadID list of load identifiers, each corresponding to a separate experiment in a
multi-experiment inverse problem. The length of this list must match the value
specified for ‘nresponses’.

1.7.2.3. Transfer Matrix Option The transfer matrix is a linear map between the design
space and the state space for linear inverse problems such as source inversion. When the
useTransferMatrix is set to true, the transfer matrix is internally computed and stored,
and explicitly used to compute the gradient and the full hessian matrix. This option may
signficantly decrease computational time at the expense of in core memory for select
optimization problems with some or all of the following characteristics: 1. small number of
design variables, 2. linear inverse problems with uncertainty, and 3. PSD source inversion
problems (future release capability). In addition to increased computational performance,
this option will allow the user to solve linear inverse problems using the full newton
method (see Table 1-7).

Currently, the useTransferMatrix is only applicable to solution type inverse-directfrf
problems, and must be flagged with beta when executing Sierra/SD.

1.7.3. Inverse Data Files

The interface for measured data involves several data files. The specific files needed
depends on the solution method, as summarized in Table 1-10. This section describes the
data files and data files formats. Input 1.12 provides an example of a frequency domain
inverse problem.

inverse-problem
design variable = load | material
data_truth _table = truthTable.txt
real data_file = dataReal.txt
imaginary_data_file = datalmag.txt
data_type = disp | accel | moduli | voltage
end

Input 1.12. The inverse problem section for direct frequency response sets the
names of the files that contain user specified data.

26

In the case of a structural-only problem, the data_type can be set to either disp or accel,
indicating that the incoming data is in the form of displacements or accelerations,
respectively. In addition to displacement and acceleration data, the data_type can also be
set to moduli for viscoelastic material identification problems. For acoustics-only problems,
data_type is not applicable as the incoming data always corresponds to acoustic pressure.
For models incorporating piezoelectric materials, setting data_type to voltage indicates
that the experimental data is in the form of voltages. The parameter data_type defaults
to disp if not specified.

Data Truth Table

The data_truth_table file contains the global node numbers (a.k.a. target nodes) where
the experimental data measurements are given. The first line in the file contains the
number of points where measurements are given, and the remaining lines contain the global
node numbers where the experimental data is specified. If data_type is set to moduli, the
data_truth_table file contains the node numbers where the displacements are
computed.

Figure 1-1 provides a simple example of the truth table format for an acoustics-only
problem, Figure 1-2 provides an example for a structural-only problem, and Figure 1-3
provides an example for a structural acoustics problem. Note that for acoustics-only, the
file consists of the list of nodes where the acoustic measurements were taken. For voltage
based problem, the file looks identical to an acoustic-only problem, where the listed nodes
represent the locations where voltage measurements were taken. For structural-only
problems, each line in the truth table contains 4 columns that indicate the node numbers
where measurements were taken, and then 3 columns of binary (0/1) input that indicate
which dofs (i.e. z, y, and z) are active in the optimization. For structural acoustics
problems, Fig. 1-3 shows that each line contains 5 columns, with the first column again
indicating the node number, and the remaining four columns contain either 1 or 0, which
allows to turn on/off the x, y, z, and pressure degrees of freedom in the optimization.

27

The data truth table identifies the location of measurement data. For example,
if the experimental data is collected at three microphones, which correspond
to nodes 10, 120, and 3004, then the data_truth_table file is as follows.

3

10
120
3004

Thus there are a total of 4 lines in the file, even though the first line specifies
three nodes for the measurement data. The global node numbers correspond
to the global ID in the exodus input to Sierra/SD. The order of the nodes
in this list corresponds to the order of the data in the corresponding real or
imaginary data files. Other than that, there is no restriction on the ordering
of the node numbers (i.e. they do not need to be in ascending or descending
order).

Figure 1-1. — Sample Data Truth Table Input for Acoustic Problem

4

251 11
9% 1 1 1
131 11
17 1 1 1

Figure 1-2. — Example Data Truth Table for Structures. There are 4 nodes, with numbers
25, 96, 13, 17. The second through fourth columns of 1, 1, 1 mean that all structural degrees

of freedom are active, the fifth column is acoustic and implied to be zero.

4

5 0 1 0 0
6 01 00
70001
8 00 0 1

Figure 1-3. — Example data truth table for Structural Acoustics. There are 4 nodes, with
numbers 5 to 8. Nodes 5 and 6 are structural where only the y component of displacement is

measured. Nodes 7 and 8 are acoustic, where only the pressure is measured.

28

Real Data File

For inverse problems in the frequency domain, the real data file contains the real
component of the measurement data at each frequency, corresponding to the nodes that are
specified in the data_truth_table file. For a multi-experiment inverse problem, several
files must be specified.

An example of the real data_file for an acoustics-only problem is shown in Figure 1-4.
The first line of the file contains the number of nodes where measurement data is provided,
followed by the number of frequencies of data. Starting on the second line, the real part of
the data at the first node is given for all frequencies. In particularly, starting on the second
line the data corresponds to the first node in the truth table list, not the node with the
lowest ID number. Similarly, subsequent lines contain the real part of the data, at all
frequencies, for the remaining nodes. Note that, since this an acoustics-only example, only
one line of data is needed for each node in the truth table. The format for the data files
describing voltages exactly matches the format of the acoustics-only data file.

We build on the small example given in Figure 1-1 that has measurements at
nodes 10, 120, and 3004, and consider the case where there are 2 frequencies
in the data set. The real _data_file file for an acoustics-only problem could
look as follows

3 2

1.1 2.4
0.7 3.3
2.1 1.4

The actual values in the above table were chosen arbitrarily, but observe that
there is one “header row” followed by 3 data rows. There are 2 columns,
corresponding to the two frequencies of the measured data. The units of the
measurements must correspond to appropriate units in the analysis. One row
of data is required for each DOF in the truth table. Data is required even if
the value in the truth table is zero. If the truth table value for a DOF is zero,
the data is not used in the analysis.

Figure 1-4. — Sample Real Data File Input for an acoustics-only problem

An example of the real data_file for a structural-only problem is shown in Figure 1-5.
Starting on the second line, the real part of the data at the first node is given for all
frequencies. In particularly the first node is the node first in the truth table list, not the
node with the lowest ID number. The x displacements for all nodes in the truth table is
listed first, followed by the y displacements for all nodes, followed by the z displacements
for all nodes.

For viscoelastic material identification problems in the frequency domain with data_type
set to moduli, the real data_file contains the real part of the shear and bulk modulus.
An example of the real_data_file is shown in Fig. 1-6. The first line of the file is always

29

We build on the small example given in Figure 1-2 that has measurements at
nodes 25, 96, 13, and 17, and consider the case where there is only 1 frequency
in the data set. The real _data_file file for a structural-only problem could
look as follows

12 1

1.1 // x-displacement for node 25
0.7 // x-displacement for node 96
2.1 // x-displacement for node 13
1.1 // x-displacement for node 17
0.7 // y-displacement for node 25
2.1 // y-displacement for node 96
1.1 // y-displacement for node 13
0.7 // y-displacement for node 17
2.1 // z-displacement for node 25
1.1 // z-displacement for node 96
0.7 // z-displacement for node 13
2.1 // z-displacement for node 17

The actual values in the above table were chosen arbitrarily, but observe that
there is one “header row” followed by 12 data rows. There is only one column,
corresponding to the single frequency of the measured data. The units of
the measurements must correspond to appropriate units in the analysis. For
structures these are units of displacement. Rows 2 —5 correspond to the x
components of the displacements at the nodes from the truth table, rows 6 —9
correspond to the y components of displacement, and rows 10 — 13 correspond
to the z components. Note that the x components of displacements for all
nodes are listed first, followed by the y components for all nodes, followed by
the z components for all nodes. One row of data is required for each DOF in
the truth table. Data is required even if the value in the truth table is zero. If
the truth table value for a DOF is zero, the data is not used in the analysis.

Figure 1-5. — Sample Real Data File Input for a structural-only problem

30

2, followed by the number of frequencies of data. Currently, this feature only supports one
frequency of data, hence the first row should read 2 1. The second and third lines are
respectively the shear modulus and bulk modulus. There is only one column,
corresponding to a single frequency of measured data.

The real_data_file file for a viscoelastic material identification problem with
data_type = moduli could look as follows

2 1
5.7 // Shear modulus
3.1 // Bulk modulus

The actual values in the above table were chosen arbitrarily, but observe that
there is one “header row” followed by 2 data rows.

Figure 1-6. — Sample Real Data File Input for a data type moduli problem

The frequencies of the measured data are specified in the frequency section. The
frequencies given by frequency section must correspond to the frequencies where the
experimental data was measured. These frequencies can be either uniformly or
non-uniformly spaced, as specified in the frequency section.

Imaginary Data File

The imaginary_data_file has the exact same format as the real_data_file except
that it contains the imaginary part of the data rather than the real part.

PSD Data File

In the context of PSD inversion, instead of specifying the real and imaginary data files, a
single psd_data_file is needed, which contains the complex (Hermitian) PSD matrices for
all the frequencies. The first two numbers in the psd_data_file must be the number of
frequencies and the number of (measured) response degrees of freedom. The remainder of
the file contains the PSD matrices, one matrix each for each frequency. The format of the
PSD matrix should be in the natural row-oriented format, with each line containing a row
of the matrix. The complex values should be entered in (real part, imaginary part) format,
with space between the numbers. Sierra-SD automatically checks if each of the PSD
matrices is Hermitian and positive definite, as each PSD matrix should be.

Data File

Transient time history data is stored in the data_file. The format is identical to the
real data_file except for the addition of the time step as the third column in the first

31

row. Each column of data now corresponds to a time step of analysis. An example is
shown in Fig. 1-7. No interpolation is performed, and the measured data must exactly
match the time steps of the analysis. As in the real data file, the rows of data are
grouped as all of the x components of displacements at the measured nodes, followed by all
of the y displacements, followed by the z displacements.

We note that for time-domain inverse problems, the data in the data_file must be
padded with zeros at the beginning, since the sensor data is typically started at time ¢t = 0.
The maximum time-of-flight from the input loads to the sensors can be estimated easily
(an upper bound is fine). Then, dividing the maximum time-of-flight by the time step gives
the number of zeros to be added to the beginning of each time history. Without these
zeros, the forward problem would not be able to come up with loads that match the sensor
data in the early time response, due to the finite wave propagation speed.

6 4 0.1

0.0 0.0 2.1 23
0.0 0.0 23 3.5
0.0 0.0 3.6 4.1
0.0 00 1.5 1.8
0.0 0.0 09 14
0.0 0.0 3.4 95

Figure 1-7. — Sample Transient Data File Input for a structural-only problem

Modal Data File

The modal_data_file contains measured modal results for inversion with the eigen
solution. The first line of the file is the number of eigenvalues. Each subsequent line
contains only the eigen frequency of the measured mode. It is important that the
simulation modes are in the same order as the test modes.

Modal Weight Table

Not all computed eigenvalues may correspond to a test (or measured) mode. Further, even
those modes identified may be more or less important. The modal_weight_table contains
the weights applied to each computed mode.

The first line contains the number of weights, which must match the number of modes
computed in the analysis, and each subsequent line contains the weight for the
corresponding computed mode. All weights must be non-negative, and computed modes
with no corresponding measured data should have zero weight.

32

Data Weight Table

In the case of eigenvector inversion (described in Sec. 1.3.2), the data_weight_table
contains weights applied to each computed eigenvector error. This parameter allows for
independent weighting of the eigenvalues and eigenvectors, but is not required; by default,
it is the same as the modal weight table.

As above, the first line contains the number of weights, which must match the number of
modes computed in the analysis, and each subsequent line contains the weight for the
corresponding computed mode. All weights must be non-negative, and computed modes
with no corresponding measured data should have zero weight.

1.7.4. Block section for Material Identification

For material inverse problems, the block section provides an additional option to control
the optimization strategy. In particular, blocks can be specified as known,

homogeneous, or heterogeneous, as shown in Table 1-11, and an example is shown in
input 1.13.

The default behavior for the inverse__material__type keyword is known, which implies
that the material parameters given in the corresponding material are fixed, and are not
modified in the optimization process. In the case where all blocks are known, there is no
need to solve the material inverse problem at all.

The remaining two options for the inverse__material__type keyword are:

e homogeneous. In this case, the material parameters are unknown and will be
optimized during the inversion process, but are treated as constant over the entire
block. This option is best used in the case when material properties are unknown in a
block, but not expected to vary much over the block.

e heterogeneous. In this case, the material parameters are also unknown, will be
optimized in the inversion process, but each element in the block will be given its
own material properties. This is typically referred to as spatially varying material
properties.

In input 1.13 Block 1 is heterogeneous, Block 2 is
homogeneous, and Block 3 is known.

Parameter type | Description
inverse_material type | string | block inverse type

Table 1-11. — Block Section Parameters for Material Inversion

block 1
material 1
inverse_material_ type heterogeneous

33

END
block 2
material 2
inverse_material_type homogeneous
END
block 3
material 3
inverse_material_type known
END

Input 1.13. Block Section Example for Material Inversion

1.7.5. Material section for Material ldentification

For material inverse problems, the material section provides additional options to control
the optimization strategy. Currently, for 3D elements, only isotropic,
isotropic_viscoelastic, orthotropic, and acoustic material types are supported for
material inverse problems.

We note that the parameters G_bounds and K_bounds only apply to elastic materials,
whereas Greal bounds, Kreal bounds, Gim_bounds, and Kim_bounds only apply for
viscoelastic materials. The parameters Eij_bounds, Gij_bounds and Aij_bounds apply
only to orthotropic elastic materials, and the parameter cO_bounds applies only to acoustic
materials.

For elastic, orthotropic elastic, and acoustic materials, the set of unknown material
parameters may be customized by explicitly specifying the parameter

num_material parameters and a list of texttts following material parameters. These
texttts may include bulk and/or shear for elastic materials, orthotropic for orthotropic
elastic materials, sound_speed for acoustic materials, and rho for all of the above.

For elastic materials, specification of E_bounds and Nu_bounds is permitted instead of
specifying bounds for G and K. When specifying bounds for the elastic modulus and
Poisson ratio, the material parameters must also be input as £ and nu, and inversion must
be requested over both elastic parameters.

For acoustic materials, the parameter impedance_match may also be specified. This has
the effect of optimizing for sound speed ¢y and density pp under the condition where
impedance Z = pgcg is constant.

Orthotropic Material Inversion: Unlike isotropic inversion, orthotropic inversion
requires special care with respect to inadvertent material instabilities, i.e., during the
inversion iterations, the elasticity tensor may not satisfy positive definiteness, potentially
leading to the failure of even the forward solution. To avoid this, we parametrize the
material tensor using the standard normal moduli Ej;, shear moduli G;;, and special

dimensionless parameters A;; = E;;/,/EyE;j. This is referred to as Alpha parametrization.
34

Parameter type Description

G_ bounds real real lower and upper bounds on shear modulus

K_ bounds real real lower and upper bounds on bulk modulus

E_bounds real real lower and upper bounds on Young’s modulus

Nu_ bounds real real lower and upper bounds on Poisson’s ratio

Greal bounds real real lower and upper bounds on real part of shear modulus
Kreal bounds real real lower and upper bounds on real part of bulk modulus
Gimag_bounds real real lower and upper bounds on imag part of shear modulus
Kimag bounds real real lower and upper bounds on imag part of bulk modulus
Eij_bounds 6 reals lower and upper bounds on the three normal moduli
Gij_ bounds 6 reals lower and upper bounds on the three shear moduli
Aij_bounds 6 reals lower and upper bounds on the three o parameters
density bounds real real lower and upper bounds on density

c0__bounds real real lower and upper bounds on sound speed

impedance match real value of pgcy to match for acoustic materials

num_ material parameters int (optional) number of material parameters

material parameters list of strings | (optional) bulk, shear, rho, orthotropic, and sound_speed

Table 1-12. — Material Section Parameters for Material Inversion

Such parametrization lends to easier imposition of material stability constraint which is
done through a single inequality constraint and several bound constraints. Further details
will be provided in an upcoming SAND report. Notwithstanding the theoretical details, the
user is asked to pay special attention to the definition of A;;, when applying bound
constraints on these parameters. Bound constraints can be specified as as shown in Table
1-12, and an example is shown in input 1.16. These parameters constrain the optimizer to
work in a restricted space of possible design variable values, and prevent convergence to
physically unrealistic values of the parameters. An alternative to Alpha parametrization is
Cholesky parametrization, where the modulus matrix is parametrized through Cholesky
factorization, avoiding the need of inequality constraints. This can be utilized by setting
the flag alphaparametrization to no.

Transverse Isotropic Material Inversion is performed essentially through orthotropic
inversion, by setting the flag transverselyisotropic to yes, followed by the plane of
isotropy represented by a two-digit number, i.e., 12, 23, or 13, where 1,2,3 represent the
three axes of material symmetry consistent with the coordinate system within the element
block. Input 1.16 contains an example for transversely isotropic inversion.

Additional material parameters that can be optimized include joint2g elements and block
proportional stiffness damping blkbeta. Since these parameters live in the block section
rather than in the material section, their bound constraints are specified in the former.
However, we specify their input syntax here since they are material parameters. An
example of input syntax for joint2g and blkbeta inputs for material optimization are
given in Table 1-13 and input 1.14.

The joint2g elements involve 6 parameters that can be optimized. The

35

joint_truth_table specifies which of these parameters will be included in the
optimization solution. For example, in input 1.14, only the first (i.e. z-component) of the
joint2g parameters will be optimized. The remaining parameters will stay fixed in the
optimization, including those that are specified as NULL. In the case of blkbeta, the
optimal blkbeta for the specified block will be computed and written to the result file.

Parameter type | Description

joint_elastic_bounds | real real | bounds on joint2g spring stiffnesses
joint__damper_bounds | real real | bounds on joint2g dashpot (damper) parameters
blkbeta_bounds real real | bounds on block stiffness proportional damping

Table 1-13. — Block Section Parameters for Material Inversion

block 50
joint2g
kx = elastic 2.474e5

ky = elastic 2.e8
kz = elastic 2.e8
krx = NULL
kry = NULL
krz = NULL

joint_elastic_bounds = 2.0e5 1e9
joint_truth_table = yes no no no no no
end

block 51
inverse_material type = homogeneous
material 1
blkbeta 2.0e-4

end

Input 1.14. Block Section Example for Material Inversion

Initial guesses for the material parameters are also given in the material block. In the
case of elastic materials, the initial guess is specified as the values for G and K that are
input in the material block. In the example shown in input 1.15, the shear and bulk
moduli are given initial guesses of 100 and 200, respectively.

For viscoelastic materials, the real and imaginary components of G and K are
frequency-dependent. Thus the initial guesses are specified in functions that define the
values of these parameters as a function of frequency. As shown in input 1.15, in this
example functions 1 — 4 specify the initial guesses for the real and imaginary components of
G and K.

36

material 1
isotropic
G_bounds 0 1e4
K _bounds 0 1le4
G 100.0
K 200.0
density 10.0
end
material 2
isotropic_viscoelastic_complex
Greal bounds 0 1led
Kreal bounds 0 le4
Gim bounds 0 1e2
Kim_bounds 0 1e2
Greal = function 1
Gim = function 2
Kreal = function 3
Kim = function 4
density = 10.0
end
material 3
isotropic
E_bounds 1le-10 1e40
Nu_bounds -0.9999 0.49999
E 1.0e6
Nu 0.25
density 10.0
end
end

Input 1.15. Material Section Example for Material Inversion

material 4 // Full orthotropy
density = 1.0
orthotropic
Cij = 4.0 1.0 2.0
5.0 3.0

W~ N O
O O O O

Eii_bounds = 0.01 20.0 0.01 20.0 0.01 20.0

37

Gij_bounds = 0.01 10.0 0.01 10.0 0.01 10.0
Aij_bounds 0.0 0.707 0.0 0.707 0.0 0.707
end

material 5 //Transeverse isotropy
density = 1.0
orthotropic
alphaparametrization no
inequalityconstraints no
transverselyisotropic yes 23
Cij=5 1 1
16 6
16
5
1
1
Eii bounds
Gij_bounds
end

Il
O =
—
ol
O =
o
ol
(@]
=
ol

Input 1.16. Material Section Example for Orthotropic Material Inversion

The directfrf-inverse method supports viscoelastic material identification using
homogenized moduli data by setting data_type to moduli in the inverse-problem block
(see section 1.7.3). This feature is only available for the inverse_material_type
homogenous option. In addition, all material blocks, including known materials, must be
specified as isotropic_viscoelastic_complex.

Figure 1-14 shows which material parameters can be optimized in the different solution
procedures. In general, parameters associated with damping can only be optimized in
directfrf solutions, and those associated with stiffness can be optimized in either
directfrf of eigen .

Damage Identification: Damage identification is a design variable implemented for
directfrf-inverse problems as a special case of elastic material identification. In damage
identification, a damage phase field variable is used to interpolate between damaged (weak)
and full-strength material, ideally converging to near-binary values to indicate presence of
material damage. Damage ID is activated by design variable = damage in the
inverse-problem block.

Damage identification employs techniques originated for topology optimization problems
but may used for a variety of applications, including identification of weakened material
regions, determination of contact area in a thin layer of elements at an interface, or
two-phase material design. The elastic damage model uses a Solid Isotropic Material with
Penalization (SIMP) model [1] that interpolates the isotropic elastic and mass density

38

Parameter | directfrf-inverse | eigen-inverse
K yes yes
G yes yes
E yes yes
Nu yes yes
K_ real yes no
K_imag yes no
G_real yes no
G real yes no
Cij yes no
c0 yes no
density yes no
joint2g elastic yes yes
joint2g damper yes no
blkbeta yes no

Table 1-14. — Table of Supported Material Parameters for Inverse Methods

properties in the unknown material between two phases using the scalar phase field
variable § € [0, 1], expressed as

G(B) = Go+(Gu—Gy) B (1.6)
K(B) = Ko+ (Ky— K)
p(B) = po+ (pu—p1)B7, (1.8)

where {Gy, Ky, pu} and {G}, K, p;} are the upper and lower bounds for the bulk modulus,
shear modulus, and density, respectively. Definition of different powers p > ¢ > 1 for the
elastic and mass density components renders elastic properties relatively weaker, for a
given mass density, thus disincentivizing intermediate density values. Powers p and q are
specified with penalizationElasticity and penalizationMass, respectively.

Bounds of the material interpolation are specified by setting limits for shear modulus
G_bounds, bulk modulus K_bounds, and mass density density_bounds in the material
block. Meanwhile, the initial damage phase field value is controlled using the G, with
respect to G_bounds, as

(G—Gy)

0) — A\ M
6 (Gu_Gl).

(1.9)

Initial density and K values must still be given, though are not used to determine the
initial phase field value. The solution for 3 is not available for output, but rather the
material parameters are output as evaluated within the penalized elastic and mass density
models using the phase field solution.

Damage identification is enabled for both homogeneous and hetereogeneous unknown
material blocks. In the homogeneous unknown material block case, only the penalization

39

powers for the mass density and elastic properties must be specified. In heterogeneous
unknown material blocks, additional filtering and projection operations are employed to
control solution length scale and to encourage binary quality. Kernel filtering prevents
development of mesh dependent or checkerboard (i.e. alternating 0-1 phase field density)
patterns. In this strategy, a weighted kernel is convolved with the density field, producing a
locally-averaged filtered field. The filter kernel radius is defined in the inverse-problem
block as filter_radius (default = 0.1), which should be set no smaller than the
minimum distance between element centroids in the unknown material block.

A Heaviside-approximating function is then used to map filtered values closer to 0 or 1
bounds and recover a more-binary valued field. The smooth Heavisde function is defined

~ o tanh(¢n)+tanh({(3 —n))
BB = tanh(¢n) +tanh({(1—n))

Here, the slope of the smooth Heaviside ¢ > 1 is specified by smooth_heaviside_slope,
while its inflection threshold n € (0,1) is specified by smooth_heaviside_threshold.
Typically, modest values for smooth_heaviside_slope (5-10) can produce high contrast
fields without creating an excessively severe projection, which can impede optimization
convergence.

(1.10)

Below, we summarize the necessary parameters in the material and inverse-problem
sections for damage identification problems.

Parameter type | Description

G real initial value of shear modulus (determines initial phase field value)
K real initial value of bulk modulus

density real initial value for mass density

G_ bounds real real | lower and upper bounds on shear modulus interpolation

K_ bounds real real | lower and upper bounds on bulk modulus interpolation

density bounds | real real | lower and upper bounds on mass density interpolation

Table 1-15. — Parameters in material section for Damage Identification

Parameter type | Description

design_ variable string | damage

penalizationElasticity integer | elasticity penalty exponent (default = 3)
penalizationMass integer | elasticity penalty exponent (default = 1)

filter radius real | filter kernel radius (default = 0.1)

smooth heaviside slope real | smooth heaviside projection slope (default = 1)
smooth heaviside threshold real smooth heaviside inflection threshold (default = 0.5)

Table 1-16. — Parameters in inverse-problem section for Damage Identification

40

1.7.6. Loads section for Load ldentification

For inverse load problems, the loads section provides additional options to control the
optimization strategy. Inverse loads are currently supported for acoustics and structures.
Inverse acoustic loads are only supported for sidesets. Inverse structural loads are
supported on both sidesets and nodesets. On sidesets, both pressures and traction loads
may be optimized in the inverse problem. For nodesets, both forces and moments can be
optimized, the latter only being applicable in the case when the nodeset in question has
rotational degrees of freedom (e.g. a concentrated mass). Table 1-17 summarizes the load

options which apply to inverse methods. The inverse_load_type options are detailed in
Table 1-18.

The default behavior for the inverse_load_type keyword is known, which implies that the
loads on that sideset or nodeset are fixed, and are not modified in the optimization process.
In the case where all blocks were known, there would be no need to solve the inverse loads
problem.

In input 1.17 sideset 1 is known, sideset 2 is a real-valued, unknown acoustic load that is
spatially_constant, and sideset 3 is an imaginary-valued, unknown acoustic load that is
spatially_constant. We note that in the case of a transient problem, the loads block in
an inverse loads problem would look the same except that there would be no imaginary
loads in that case.

For acoustic problems currently inverse acoustic loads are limited to the acoustic_accel
option. The acoustic_vel keyword is not supported for acoustic loads.

Input 1.18 shows a similar example for a structural pressure, traction and force load case.
This example contains a known pressure load, and unknown pressure, traction, and force
loads. Note that in the case of traction and force loads, the direction of the traction load
(in this case 111) is fixed, and only the function amplitudes are calculated in the inverse

problem.

In input 1.18, functions 1 —4 contain the initial guesses for the load amplitudes for sidesets
1—3 and forces/moments on nodeset 4. These load amplitudes are then refined during the
optimization process. The resulting loads are written to a text file called
force__function__data.txt, which could then be included in a subsequent forward or inverse
loads case in a restart analysis.

Parameter type | Description
inverse_load_type | string | load inverse type

Table 1-17. — Loads Section Parameters for Force Inversion

loads
sideset 1
acoustic accel = 1
function = 1
sideset 2

41

Parameter Description

spatially constant | Load amplitude is unknown and will be optimized during the
inversion process, but is treated as constant over the entire sideset
or nodeset.

spatially variable | Load amplitude is unknown and will be optimized during the in-
version process. Each dof on the sideset or nodeset is optimized.

known default. No optimization performed.

Table 1-18. — Inverse Load Type Options

acoustic_accel =1
function = 2

inverse_load_type = spatially_constant
sideset 3

iacoustic_accel =1

function = 3

inverse_load_type = spatially_constant

end
Input 1.17. Loads Section Example for Acoustic Force Inversion
loads
sideset 1
pressure = 1
function = 1
sideset 2
pressure = 1
function = 2
inverse_load_type = spatially_constant
sideset 3

traction =1 11

function = 3

inverse_load_type = spatially_constant
nodeset 4

force =011

function = 4

inverse_load_type = spatially_constant
nodeset 4

moment = 0 1 1

function = 5

inverse_load_type = spatially_constant

end

Input 1.18. Loads Section Example for Structural Force Inversion

42

1.7.7. Limitations for Inverse Load Problems

Limitations: There are a number of limitations which apply to transient load
identification. These include the following.

1. Structural, acoustic and structural-acoustic domains may be addressed.

2. Only the simple Newmark integrator should be used, i.e. do not use generalized
alpha integration and do not use the rho keyword.

3. Pressure is always applied along the surface normal, and tractions are applied along
the direction specified in the loads block. Inverse methods do not support follower
pressures.

4. Load identification applies to acoustic_accel loadings on acoustic sidesets,
pressures/tractions on structural sidesets, and forces and moments on structural
nodesets.

5. In force identification problems, a pressure, traction or force may be applied on a
shell. The measured displacement fields in the truth table for shells can be applied to
nodes with rotational DOFs; however, only displacement DOFs can be specified in the
data files. Specifying rotational DOFs as measured data at nodes is not supported.

1.7.8. ROL Output for Inverse Problems

Sierra/SD uses the Rapid Optimization Library (ROL), which is part of Trilinos [7] for
solving optimization problems. During the optimization process, ROL writes out a text file
called ROL__Messages.txt that contains information about the convergence of the
optimization solution. It is important to examine this file to assure that the solution is
adequately converged.

An example of a ROL__Messages.txt is given in Figure 1-8. The first 2 lines show the
optimization method that was used by ROL, and the following lines contain convergence
information. Each line corresponds to a single optimization iteration. The first column
shows the iteration number under the iter heading. The second column shows the value of
objective function at that iteration, under the value heading. The third column shows the
absolute norm of the gradient (i.e. the derivative of the objective function with respect to
the optimization variables). In Figure 1-8 we only show the first three columns of output as
these will typically be of most interest to the user, but the remaining columns contain
information about step size, number of function evaluations, etc... (Denis, Drew, any input
here would be great).

For a typical Sierra/SD user, the first three columns in the ROL__Messages.txt file will
typically be of the most important to pay attention to. As the goal is to minimize the
objective function, a substantial decrease in the second column should be observed. Also,
the desired minimum of the optimization corresponds to a zero gradient, and thus the third
column should be observed to be as close to zero as possible.

43

Newton-Krylov with Cubic Interpolation Linesearch satisfying
Null Curvature Condition Krylov Type Conjugate Gradients

iter value gnorm

0 5.171112e-03 7.337197e-03
1 1.160506e-10 1.245979e-06
2 1.453148e-17 4.667996e-10

Figure 1-8. — Example of ROL_Messages.tzt file for Inverse Problem Solution

1.8. Example Inverse Problems

Inverse problems are class of problems where some portion of the solution to an analysis is
known, but the inputs to the problem are not. Inverse methods solve an optimization
problem where the inputs are optimized to match the solution. The current types of input
problems supported are Load ID (transient or FRF) and Material ID (Eigen and FRF).

1.9. Experimental Data

For inverse problems, experimental data is typically gathered in a lab. In acoustics,
microphones are used to measure acoustic pressure For the transient case, these are
measured over a period of time. For the FRF case, these are measured over a series of
frequencies. Introducing additional measurements at new data points generally improves
the fidelity of the computed solution. On the other hand, the computational difficulty of
solving the inverse problem increases too. For this demonstration, synthetic data is
generated by solving a forward acoustic problem.

1.10. Inverse Problems - Load-ID
1.10.1. Experimental Model
The experimental model is shown in Figure 1-9. The Football Model is an ellipsoidal

acoustic mesh, with a cylindrical hole in the middle. 70 sidesets are placed around the
exterior of the football, allowing for different loading on each sideset.

44

@ D

Figure 1-9. — Inverse Football Problem Geometry. On the left, the sideset definitions on the
surface. On the right, the interior of the problem.

1.10.2. Forward Problem

To generate the experimental data, the model is solved with the solution method
direct-frf. A set of human generated loads is used to generate “experimental” pressures
at a select set of nodes. Any set of loads can be used. The Matlab function
inputDataProcDynFreqAcoustic_Exo.m is used to generate the experimental data files:
ttable.txt, dataReal.txt, and dataImag.txt. This Matlab function requires the results
from the forward run, and a nodeset containing the nodes of interest. In practice, this data
is generated experimentally, with the measured acoustic pressures being inserted in
dataReal.txt and datalmag.txt.

solution
directfrf
end

loads

sideset 4

acoustic accel = 1.0

scale = 2

function = 10001

inverse load type = spatially constant \\ ignored
end

Inverse keywords are ignored when running a forward problem.

1.10.3. Inverse Problem with known loads

Next, the experimental model is solved with solution method directfrf-inverse. and
design variable = load. For the first run of the inverse problem, the synthetic loads
were left in place, as the “initial guess"'. The inverse problem converges on the first
iteration, as the initial guess is the exact solution to the inverse problem. This is an easy
way to make sure the input file are correct. The relative tolerance is shown in the first
column of ROL_Messages.txt, and the absolute tolerance is shown in the second column of

45

ROL_ Messages.txt. If the exact loading is used as the initial guess, the relative error norm
should be on the order of machine precision.

solution
directfrf-inverse
end

optimization
check_grad = no
optimization_package = ROL_1lib
LSstep = Newton-krylov // recommended
LS_curvature_condition = null
max_iter_Krylov = 50 // tolerance on gradient
opt_tolerance = 1e-8 // of objective function
// with respect to parameters
objective_tolerance = le-4 // tolerance on
// objective function value
opt_iterations = 50 // before stopping

end

inverse-problem
design_variable = load
data_truth_table = ttable.txt
real_data_file = dataReal.txt
imaginary_data_file = datalmag.txt
end

1.10.4. Inverse Problem with unknown loads

Next, the synthetic loads are removed, and the initial guess for the loading is set to be 0 at
all time steps. The inverse problem converged in four iterations, with an objective tolerance
of 10™*. The objective norm is a relative measure, and any objective norm of 1076 or
smaller is considered more than sufficient. Alternatively opt__tolerance can be used to set
the absolute tolerance. Recommended values for opt__tolerance are problem dependent.

1.10.5. Verification

Finally, the loading output from the inverse run, force_function_data.txt, is used to
run the forward problem again. This file is designed so that it can replace the function file
with no changes. The problem is verified by checking the pressures at the selected nodes
against the initial run. Though the loading may not be exactly the same between the
initial forward run and the verification forward run, the inverse problem has been solved
successfully, as the objective function has been solved to the selected tolerance. To
generate loading closer to the initial loading, more nodal data can be added or tolerances
can be tightened.

46

1.11. Inverse Problems - Material-1D
1.11.1. Experimental Model

The experimental model is a solid assembly of two steel blocks joined by a region of
viscoelastic foam material. Figure 1-10 shows the geometry of the test model.

Figure 1-10. — Foam block model with finite element mesh and force location

As shown in Figure 1-10, the model assembly consists of two equally-sized steel blocks,
depicted in yellow and green, joined by a region of viscoelastic foam material, shown in red.
The model was discretized with a finite element mesh of Hex-8 elements. A periodic point
load with a frequency of 500 Hz was applied to the yellow block, also as shown in the
figure. It was desired to calculate the frequency-dependent viscoelastic material properties
of the foam block, including complex values for the bulk (K) and shear (G) moduli.

1.11.2. Inverse Problem input format

The relevant sections of the input used for this example are shown below, followed by some
notes about each section.

solution
directfrf-inverse

end

inverse-problem
design variable = material
data_truth table = ttable.txt
real data_file = data.txt
imaginary_data_file = data_im.txt

end

optimization
optimization_package = ROL_1lib
ROLmethod = trustregion
TRstep = secant

47

opt_tolerance = le-13
opt_iterations = 100
end

block 1
inverse_material_type = homogeneous
material 4
hex8f

end

material 4
isotropic_viscoelastic_complex
Greal _bounds -1000 100000
Kreal bounds -1000 100000
Gim_bounds -1000000 1000000
Kim_bounds -1000000 1000000

Greal = function 2

Gim = function 3

Kreal = function 4

Kim = function 5

density=0.010804
end

e solution section: defines the type of solution (inverse DirectFRF).

e inverse-problem section: specifies the design variable (material) and connects
externally defined data describing the test.

— The data truth table file contains the global node numbers where the
experimental data measurements are given. For example, the input below gives
the number of nodal locations (1) in the first line, followed by the single node id
(212) showing all structural dof active (1 1 1), and an inactive acoustic dof
(assumed 5th column = 0).

1
212 111

— The real_data_file and imaginary_data_file contain the real and imaginary
parts of the measurement data at each frequency. For example, the input below
(from a real data file) gives the number of nodes (3) and frequencies (2), followed
by the data at each node. Each frequency requires a separate column of data.

48

3 2

-4.385640897908e-02 -3.985611576838e-02
2.898761003889e-02 3.478175302036e-03
-1.167004279970e-01 -8.319040683879e-02

e optimization section: provides options to control the optimization strategy. See
the users manual for more information on available optimization options.

e block section: provides an information on the material of the block. Options
include,

known - The material parameters of the block will not be varied in the inverse
solution.

homogeneous - Material properties are uniform within the block, and are varied to
arrive at the best fit for the data.

heterogeneous - Material properties vary element by element within the block, and
are varied to arrive at the best fit.

e material section: provides additional options to control the optimization strategy.

1.11.3. Running the Inverse Problem

Next, the experimental model is solved as indicated above. A good choice for the first run
of the inverse problem is to use the actual material data used as the “initial guess'. This
causes our problem to converge much faster than with a general guess, and is a good
verification step for problems where the material data is known a priori. Next, initial
guesses for the material data is set to be something other than the actual value to represent
a typical initial guess. Convergence data can be found in the file ROL_Messages.txt. The
objective norm is a relative measure, and any objective norm of 1075 or smaller is
sufficient. Alternatively opt__tolerance can be used to set the absolute tolerance.

1.11.4. Verification

For the problem presented here, the following material data is obtained from running the
inverse problem (taken from the name_0.rslt file):

Block 1 Viscoelastic Material Properties
Real Part of K: 40000.002012
Imaginary Part of K: -0.005544
Real Part of G: 15999.999313
Imaginary Part of G: 5000.000812

49

This gives us values that we can then use as part of an input for a forward problem, and
see if we obtain the same values given in the input data from the truth table and data files.
Though the displacements may not be exactly the same between the initial forward run
used to generate the inverse data files and the verification forward run, the inverse problem
has been solved successfully, as the objective function has been solved to the selected
tolerance. To generate more exact results, more nodal data can be added or tolerances can
be tightened.

2. Inverse Methods with InverseAria

2.1. Introduction

Inverse Aria enables solving inverse problems with SIERRA /Aria using adjoint-based
gradients through an interface to the Rapid Optimization Library (ROL). The major
advantage of calculating gradients with adjoints comes in the form of computational
savings as the design space grows in size. Only one forward solve and one adjoint solve are
required to compute the gradient of the reduced objective function with respect to the
design variable vector regardless of the number of design variables. Contrast this with
finite difference gradients where N+1 forward solves are required for N design variables.

2.2. Outline

Overview of inverse heat transfer problems

Inverse capabilities

How to build and run

Inverse problems with example inputs
— Thermal conductivity inversion
— Boundary heat flux inversion

— Arrhenius source term inversion (with FD gradients)

20

2.2.1. Beta Capabilities and Limitations

Inverse Aria is a still in early development and should be treated as a beta feature. There
are three over-arching problem types that Inverse Aria targets with each in various states
of development. The three classes of target problems are material property, boundary
condition, and heat source inversion. For the first two years of development (FY20 and
FY21), Inverse Aria has been limited to solving linear conduction problems. Typically,
thermal engineering problems of interest contain non-linear effects such as temperature
dependent material properties, chemical decomposition, and thermal radiation among
others. Beginning in FY22, development will shift from adding new inverse design variables
to focusing on supporting non-linear heat conduction physics.

Thermal conductivity was the first target material property to be developed. Currently,
thermal conductivity inversion is possible in Inverse Aria for basic (non-porous) materials
with a limited number of boundary conditions. The user can invert for conductivity on a
block by block or element by element basis (see Sec. 2.4).

Heat flux to a surface was the first target boundary condition inversion problem. Both
steady and transient heat flux inversion are available in Inverse Aria as described in
Sectioins 2.5 and 2.6.

Many real problems involve at least one reacting material. Examples include pyrolysis of
organic materials, ablation of thermal protection systems, and thermal runaway of
batteries. These reactions can add or remove heat from the system and are represented in
Aria as volumetric heat source/sink terms. Typically, these reactions can be model by
Arrhenius forms. To achieve wider ranging applicability, Inverse Aria must be able to solve
problems with reacting source terms, either inverting directly for the source term model
parameters or inverting for other parameters (material or boundary conditions) in
problems where reacting materials are present. As a first step towards enabling this
functionality, inversion for the Arrhenius activation energy and frequency factor with
finite-difference gradients has been enabled in Inverse Aria. Development of this feature
serves to put the building blocks in place for solving this class for problems while further
research is conducted on deriving and implementing the adjoint solve.

Computation of the objective function requires experimental data and will typically benefit
from some form of regularization. Inclusion of experimental data is currently limited to
time histories of temperatures at user specified node locations.

A finial limitation is that problem size is currently constrained by available memory. To
execute an adjoint solve, all state variables at every node and time step must be saved in
memory. This constraint will be alleviated in future releases by using checkpointing
schemes such as Wang et al. [14].

o1

2.2.2. Getting Started with Inverse Aria

SIERRA developer access is required to build Inverse Aria, and these permissions can be
acquired in WebCARS. More information on setting up the code repository can be found
at Aria New Developer Resources.

To build Inverse Aria, first load the developer module.
$ module load sierra-devel
Then compile with the following command (e.g. for the gee release build)
$ Dbake InverseAria -e release
Inverse Aria can then be run with
$ <path-to-bin>/inverse_aria -i <input_file> -opt <ROL_inputs>

where the path to the code bin is the location of the Inverse Aria executable, the input file
is the target Aria input deck, and ROL inputs is an xml file containing inputs to ROL.
Among the inputs contained in the xml file is the location of the experimental data file,
optimization algorithm inputs, and termination criteria. (need documentation for list of
ROL inputs).

Several commonalities exist in the input file requirements for the different inverse problems
that use adjoint based gradients. We note that the Arrhenius reaction parameter inversion
capability does not yet use adjoint based gradients, so the following input requirements do
not apply.

First, an adjoint source term must always be present on all blocks.

Source for energy on all_blocks = Optimization value = 0

The “Optimization” keyword must also be specified on all initial conditions as follows

IC for Temperature on all_blocks = Optimization value = 300

A subset of boundary conditions are supported by Inverse Aria. These boundary
conditions are no flux (default), Dirichlet, flux, and generalized natural convection. Usage
of boundary conditions outside of these will result in unexpected behavior in the adjoint
solve. The optimization keyword is not required for specifying boundary conditions.

2.3. Inverse Problems

The chapter covers the current capabilities of Inverse Aria with examples of the required
inputs. The problems covered are thermal conductivity inversion, steady boundary heat
flux inversion, and Arrhenius source term inversion. The input decks and meshes for the
examples can be found at docs/InverseOpt/InverseAria /Examples.

02

https://prod-ng.sandia.gov/sierra-trac/wiki/Modules/Aria/NewDeveloperResources

2.4. Thermal Conductivity

An example use case for thermal conductivity inversion can arise in situations where two
materials are joined together by some sort of adhesive and the quality of the bond is
unknown. A simplified example is shown in Figure 2-11, where two cylinders are joined by
a thin material of unknown thermal conductivity. The domain is modeled as 2D
axi-symmetric with a heat flux applied to the outside of the outer cylinder and
temperature measurements are only available at this outer surface. In this example,
synthetic data at each surface node were generated from an Aria simulation with specified
thermal conductivities in the joining layer.

4
4

Symmetry
Axis External
Heat Flux
Unknown '
Layer
{ ‘

]
u
Il
]
]
]
]
]
]
]
u
]
u
'l
]
]
]
]
]
]
]
'l
o
u
Il
]
]
]
]
]
]
]
]
Il
o
u
"
]
]
]
]
u
]
]
]
o
u
u
]
]
]
]
]
]
]
o
]
=
4
o
]
]
]
]
]
]
]
o
]
]
]
]
]
]
-
]
u
"
Il
u
u
Il
]
]
]
]
]
]
]
[l
]
u
'l
]
]
]
]
]
]
»

Figure 2-11. — Domain of the example thermal conductivity inverse problem.

There are two options in the material specification when inverting for thermal conductivity.
Choosing homogeneous will result in inverting for a single thermal conductivity value for
the entire material, whereas using heterogeneous will invert for a thermal conductivity
value for every element with that material. the syntax for a homogeneous thermal
conductivity inversion problem is

Begin Aria Material MatA
Density
Specific Heat
Thermal Conductivity

Constant rho = 2702.
Constant cp = 903.
Optimization type = homogeneous k = 300

23

Heat Conduction = Basic
End Aria Material MatA

and a heterogeneous problem is defined by

Begin Aria Material MatA
Density
Specific Heat
Thermal Conductivity
Heat Conduction

End Aria Material MatA

Constant rho = 2702.

Constant cp = 903.

Optimization type = heterogeneous k = 300
Basic

The user has the option to provide lower and upper bounds for the design variable on the
thermal conductivity line with the keywords lower _bound and upper_bound and values
separated by equals signs.

A simple example can be found at
Examples/Thermal Conductivity /Homogeneous 1 Block. The key files are:

layered_2D_inv.i - Inverse Aria input deck

e inverselInput.xml - ROL input parameters

layered_2D_data.txt - Synthetic temperature data

layered_2D.1i - Aria input deck for generating synthetic data

layered_2D. jou/g - Mesh journal file and genesis file

In this example, a 500 kW /m? heat flux is applied to the outside of the cylinder, and the
thermal conductivity of the joining layer is treated as homogeneous. The inverse solution is
found quickly for this simple problem as shown by the objective function and gradient
norm in Figure 2-12.

o4

10715 —— Objective Function
Gradient Norm

0 2 4 6 8 10
Iteration Number

Figure 2-12. — Objective function and gradient norm at each iteration of the optimizer.

2.5. Steady Boundary Heat Flux

To invert for a steady heat flux on a surface, the “Optimization_Design” keyword is
used.

BC Flux for Energy on surface_2 = Optimization_Design value = -1e6

The example problem is composed of three materials with different material properties and
a steady flux on the right half of the top surface as shown in Figure 2-13 (left). Material A
is a conductive material, and materials B and C represent different internal layers with
varying material properties. In real experiments, data may only be available on one surface
of the test article, and for this example synthetic data are generated at the nodes along the
bottom surface.

For the inverse problem we imagine a scenario where the heat flux along the entire top
surface is unknown, and we search for the fluxes on the left and right halves of the top
surface (i.e. two design variables). In the example input deck

(Examples/Heat_ Flux/Steady/layered_2D_inv.i), we set an initial guess of 5 kW /m? on
both halves and the optimizer quickly finds the solution (Fig. 2-13 right) of 30 kW /m? on
the top right half of the domain. The values of the heat fluxes at the top surface can be
viewed in the heartbeat file: layered_2D_flux_inv.txt.

25

—— Objective Function
Gradient Norm

Heat Flux

.
T

Figure 2-13. — Domain of the example heat flux inverse problem (left) and residuals for the
inverse problem (right).

—
=
o
|
o
Y]

0 2 4 6 8
Iteration Number

2.6. Transient Boundary Heat Flux

Reconstructing an unknown transient heat flux can be accomplished in a variety of ways
that all require the specification of a functional dependence of the heat flux on time. In the
present formulation, the heat flux is modeled as a piecewise linear function between a set of
user-specified times. Two options are available for specifying these times: constant time
intervals and arbitrary time points.

To use constant time intervals, the “num_ times” keyword is added to the boundary
condition specification.

BC Flux for Energy on surface_2 = Optimization_Design \$
value = -1e6 num_times = 2

In this example input line, the total simulation time is divided in to two equal intervals
with three design variables (unknown heat fluxes) located at time 0, one half the
simulation time, and the final simulation time. For example, if the total simulation time is
300 seconds and the user selects “num_ times” = 2, the transient heat flux will be
reconstructed at 0 s, 150 s, and 300 s with piecewise linear functions between each of these
points. The initial guess for the optimization problem is a constant heat flux specified with
the “value” keyword.

If the user desires more control over the specific time points and initial guess for the heat
flux, they can use a tabular user function. This input syntax will be familiar to current Aria
users, as it is commonly used to specify time varying boundary conditions or temperature
dependent material properties. The syntax for the boundary condition line is as follows

BC Flux for Energy on surface_2 = Optimization_Design_User_Function \$
NAME = input_flux X = time

26

This requires the specification of a user function in the Sierra domain of the input file. The
name of this function must match the name in the boundary condition line (“input_ flux”
in this case).

BEGIN DEFINITION FOR FUNCTION input_flux
type is piecewise linear
begin values

t(s), W/m2

0 -2.0e4
200 -1.0eb
300 -5.0e4

end values
END DEFINITION FOR FUNCTION

In the function above, the optimizer will invert for the heat flux at times 0 s, 200 s, and
300 s using the values provided in the table as the initial guess.

An example transient heat flux inverse problem was created based on the steady heat flux
simulation in Section 2.5. This example uses the same geometry, heat flux location, and
temperature measurement locations on the bottom of the domain as the steady heat flux
example. Synthetic temperature data is generated using a heat flux profile that begins at
50 kW /m? and remains constant for 60 seconds (Fig. 2-14 left). The heat flux then
decreases linearly to 0 kW /m? over the next 40 seconds and remains at zero until the end
of the simulation time.

The time interval for the inverse solution of the heat flux was set to 20 seconds, and the
initial guess was set at 10 kW /m? for 100 seconds decreasing to 0 kW/m? at 120 seconds as
seen in Figure 2-14 left. It is important to note that the time intervals are informed by the
heat conduction time between the heated surface and the measurement locations. This
heat conduction time is modeled as t = 62 /a, where 0 is the distance between the heat
must travel and « is the thermal diffusivity of the material. For the thermally “closest”
thermocouple to the surface in this geometry, the heat conduction time is approximately 9
seconds. This is effectively a lower limit on the fidelity of the transient reconstruction as
there is insufficient information to resolve smaller times.

Figure 2-14 right shows the objective function and norm of the gradient versus
optimization iteration. Note that after a large initial decrease in the objective function and
gradient, several iterations are required to reach the “true” synthetic solution due to the
loss of thermal information as heat diffuses from the heated surface to the temperature
measurement locations.

27

30 * —— Synthetic 3 — :
——- |Initial Guess 10 —— Objective Function
® Inverse Gradient Norm

40 10—5
&
€
=30 10-7
4
=)
5 3
Z g 10
o
— 20
@©
()
T

10—11
10
1013
0
0 20 40 60 80 100 120 0 5 10 15 20
Time (s) Iteration Number

Figure 2-14. — Transient heat flux with inverse solution (left) and residuals for the inverse
problem (right).

2.7. Arrhenius Source Terms with Finite Differences

The reaction source term inversion feature differs from the other inverse problems in that it
uses finite differences and not adjoint solves to compute gradients of the objective function.
This requires less modification of the input file for inverse problems, but the inverse
solution suffers from the lack of adjoint-based gradients. This feature has been primarily
implemented as a stepping-stone towards adjoint solves with reaction source terms in
Inverse Aria.

The Arrhenius form of a reaction is given as

k= Ae Fa/RT (2.1)

where the rate constant (k) is a function of the pre-exponential factor (A), activation
energy (FE,), ideal gas constant (R), and temperature (7). Typically, calibration of
reaction models involves searching for an A and F, that fit experimental calorimetry data.
Other parameters such as the heat of reaction and concentration function are also
candidates for inversion.

Inverse Aria currently supports inversion for A and E, for an arbitrary number of reactions
using the following syntax in the General Chemistry block.

Begin Optimization Reaction_Name

Optimize = A log_transform = true

Optimize = Ea lower_bound = 1 upper_bound = 1el0
End

o8

In this example syntax, Reaction_ Name must match the name of the reaction block with
unknown parameters. Initial guesses are set in the reaction block and the rate function
must be Arrhenius. The user can specify A and/or E, as design variables with the
Optimize = command. Providing lower and upper bounds on the potential values for the
design variable are optional. Log transforming the design variable before sending it to ROL
is also optional, with the default being false.

Unlike problems that use adjoint-based gradients, solving a problem with finite differences

does not require modification of the boundary condition specification or the addition of an

adjoint source term in the input file. Only the optimization block must be provided by the
user in the General Chemistry block of the Aria input file. Additionally, the ROL input file
must have the following line to enable finite difference gradients

<Parameter name="Use FD Gradient" type="bool" value="true" />

The user is directed to the regression test suite (InverseAria_rtest) for examples with one
and two reactions (inverseProblems/one_rxn_one_param and
inverseProblems/two_ rxn_ two_ param).

3. Optimal Experimental Design

3.1. Input Deck

The input deck is an XML formated file .xzml. Default input decks are provided with the
user’s manual. The input deck is used to specify the optimality criteria, the transfer
matrix, and the parameters of the optimization algorithm. This section explains the input
deck parameters required to execute an optimal experiment design (OED) solve.

The zml file opens with an < Parameter List name = Inputs > parameter list with a
corresponding < /Parameter List > to close out the parameter list at the end of the file.
Between this parameter list the user provides the parameters and options needed to
execute the OED.

ParameterList name="Inputs"
User provided parameters
ParameterList

3.2. OED

In the OED parameter list, the user provides the optimality criterion they wish to minimize
and optional parameters specific to each optimality type. For basic usage, the user only
needs to provide the Optimality Type. All other parameters are advanced options.

29

Input Deck: OED
ParameterList name="0ED"

Parameter name="Optimality Type" type="string" value="D"
ParameterList

3.2.1. Optimality Type

The solution of the OED depends on the optimality criterion selected. This is specified
with the Optimality Type parameter. The user can choose between A, C, D, I and R.
D-optimality is disabled for multi-observation cases (Number of Models is greater than
one). Table 3-19 provides a brief description for each criterion. Note that C € R™*™ is the
covariance matrix of the design parameters. The theory documentation describes each
optimality criterion in greater detail.

Table 3-19. — Optimality Criteria

Criterion U (C(p)) Description
A Tr(C) Average estimation variance (MSE)
C v Cv Variance of v € R™ times the estimator
D det(C) Volume of the uncertainty ellipsoid
I E[LTCh) Average prediction variance (MSPE)
R AVaRg[hT Ch] | Tail average prediction variance for 3 € [0, 1]

3.2.2. Initial Design

The user can specify the initial design weights. Typically upon first initialization the
weights should be uniform, however in the case that the user wants to warm start the
algorithm at a set of specified weights then there is an option to provide an initial design
guess.

e Uniform Initial Guess: If true, then the initial weights at each sensor are equal. If
false, then an initial design guess must be provided.

e Initial Design Guess: A user specified text file containing the initial weights on
each sensor. This file will have the same format as a resulting optimal design text
file. See section 3.4 for a description of the results file format. This option can be
used to restart an optimization problem if the previous optimization algorithm
terminated early. Note that the sum of the weights should equal one.

Input Deck: Initial Design
ParameterList name="QOED"
Parameter name="Uniform Initial Guess" type="bool" value="true"
Parameter name="Initial Design Guess" type="string" value="initial.txt"
ParameterList

60

3.3. Linear Model

Currently, optimal experiment design assumes a linear regression model. In other words,
there exists a matrix H(q) € R™™ that maps the design parameters of interest 6(q) € R™
to the measured response data y(q) € R", where m represents the number of design
parameters and n represents the number of measurement locations. We refer to the linear
operator H as a transfer matrix. The modal matrix used for modal expansion, the
frequency response function for frequency domain control problems, or the convolution
matrix for time domain control problems are a few common examples of the transfer
matrix.

The simplest case is where each row of the transfer matrix corresponds to a single
candidate sensor and correspondingly a sensor weight, such as the case for the modal
matrix. The more complex case is when there are multiple observations of the data at a
sinlge sensor location. For example, in the frequency domain the number of observations is
equal to the number of frequency lines.

The transfer matrix is provided in the Linear Model parameter list. To minimize the
liklihood that a transfer matrix is specified incorretly, we provide the user three options for
parsing the transfer matrix based on the domain type:

e General: Any transfer matrix can be specified using the general framework

e Frequency Domain: Specific to the frequency domain where the response at each
frequency line is independent

e Time Domain: Specific to the time domain where the response at each time step is
dependent

The following sections describes each domain type and the associated input deck.

3.3.1. General Framework

The user stores the transfer matrix as a two dimensional matrix on a .tzt file, which will
then be passed to the oed executable. The full user specified transfer matrix includes all
observations. In the general framework, the user provides a transfer matrix text file, a
transfer matrix dimension file, and specifies the number of models. The transfer matrix is
divided by its rows by the number of models where each model is a transfer matrix
associated with a single observation.

Input Deck: General Domain
ParameterList name="Linear Model"
Parameter name="Domain Type" type="string" value="General"
Parameter name="Number of Models" type="int" value="2"
Parameter name="Transfer Matrix" type="string" value="transferMatrix.txt"
Parameter name="Transfer Matrix Dimension" type="string"
value="tmDimFile.txt"

61

ParameterList

Further details on each parameter:

e Transfer Matrix: User provided transfer matrix text (.txt) file that contains the full
transfer matrix.

e Transfer Matrix Dimension: User provided transfer matrix dimension text (.txt) file.
The first and second entry are respectively the total number of rows and columns of
the full transfer matrix.

e Number of Models: Total number of possible measurements at a sensor. For a
frequency domain problem, this value is the total number of frequencies, and in the
time domain, the total number of time steps. The user should check that the total
number of rows of the transfer matrix divided by the specified Number of Models is
equal to the number of possible sensors.

For example, consider a frequency domain problem with real valued (no-imaginary part)
transfer matrices. Let ng be the number of frequency lines. The full transfer matrix will
have n * n, rows and m * n, columns. The format of the transfer matrix is as follows:

H(w) 0 0
0 H(w) 0 0
H= 0 .
. . . 0
0 0 - - 0 H(wp,)

where H(wj) is the frequency response function (FRF) at frequency w;. Again H(w;) has n
rows for the n sensor locations, and m columns for the number of design parameters
associated with the i*" frequency. The rows and columns of H (w;) must be ordered
consistently for each frequency, and the number of sensors and number of parameters must
be equal for all frequencies. Note that the full transfer matrix H is block diagonal since the
measured response at w; is independent of parameters of w; for ¢ # j. This format becomes
more complex if H(w;) is complexed value. In that case, H(w;) contains both the real and
imaginary parts in the following block form.

_ (Hr —Hj
H- ()

where Hp is the full transfer matrix containing the real part, and H; contains the
imaginary part.

3.3.2. Frequency Domain

To avoid the parsing confusion for a complex-valued frequency domain transfer matrix, we
provide a simpler parsing interface where the user only needs to specify the real part of the
transfer matrix and the imaginary part as two separate files in the following format:

62

H(Wno)

Instead of providing a transfer matrix dimension file, the dimensions of the transfer matrix
are provided in the Linear Model parameter list as shown below. If there is no imaginary
component then set the Complex Valued parameter to false.

Input Deck: Frequency Domain
ParameterList name="Linear Model"
Parameter name="Domain Type" type="string" value="Frequency"
Parameter name="Number of Parameters" type="int" value="3"
Parameter name="Number of Outputs" type="int" value="10"
ParameterList name="Frequency Domain"
Parameter name="Complex Valued" type="bool" value="true"
Parameter name="Number of Frequencies" type="int" value="2"
Parameter name="Real Frequency Response Function"
type="string" value="real.txt"
Parameter name="Imaginary Frequency Response Function"
type="string" value="imag.txt"
ParameterList
ParameterList

3.3.3. Time Domain

The third parsing option is for time domain type problems. When the transfer matrix is a
function of time, the user specifies the impulse response for each parameter-output
combination. The Domain Type option should be set to Time. By doing so, the code
internally converts the impulse responses into a convolution matrix which takes a Hankel
matrix form. The number of models will be equal to the total number of time steps. The
time domain transfer matrix takes the following form:

63

where H(t;) € R™™ is the impulse response at the i time step between the m parameters
and n outputs (the measurement locations). For example, the first row of H(t;) is the
response at t =14 at outputs 1...m due to a delta function at the first parameter.

Input Deck: Time Domain
ParameterList name="Linear Model"
Parameter name="Domain Type" type="string" value="Time"
Parameter name="Number of Models" type="int" value="2"
Parameter name="Transfer Matrix" type="string" value="matrix.txt"
Parameter name="Transfer Matrix Dimension"
type="string" value="dimFile.txt"

ParameterList
3.4. Executing OED and Results
3.4.1. OED executable

To execute an OED run use "mpirun -np numProcs oed inverse -opt inputXML.xml",
where numProcs is the number of processors for parallel runs, and inputXML.xml is the
xml file which contains the user specified options.

3.4.2. Parallel Runs

Internally, the OED algorithm splits the number of processors between algebraic operations
for design variables (sensor weights) and the stochastic objective function evaluations. This
split is not done automatically. The user specifies which fraction of processors are devoted
to algebraic operations as follows:

Input Deck: Processors
ParameterList name="Problem"
ParameterList name="Design"
Parameter name="Number of Design Processors" type="int" value="4"
ParameterList
ParameterList

For example, if Number of Design Processors is set to 5, and there are 60 processors, then
12 processors are devoted to the objective function and each of the 12 has 5 processors
devoted to algebraic operations. We recommend that Number of Design Processors rougly
be 10 percent of the total number of processors. However, processor decomposition which
results in optimal performance will depend on the specific problem.

64

3.4.3. Results

After the optimization algorithm converges 3 (4 for I optimality) text files are outputted to
the current directory. I _optimal_design_ 0.txt contains the solution to the OED on the
first processor. The first column corresponds to the sensor label. This label is ordered
consistently with the order in which sensors appear in the transfer matrix. Columns 2 and 3
can be ignored. Column 4 represents the probability measure of that sensor location. For a
fully converged solution where the optimization constraints are met, this value is between 0
and 1. The sum of all probabilities equals 1. The probability measures can be interpretted
as the precentage that the sensor should be experimentally sampled. The candidate sensors
with weights that are non-zero should be selected for the experiment design.

If the oed is ran in parallel, then numProcs I optimal_design files are printed. The
algorithm now automatically concatenates these files into a file called
I_optimal__design__final.

3.5. Greedy Algorithm

The default behavior of the oed executable is to call the Rapid Optimization Library’s
OED convex optimization algorithm. This algorithm may not be suitable if the user needs
to specify a total sensor budget. In order to enforce a total sensor budget, we provided a
greedy based algorithm to minimizing the optimality criterion. This is a heuristic approach
which does not gurantee the global minimum solution. However, we the optimality
criterion that are available are submodular which means that the quality of the solution is

bounded.

The greedy algorithm is only available for D and A optimality. In order to run the greedy
algorithm, the user provides the following option:

Input Deck: Greedy
ParameterList name="Inputs"

Parameter name="Use Greedy Method" type="bool" value="true"
ParameterList

The total sensor budget is specified in the greedy parameter list as follows:

Input Deck: Greedy
ParameterList name="Greedy"

Parameter name="Budget" type="int" value="5"
ParameterList

65

3.6. Baseline senors

For both greedy and ROL OED algorithms, a set of sensors of which must be included in
the optimal set can be specified by the user. In terms of the algorithm, the transfer matrix
components associated with this sensor set is always included in the covariance calculation.
The algorithm optimizes only over the remaining set of sensors. To enable this feature, the
xml file will need a text file specifying a list of indices corresponding to the rows of the
transfer matrix that are included in the baseline. This file must begin with the total
number of baseline sensors followed by the indices. These indices are written for C++ so 0
indicates the first sensor. The list is provided to the xml file via the following parameter
sublist:

Input Deck: Baseline Sensors
ParameterList name="QOED"

Parameter name="Use Baseline Sensors" type="bool" value="true"

Parameter name="Baseline Sensors File" type="string" value="baseline.txt"
ParameterList

The following example baseline sensor text file includes 3 total sensors: the fourth (3), first
(0), and seventh (6) sensor.

Example Baseline Sensor File
3 //Total number of sensors
3

0
6

3.7. Tutorial Scripts
Within the user guide sub-directory is the folder sample executable which contains a

number of example input decks. Once the transfer matrix is built using the provided
matlab script, the oed is ready to run using the provided XML files.

66

BIBLIOGRAPHY

Martin P Bendsge. “Optimal shape design as a material distribution problem”. In:
Structural optimization 1.4 (1989), pp. 193-202 (cit. on p. 38).

D. P. Bertsekas. “Projected Newton Methods for Optimization Problems with Simple
Constraints”. In: SIAM J. Control and Optimization 20 (1982), pp. 221-246 (cit. on
p. 23).

Gregory Bunting et al. “Novel Strategies for Modal-Based Structural Material
Identification”. In: Journal of Mechanical Systems and Signal Processing 149.107295
(2021) (cit. on p. 7).

J. V. Burke, J. J. Moré, and G. Toraldo. “Convergence properties of trust region
methods for linear and convex constraints”. In: Math. Programming 47 (1990),
pp. 305-336 (cit. on p. 23).

P. H. Calamai and J. J. Moré. “Projected gradient methods for linearly constrained
problems”. In: Math. Programming 39 (1987), pp. 93-116 (cit. on p. 23).

J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Nonlinear Equations
and Unconstrained Optimization. Philadelphia: STAM, 1996 (cit. on pp. 21, 22).

M. Heroux et al. “An overview of the Trilinos project”. In: ACM Trans. on Math.
Software 31.3 (2005), pp. 397-423. 1SSN: 0098-3500 (cit. on pp. 20, 43).

C. T. Kelley and E. W. Sachs. “A Trust Region Method for Parabolic Boundary
Control Problems”. In: SIAM J. Optimization 9 (1999), pp. 1082-1099 (cit. on p. 23).

D. P. Kouri et al. Rapid Optimization Library. 2014. URL:
https://trilinos.org/packages/rol (cit. on p. 20).

C.-J. Lin and J. J. Moré. “Newton’s method for large bound-constrained optimization
problems”. In: STAM J. Optim. 9.4 (1999), pp. 1100-1127 (cit. on p. 23).

J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006 (cit. on pp. 21, 22).

S D Team. SD — User’s Manual. Tech. rep. SAND2021-12052. PO Box 5800,
Albuquerque, NM 87185-5800: Sandia National Laboratories, 2021 (cit. on p. 1).

S D Team. Sierra Structural Dynamics Verification. Tech. rep. SAND2021-11330.
Sandia National Laboratories, 2021 (cit. on p. 15).

Qiqi Wang, Parviz Moin, and Gianluca laccarino. “Minimal repetition dynamic
checkpointing algorithm for unsteady adjoint calculation”. In: SIAM Journal on
Scientific Computing 31.4 (2009), pp. 25492567 (cit. on p. 51).

67

https://trilinos.org/packages/rol

INDEX

block, 4, 18, 33, 35
material identification, 33

data_file, 31
data_truth table
inverse-problem, 27
data_weight table, 33
directfrf, 38
directfrf-inverse, 1, 20

eigen, 38
eigen-inverse, 6

frequency, 2, 11, 31

imaginary data_file, 31
Inverse Problems, 44
DirectFrf
LoadID, 44
MateriallD, 47
experimental data, 44
Forward Problem, 45
Load Identification, 45
Material Identification, 49
inverse solutions
directfrf, 1
eigen, 6
modalfrf, 10
modaltransient, 14
transient, 17
inverse-directfrf, 26

inverse-problem, 2, 5, 6, 10, 11, 16, 17, 24,

38, 40
data, 26
data _file, 31
data truth table, 27
data_ type, 27
data_weight_table, 33
imaginary data_ file, 31

68

modal data file, 32
modal weight_ table, 32
psd_data_ file, 31

real data_file, 29

inverse_material _type, 33
inverseBlock

heterogeneous, 33
homogeneous, 33
known, 33

inverseMaterial

acoustic, 34

Aij_bounds, 34

bulk, 34

c0_bounds, 34

density bounds, 39
E_bounds, 34

Eij bounds, 34

filter radius, 40

G_ bounds, 34, 39

Gij_ bounds, 34

Gim_ bounds, 34

Greal bounds, 34
impedance match, 34
isotropic, 34

isotropic_ viscoelastic, 34

K bounds, 34, 39

Kim_ bounds, 34

Kreal bounds, 34

material parameters, 34
Nu_ bounds, 34

num_ material _parameters, 34
orthotropic, 34
penalizationElasticity, 39
penalizationMass, 39

rho, 34

shear, 34
smooth__heaviside_slope, 40
smooth heaviside threshold, 40

sound_ speed, 34

load, 4
load identification
directfrf, 2
limitations, 43
load entry, 41
modalfrf, 11
modaltransient, 14
transient, 17
PSD modalfrf, 12
loads, 3, 4, 12, 14, 16, 18, 41, 43

material, 4, 18, 34-36, 39, 40
material identification
directfrf, 4
eigenvalue, 7
eigenvector, 7
multi directfrf, 4
transient, 18
block entry, 33
material entry, 34
modal data_ file, 32
modal weight_ table, 32
modalfrf-inverse, 10

69

modaltransient-inverse, 14, 20

optimization, 2, 6, 10, 16, 17, 20

parameter identification
directfrf, 5

power spectral density
load identification, 12

real data_file, 29
regularization, 24
ROL output, 43

sc__option, 9

scaleDesignVars, 21

Solution, 1
DirectFRF-Inverse, 1
Eigen-Inverse, 6
ModalFRF-Inverse, 10
ModalTransient-Inverse, 14
Transient-Inverse, 16

transient-inverse, 17, 20

useTransferMatrix, 26

This page intentionally left blank.

70

DISTRIBUTION

Hardcopy—Internal

1 T. F. Walsh 1543 0897

Emait—internal [

Technical Library 1911 sanddocs@sandia.gov

71

Sandia
National
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy's
National Nuclear Security
Administration under contract
DE-NA0003525.

	Inverse Methods in Sierra/SD
	Inverse Solution Methods in Sierra/SD
	DirectFRF-Inverse Solution Case
	Load Identification
	Material Identification
	Multi-Experiment Material Identification
	Circuit Parameter Identification For Piezoelectric Modeling

	Eigen-Inverse Solution Case
	Eigenvalue Material Identification
	Eigenvector Material Identification

	ModalFRF-Inverse Solution Case
	Load Identification
	PSD Load Identification

	ModalTransient-Inverse Solution Case
	Transient-Inverse Solution Case
	Load Identification
	Material Identification

	Inverse Options in Sierra/SD
	Optimization
	Inverse-Problem
	Inverse Data Files
	Block section for Material Identification
	Material section for Material Identification
	Loads section for Load Identification
	Limitations for Inverse Load Problems
	ROL Output for Inverse Problems

	Example Inverse Problems
	Experimental Data
	Inverse Problems - Load-ID
	Experimental Model
	Forward Problem
	Inverse Problem with known loads
	Inverse Problem with unknown loads
	Verification

	Inverse Problems - Material-ID
	Experimental Model
	Inverse Problem input format
	Running the Inverse Problem
	Verification

	Inverse Methods with InverseAria
	Introduction
	Outline
	Beta Capabilities and Limitations
	Getting Started with Inverse Aria

	Inverse Problems
	Thermal Conductivity
	Steady Boundary Heat Flux
	Transient Boundary Heat Flux
	Arrhenius Source Terms with Finite Differences

	Optimal Experimental Design
	Input Deck
	OED
	Optimality Type
	Initial Design

	Linear Model
	General Framework
	Frequency Domain
	Time Domain

	Executing OED and Results
	OED executable
	Parallel Runs
	Results

	Greedy Algorithm
	Baseline senors
	Tutorial Scripts

	Index

