

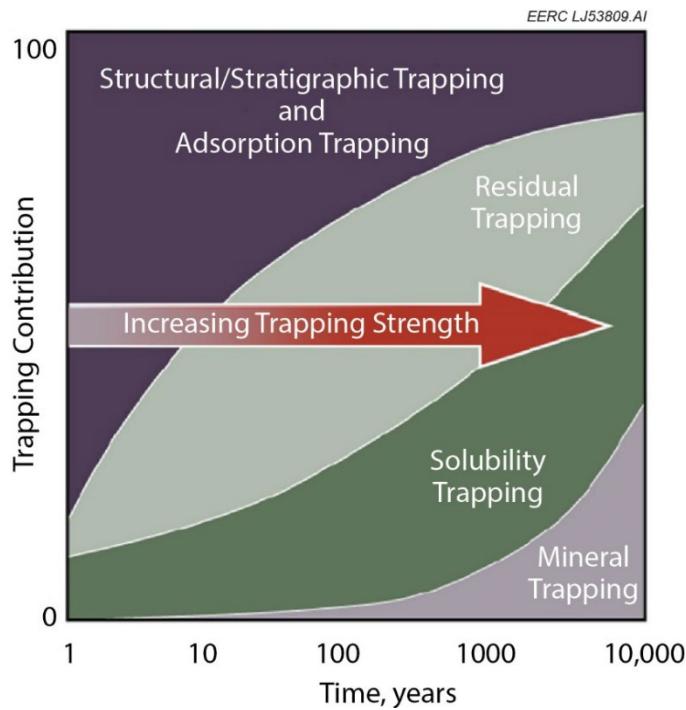
EFFECTS OF GAS RELATIVE PERMEABILITY HYSTERESIS AND SOLUBILITY ON ASSOCIATED CO₂ STORAGE PERFORMANCE

Lu Jin,* Lawrence J. Pekot, Steven A. Smith, Olarinre Salako, Kyle J. Peterson, Nicholas W. Bosshart, John A. Hamling, Blaise A.F. Mibeck, John P. Hurley, Christopher J. Beddoe, and Charles D. Gorecki

*Corresponding Author: E-Mail: ljin@undeerc.org
Phone: 1-701-777-5316; Fax: 1-701-777-5181
E-Mail: lpekot@undeerc.org
E-Mail: ssmith@undeerc.org
E-Mail: osalako@undeerc.org
E-Mail: kpeterson@undeerc.org
E-Mail: nbosshart@undeerc.org
E-Mail: jhamling@undeerc.org
E-Mail: bmibeck@undeerc.org
E-Mail: jhurley@undeerc.org
E-Mail: cbeddoe@undeerc.org
E-Mail: cgorecki@undeerc.org

22 University of North Dakota, Energy & Environmental Research Center, 15 North 23rd Street, Stop
23 9018, Grand Forks, ND 58202-9018

24 **ABSTRACT**


25 CO₂ enhanced oil recovery (EOR) has been carried out in the Bell Creek oil field since 2013.
26 Together with the encouraging oil production results, a considerable quantity of CO₂ has also been
27 trapped in the reservoir as a normal part of the EOR process, also referred to as associated storage.
28 Because of the complex geologic conditions in the field, a series of experimental and modeling
29 work have been conducted to better understand the CO₂ EOR and associated storage performance
30 in the reservoir. Effects of gas relative permeability hysteresis and solubility on associated CO₂
31 storage performance are thoroughly investigated in this study.

32 A proportion of injected CO₂ remains behind through residual and solubility trapping
33 mechanisms when CO₂ flows through a reservoir during a CO₂ EOR process. Over 50 core plugs
34 were collected from the reservoir to characterize the rock properties. Mineralogical analysis and
35 capillary pressure measurements showed that the mineral composition and pore-size distribution
36 in the reservoir are favorable for residual trapping of CO₂. The hysteresis of gas relative
37 permeability was measured to assess the effect of residual trapping on associated CO₂ storage
38 using steady-state relative permeability tests and reservoir simulation. The reservoir oil was
39 characterized based on pressure–volume–temperature experiments and Peng–Robinson equation
40 of state modeling, which showed that CO₂ solubility in oil is much greater (≥ 5 times) than in
41 water. Results indicated that depleted oil reservoirs have great potential to store a huge quantity of
42 CO₂ associated with EOR operations, as residual oil saturation is 0.3 or greater in most
43 conventional oil reservoirs after water flooding.

44 **KEYWORDS:** CO₂ enhanced oil recovery, associated CO₂ storage, relative permeability
45 hysteresis, residual trapping, solubility trapping

46 **1. INTRODUCTION**

47 CO₂ trapping and associated storage processes are important to enhanced oil recovery (EOR)
48 performance, as they can affect the oil recovery and CO₂ utilization factor (Belhaj et al., 2013;
49 Gozalpour et al., 2005; Kovscek, 2002; Malik and Islam, 2000; Verma, 2015; Soltanian et al.
50 2017). For instance, more trapped CO₂ may lead to a higher CO₂ utilization factor since less CO₂
51 is available to contact oil and sweep it from the reservoir; therefore, more CO₂ needs to be
52 purchased and injected for an equivalent oil recovery (Gao et al., 2013; Jin et al., 2017b; Li et al.,
53 2006; Zhang et al., 2010). The trapping mechanisms also determine the state of the associated CO₂
54 storage during and after CO₂ flooding. Fig. 1 is a generalized illustration which shows how the
55 contribution from different trapping mechanisms change over time leading to an increase in CO₂
56 trapping strength (or security) (Metz et al., 2005). Effective trapping mechanisms ensure injected
57 CO₂ will remain, in permanence, within the area of review (limited lateral migration) and contained
58 within the zone of interest (limited vertical migration). The four primary CO₂-trapping
59 mechanisms include structural/stratigraphic, residual, solubility, and mineral trapping in most
60 conventional petroleum reservoirs (Jia et al., 2016). Adsorption trapping is an important
61 mechanism in unconventional reservoirs, such as shale oil, shale gas, and coalbed methane (CBM)
62 reservoirs, as these reservoirs have higher percentages (>5%) of organic content and a large
63 number of nanometer-size pores (Wong et al., 2007; Busch et al., 2008; Gale and Freund, 2001;
64 Jia et al., 2017; Jin et al., 2016, 2017a; Khosrokhavar et al., 2014; Ross and Bustin, 2009). Mineral
65 trapping, with the exception of a small number of documented instances of CO₂ storage in basalt
66 formations (McGrail et al., 2016, 2006), is thought to occur over an extended time frame (hundreds
67 to thousands of years).

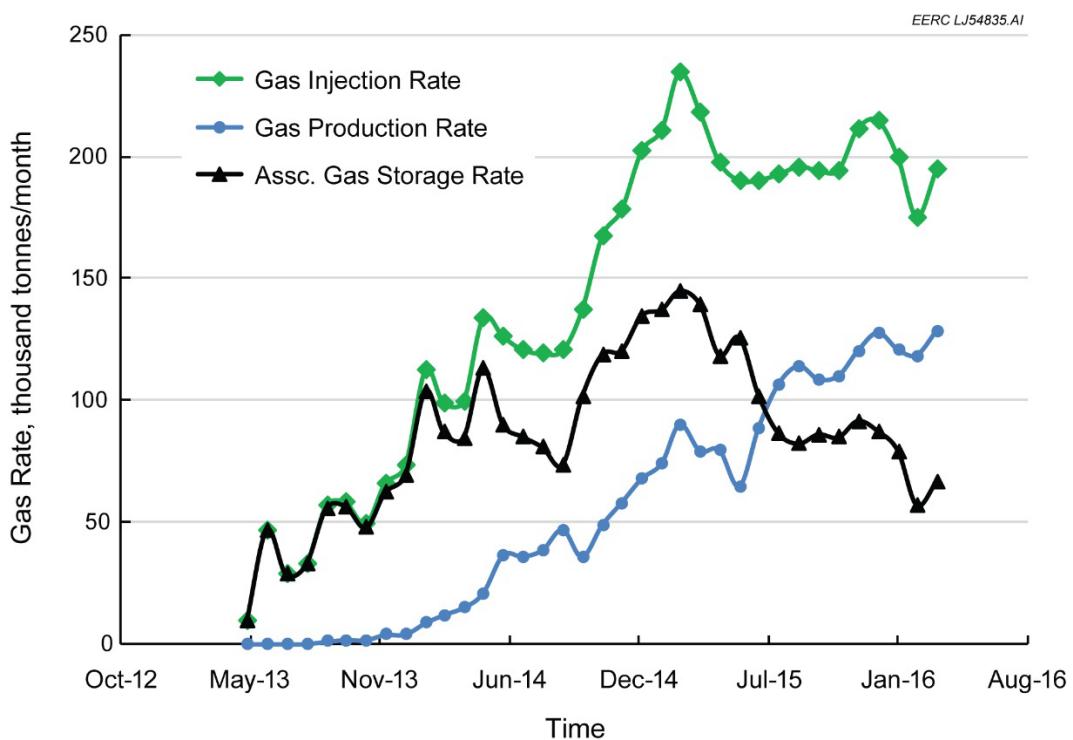
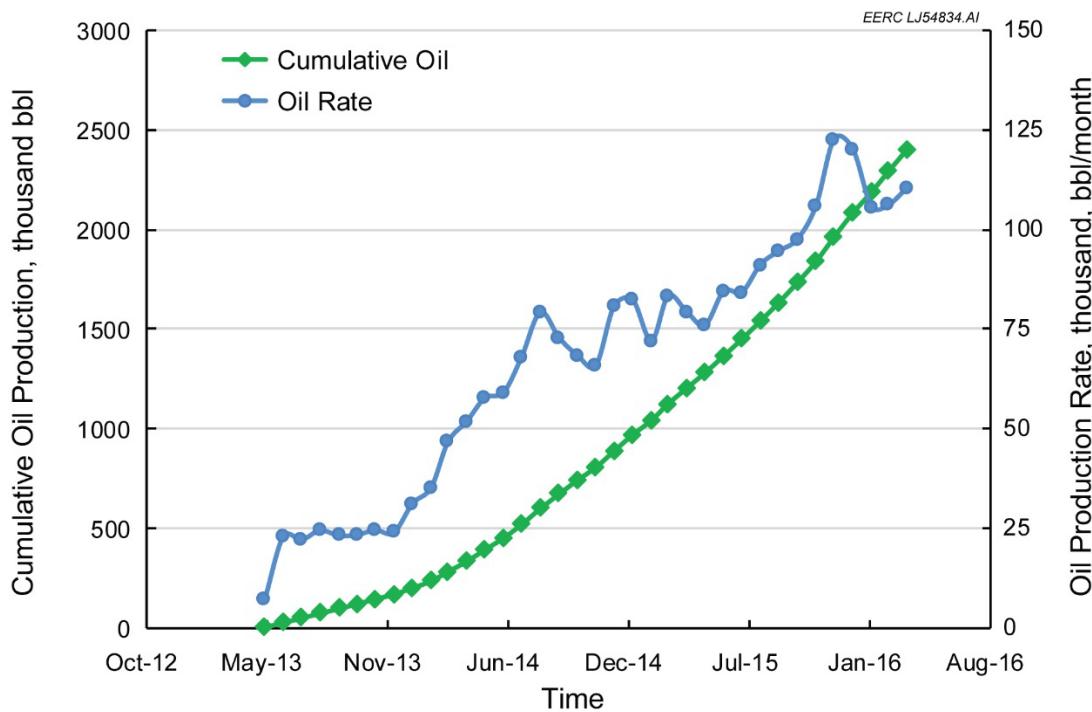
68

69 **Fig. 1.** Increase of CO₂ trapping strength with time (modified from Intergovernmental Panel on
70 Climate Change, 2005).

71

72 Studies have shown that residual CO₂ saturation may be on the order of 5%–30%, varying
73 with reservoir conditions (Ennis-King and Paterson, 2001; Juanes et al., 2006; Niu et al., 2015;
74 Zuo and Benson, 2014). Therefore, understanding residual trapping in a reservoir can provide a
75 conservative estimate of CO₂ storage potential for sequestration projects (Burnside and Naylor,
76 2014; Krevor et al., 2015; Al-Menhali and Krevor, 2016). The residual trapping of CO₂ in a small
77 pore space has been visualized and analyzed accurately at core scale (Iglauer et al., 2011; Ruprecht
78 et al., 2014). Using core-flooding with x-ray computed tomography, the results indicated that the
79 hysteretic nonwetting phase behavior (i.e., relative permeability hysteresis of CO₂) would be a
80 significant factor in determining long-term immobilization of injected CO₂ in the reservoir.
81 Accurate determination of relative permeability hysteresis is also important for CO₂-based EOR

82 projects since many of them use water alternating gas (WAG) operations, where CO₂ hysteresis
83 directly relates to the displacing efficiency (Fatemi et al., 2012).



84 CO₂ dissolves in other formation fluids when injected into a reservoir, a process termed
85 solubility trapping. The density of oil increases when CO₂ is dissolved in the oil (Holm and
86 Josendal, 1974), which may create gravitational instability in the reservoir, leading to convective
87 mixing of fluids. The mixing of fluids with differing dissolved CO₂ content will further enhance
88 the dissolution process in the long run (Li and Jiang, 2014; Shelton et al., 2016; Szulczewski et al.,
89 2013). Therefore, CO₂ dissolution is considered a significant trapping mechanism in deep geologic
90 formations, with potential to permanently store large amounts of CO₂ (Ampomah et al., 2016;
91 Bachu and Adams, 2003; Bachu and Bennion, 2007; Metz et al., 2005; [Holubnyak et al., 2018](#)).

92 A literature review showed that most of the studies on CO₂-trapping mechanisms are based
93 on dedicated CO₂ storage in deep saline formations (Al-Khdheeawi et al., 2018; Bachu and Adams,
94 2003; Bachu and Bennion, 2007; Burnside and Naylor, 2014; Iglauer, 2011; Juanes et al., 2006;
95 Krevor et al., 2015; Szulczewski et al., 2013). The effects of these mechanisms on associated CO₂
96 storage during EOR operations have not been discussed thoroughly. There is still a lack of rock
97 and fluid characterization data from actual oil fields to clearly demonstrate the correlations
98 between these trapping mechanisms and associated CO₂ storage performance. In this study, a series
99 of experimental and simulation work has been conducted to investigate the effects of residual and
100 solubility trapping mechanisms on associated CO₂ storage performance in the Bell Creek oil field,
101 where CO₂-based EOR operations are in progress. This is part of a larger study on CO₂ associated
102 storage being conducted by the Plains CO₂ Reduction (PCOR) Partnership at the Bell Creek oil
103 field in southeastern Montana (Braunberger et al., 2014; Gorecki et al., 2013; Hamling et al., 2013;
104 2016).

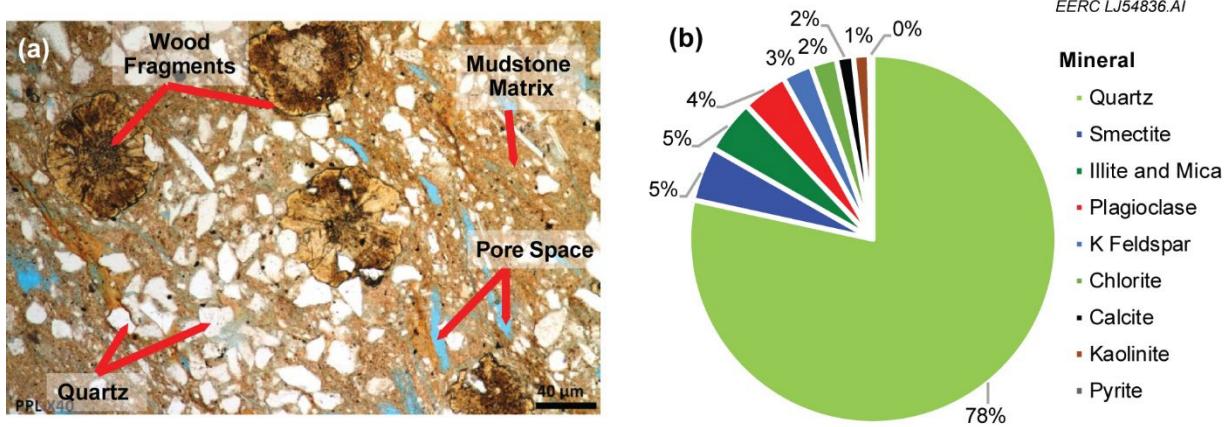
105 **2. CO₂ EOR AND ASSOCIATED STORAGE IN THE BELL CREEK OIL FIELD**

106 Since discovery in 1967, the Bell Creek oil field has undergone primary production (solution
107 gas drive), waterflooding, and two micellar–polymer pilot tests and CO₂-based EOR since 2013.
108 Over 40 years of waterflooding in the field has resulted in a reservoir saturated with water and
109 with oil at residual saturation levels ~30%–45%. Fig. 2 shows the encouraging oil production
110 performance of the field from the beginning of CO₂ injection. The oil production rate has increased
111 from 7 thousand barrels per month (bpm) to 110 thousand bpm, which has yielded over 2.4 MMbbl
112 of oil in the first 3 years of EOR operations. CO₂ injection increased from 9.5 to 234.5 thousand
113 tonnes per month (tpm) in the first 2 years of injection and then fluctuated around 195 thousand
114 tpm after June 2015, as shown in Fig. 3 (Montana Board of Oil and Gas Conservation, 2017). CO₂
115 production lagged behind the injection for about 9 months, indicating that CO₂ can effectively
116 displace oil in the pore space and remain in place during flooding operations. About 5 million
117 tonnes of CO₂ has been injected into the reservoir, and over 3 million tonnes has been stored there
118 since the beginning of CO₂ flooding (as of March 2016). From Fig. 3, it is also clear that the gas
119 storage rate related closely to the injection rate, decreasing rapidly when the injection became
120 stable, after June 2015, while the production rate continued increasing. This observation indicates
121 that CO₂ dominated the flow networks between injection and production wells and likely means
122 gas production will continue to increase as the flooding goes on.

123

129 Of the primary CO₂-trapping mechanisms shown in Fig. 1, the mineral trapping is of
130 decreased importance when immediate containment/conformity of injected CO₂ is considered, and
131 the effect of adsorption trapping is minimal since there is a lack of organic content in this
132 conventional reservoir. Therefore, these two mechanisms will likely have no impacts on
133 operational activities in the Bell Creek oil field. As such, CO₂ mineralization and adsorption have
134 not been a focus and will not be discussed further. Since the reservoir is strongly heterogeneous
135 and the CO₂ floods operations are conducted using WAG, the residual and solubility trapping
136 mechanisms are important for the CO₂ flow behavior in the Bell Creek oil field and, therefore,
137 were investigated and are discussed in the following sections.

138 **3. RESIDUAL TRAPPING OF CO₂**


139 Residual trapping occurs rapidly after CO₂ is injected into the formation under the effects of
140 wettability and capillary pressure, resulting in immobilization of CO₂ in the pore space (Afonja et
141 al., 2012; Al-Khdheeawi et al., 2018; Krevor et al., 2012, 2015; Raza et al., 2015, 2016). Relative
142 permeability is a concept used to describe individual fluid-phase mobility when multiple fluid
143 phases are present while accounting for wettability and capillary pressure phenomena. Injection of
144 CO₂ results in increasing near-wellbore CO₂ saturation (which continues to increase away from
145 the injection point as injection progresses) accompanied by a decrease in brine/oil saturation, in
146 which case relative permeability of CO₂ increases. After injection ends as CO₂ migrates updip, or
147 if water is injected after CO₂, the near wellbore CO₂ saturation will decrease away from the
148 injection point with (accompanied by an increase in brine/oil saturation), so the relative
149 permeability of CO₂ decreases. As CO₂ saturation decreases, a “residual” saturation will eventually
150 be reached at which CO₂ is effectively immobilized and, therefore, considered stabilized under the
151 effects of residual CO₂ trapping (Spiteri et al., 2008). Thus predicting the extent of CO₂ migration

152 within the reservoir under the effects of residual trapping requires an estimate of residual CO₂
153 saturation.

154 An additional complexity is that the shape of relative permeability curves may be different
155 depending on the directionality of changing fluid saturations (imbibition versus drainage), termed
156 relative permeability hysteresis. The replacement of in situ liquid by injected CO₂ is termed
157 drainage (nonwetting gas phase replaces the wetting liquid phase). In the WAG injection process,
158 the gas and liquid phases alternately displace each other, meaning the drainage and imbibition
159 processes occur in cycles. Hysteresis occurs under the effects of wettability and capillary pressure
160 when CO₂ is present. This is important to understand in investigations of CO₂ storage, as the effect
161 is usually pronounced when multiple fluids occupy the same system and may have direct
162 implications to CO₂ migration and the trapping of CO₂ in the pore space (Burnside and Naylor,
163 2014). Rock properties, such as mineral composition and pore-size distribution (PSD), play
164 fundamental roles in understanding the capillary effects and residual trapping in the reservoir.

165 Over 50 core plugs were collected from different wells which penetrate through the main
166 sandstone of the reservoir. A detailed evaluation of rock properties was conducted using
167 photomicrography and x-ray diffraction (XRD) mineralogical analysis to visualize the rock
168 framework and determine the mineral composition of the rock. The Bruker D8 x-ray diffractometer
169 was used to make the XRD measurements. The model can examine samples in situ using
170 noncorrosive gas environments from vacuum to 147 psi and up to 900°C in temperature. Ten rock
171 samples (including seven sandstone cores from the pay zone and three shale cores from the cap
172 rock) were characterized using XRD to ensure that the results are representative of the reservoir.
173 Generally, the results of sandstone cores are very similar. Figs. 4a and 4b show the typical
174 photomicrograph and mineral composition of a rock sample from the main sandstone in the

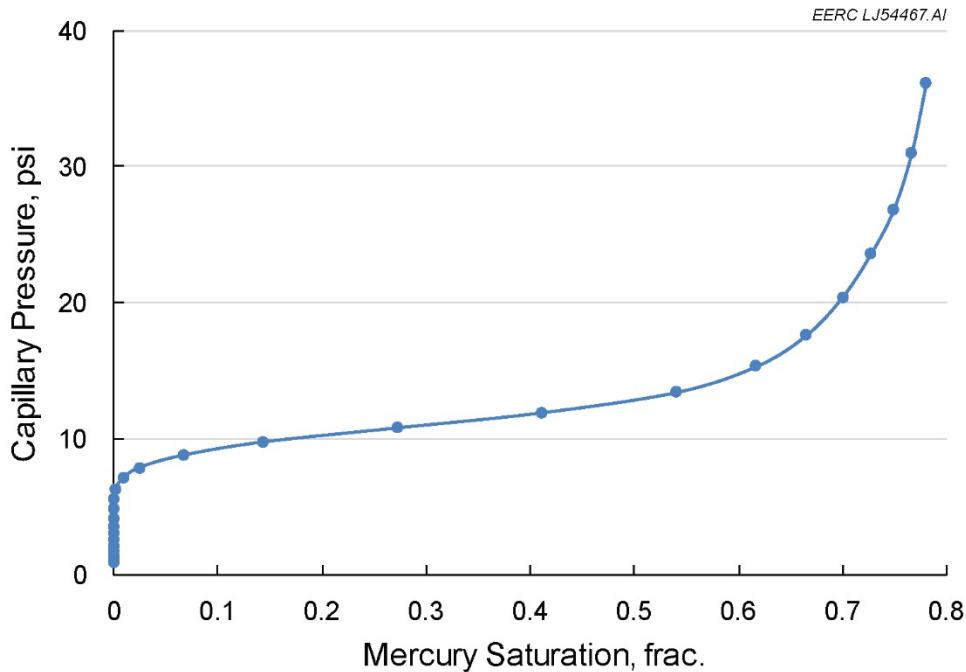
175 reservoir, respectively. The figure shows that quartz is the main mineral component (78 wt%) in
 176 the oil-bearing sand. The quartz grains are poorly to moderately sorted, and most of them are
 177 angular to subangular, with relatively sharp edges. The framework elements also include pebble-
 178 size petrified wood fragments, and the matrix is mainly mudstone which constitutes about 13 wt%
 179 of the rock. The clay mineralogy mainly includes smectite, illite, and mica, which makes the rock
 180 more favorable for residual trapping of CO₂ because of the high capillary pressure caused by the
 181 small pore throat sizes between the clay particles.

182

183 **Fig. 4.** Photomicrograph (a) and mineral composition (b) of a rock sample from the main sandstone
 184 in the reservoir.

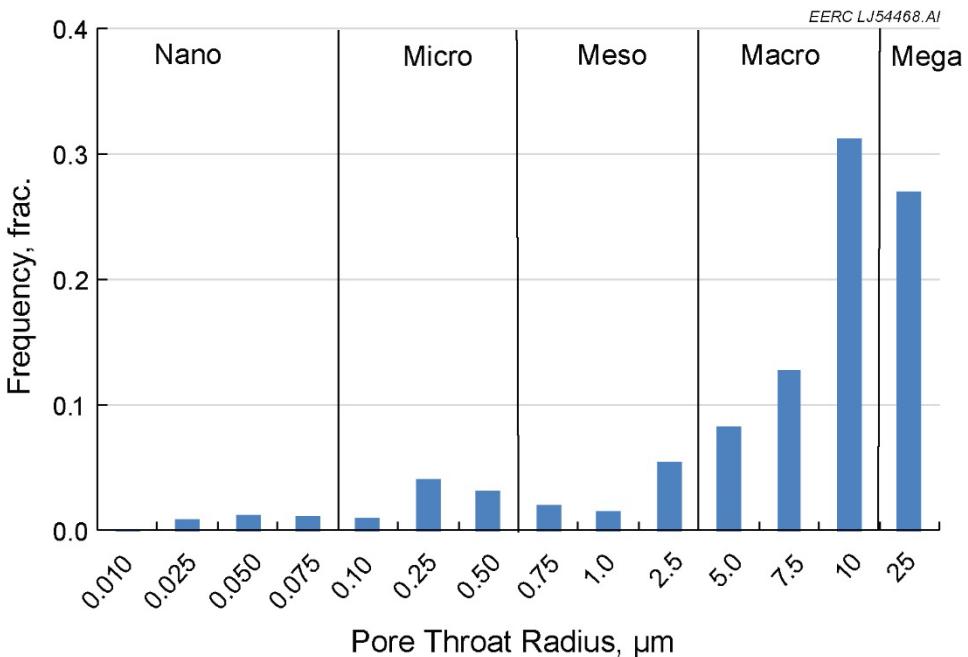
185

186 Eq. 1 shows the relation between capillary pressure and pore throat size (Ahmed, 2006):


$$187 \quad P_c = \frac{2\sigma\cos\theta}{r} \quad [\text{Eq. 1}]$$

188 Where P_c is the capillary pressure, kPa; σ is the interfacial tension (IFT), dyne/cm; θ is the contact
 189 angle between two phases, degree; and r is the pore throat radius, μm .

190 The equation shows that tiny pore throats can generate a considerable capillary pressure
 191 between phases when two or more fluids, i.e., CO₂, oil, and/or water, coexist in the rock. Capillary
 192 pressure curves were measured using a high-pressure mercury injection (HPMI) method for the


193 selected samples. A typical curve is shown in Fig. 5, which indicates that the capillary effect could
194 be quite strong when the nonwetting phase enters the small pores.

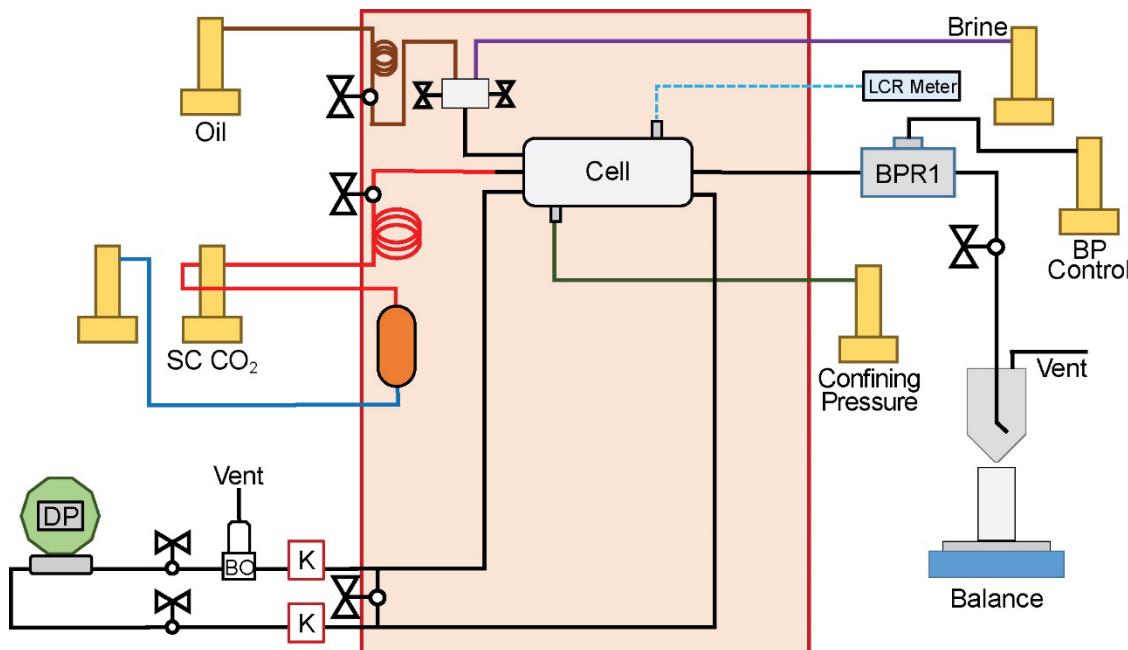
195 PSD can be determined based on the rock–fluid properties and capillary pressure curve, as
196 shown in Fig. 6. The figure indicates that most of the pores in the rock belong to macro- and
197 megapores, which have a throat radius greater than 5 μm . However, 20% of the pores have a throat
198 radii of less than 2.5 μm . These small pores may have effects on residual trapping of CO_2
199 associated with the flooding process. Relative permeability hysteresis curves provide a convenient
200 way to evaluate these effects. The curves can be measured directly from experiments with
201 sufficient data points or generated from empirical correlations by fitting them to limited data
202 (Juanes et al., 2006; Land, 1968; Larsen and Skauge, 1998).

203
204 **Fig. 5.** Capillary pressure curve of a rock sample from the main sandstone in the reservoir.
205

206

207

208 **Fig. 6.** PSD of a rock sample from the main sandstone in the reservoir.
209

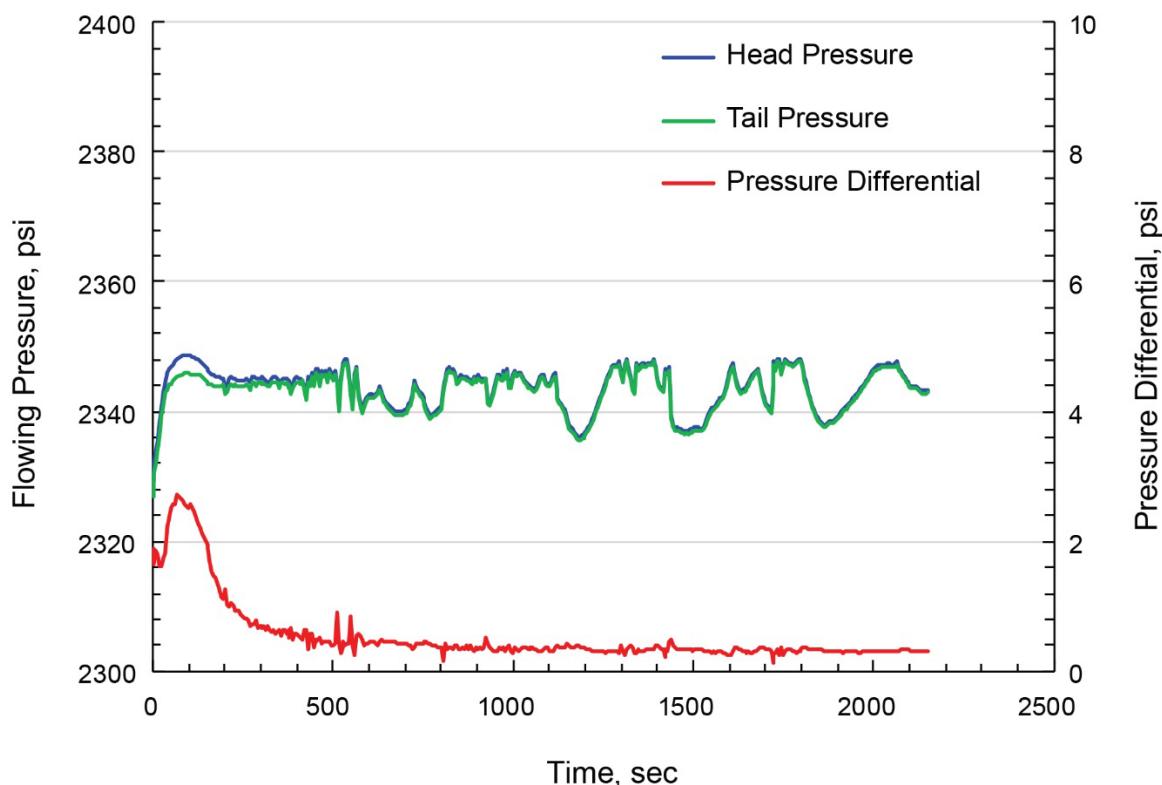

210 In this study, relative permeability hysteresis was measured using a clean sandstone core
211 sample, collected from a monitoring well at a depth of 4533 ft. Table 1 contains the measured
212 physical properties of the core sample and the oil used in the procedure. Based upon the reservoir
213 and fluid properties, multicontact miscible flooding occurs in the Bell Creek oil field, therefore,
214 the IFT between CO₂ and oil is minimized during the CO₂ EOR operations. However, the CO₂-oil
215 IFT may decrease gradually in the reservoir since CO₂ injection is conducted progressively across
216 the field. The decreasing IFT is of great interest for miscible/near-miscible CO₂ EOR processes
217 including WAG injection scenarios (Fatemi et al., 2012). Because gas-liquid relative
218 permeabilities change with IFT, especially when IFT becomes low, it is necessary to allow enough
219 contact between CO₂ and oil in the gas-liquid relative permeability hysteresis measurement
220 process. Following the experimental procedure outlined by Fatemi et al. (2012) for low CO₂-oil
221 IFT conditions, CO₂ injection and oil injection were selected for the drainage and imbibition
222 cycles, respectively. Steady-state relative permeability tests were performed using the

223 experimental setup shown in Fig. 7 to derive the relative permeability curves of the gas phase. The
 224 experiments were conducted under reservoir conditions (2350 psi and 108°F for confining pressure
 225 and temperature, respectively). The pressure profiles for the drainage (CO₂ injection) and
 226 imbibition (oil injection) processes are shown in Fig. 8 and Fig. 9, respectively. The plots
 227 demonstrate that steady-state displacement was in both drainage and imbibition processes after
 228 1000 seconds.

229 **Table 1**
 230 Physical Properties of the Core Used in Relative Permeability Hysteresis Measurements.

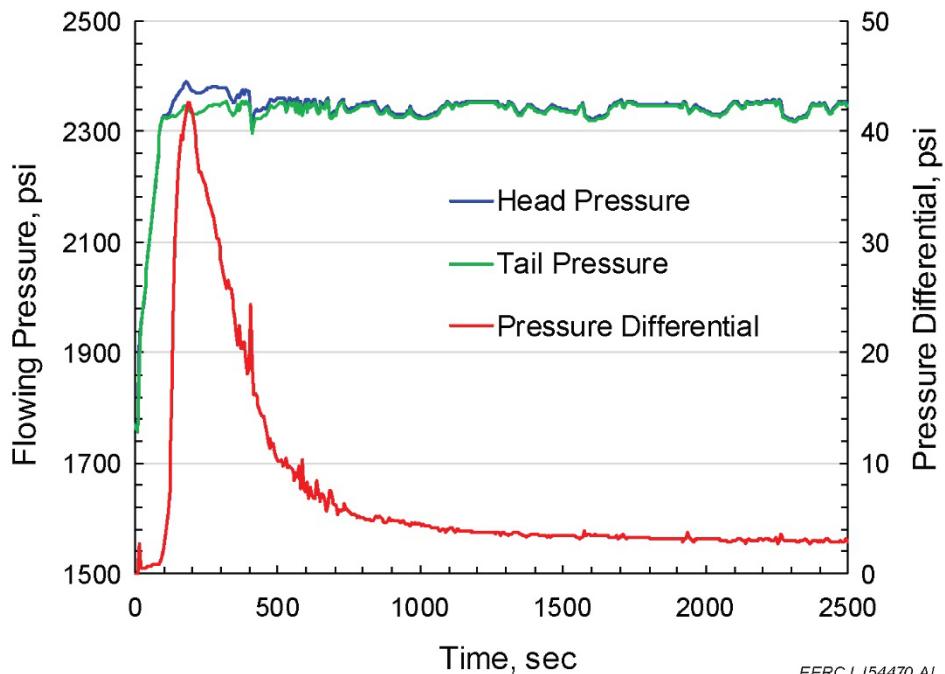
Parameter	Value	Unit
Diameter	0.97	in.
Length	1.91	in.
Weight	44.37	g
Grain Density	2.65	g/cm ³
Porosity	0.26	fraction
Permeability	1052	md
Residual Oil Saturation	0.31	fraction

231



EERC SS54436.AI

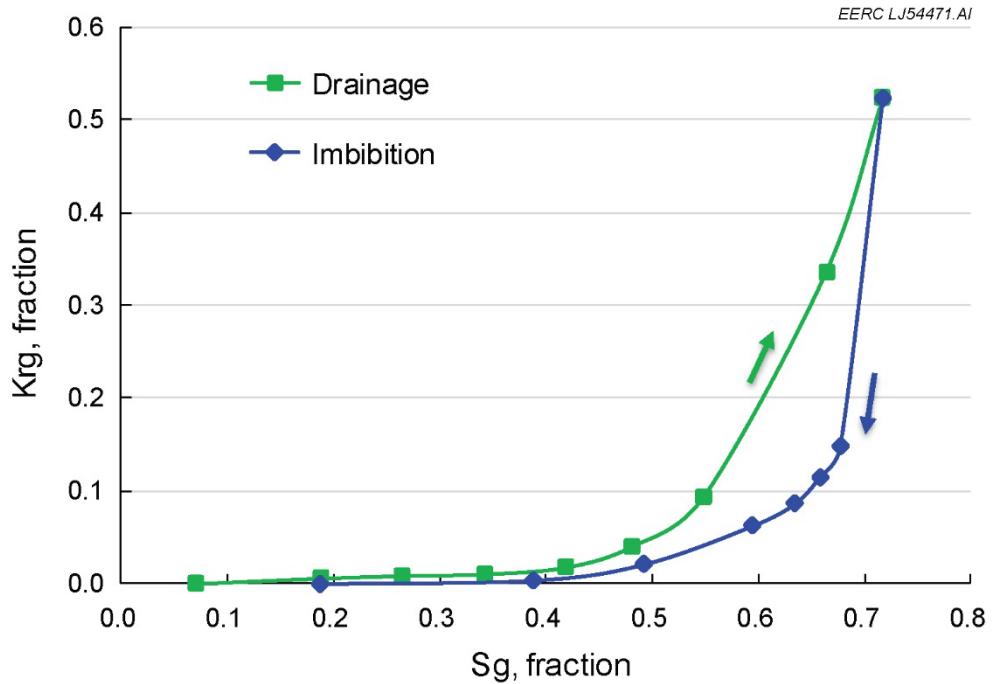
232
 233 **Fig. 7.** Experimental setup for relative permeability hysteresis measurement.
 234


235 The measured relative permeability curves for the gas branch (Fig. 10) clearly show a
236 hysteretic effect between the CO₂ relative permeability curves during drainage and imbibition
237 processes. The irreducible (or trapped) gas saturation increases from 0.07 in the drainage process
238 to 0.19 in the imbibition process, which means a considerable amount of CO₂ was trapped in the
239 core sample during the cycle.

EERC LJ53943.AI

240

241 **Fig. 8.** Pressure profile in the drainage process (CO₂ injection).
242



243

244 **Fig. 9.** Pressure profile in the imbibition process (oil injection).

245

EERC LJ54470.AI

246

247 **Fig. 10.** Relative permeability curves for CO_2 in the drainage and imbibition processes showing a
248 clear hysteretic effect.

249

250 **4. SOLUBILITY TRAPPING OF CO₂**

251 Aside from residual trapping, solubility trapping of CO₂ is also critical for CO₂ EOR and
252 associated storage. CO₂ dissolution in oil is one of the primary mechanisms for CO₂ EOR, in which
253 dissolved CO₂ changes the oil's physical properties, yielding important benefits to recovery.
254 Through this process, oil volume swells and viscosity reduces, which effectively increase the oil
255 mobility and, thus, oil recovery (Emera and Sarma, 2007). However, the results of this process
256 differ with changing pressure, oil composition, and impurities in the CO₂ stream (Srivastava et al.,
257 1999). Another complication is posed by changing fluid saturations within the reservoir
258 (decreasing oil saturation relative to water saturation). Within the oil phase specifically, the CO₂
259 EOR process preferentially mobilizes "lighter" hydrocarbon species (short-chain hydrocarbons) in
260 comparison to "heavier" hydrocarbon species (long-chain hydrocarbons) (Hawthorne et al., 2014),
261 resulting in changing oil composition over time. Therefore, fluid characterization and CO₂
262 solubility need to be studied carefully for a reasonable prediction of associated CO₂ storage which
263 occurs during CO₂-based EOR.

264 Detailed fluid characterization work has been conducted for the PCOR Partnership study oil
265 using various PVT (pressure–volume–temperature) experiments at reservoir temperature
266 (108°F), including saturation pressure, separator, constant composition expansion, differential
267 liberation, and swelling tests. These tests accurately measured the oil/gas composition, saturation
268 pressure, fluid density, viscosity, formation volume factor, and oil swelling with CO₂, etc. Based
269 on the experimental results, the physical properties of the reservoir fluids can be precisely
270 characterized (Hawthorne et al., 2016). The original and residual oil compositions are shown in
271 Table 2, where considerable medium hydrocarbons are left in the residual oil after pressure

272 depletion. The interactions between CO₂ and these hydrocarbons are important for CO₂ EOR and
273 associated storage performance.

274 **Table 2**
275 Composition of the Crude Oil in the Bell Creek Oil Field.

Oil Composition	Mole Fraction	
Component	Original	Residual
CO ₂	0.0042	0
N ₂	0.0019	0
CH ₄	0.1909	0
C ₂ H ₆	0.0033	0.0009
C ₃ H to NC ₄	0.0428	0.0370
IC ₅ to C07	0.1526	0.1881
C08 to C13	0.2860	0.3606
C14 to C24	0.1997	0.2523
C25 to C36+	0.1184	0.1612

276

277 A series of swelling tests were performed by Core Laboratories Inc. to determine the
278 interactions between CO₂ and oil, especially for CO₂ solubility and the oil-swelling factor, which
279 is defined as the volume of fluid at current saturation pressure divided by the volume of reservoir
280 oil at initial saturation pressure. CO₂ solubility in oil is affected by reservoir temperature, oil
281 saturation pressure, and density, etc. The solubility generally decreases with temperature but
282 increases with oil saturation pressure and density (Perera et al., 2016). Table 3 clearly illustrates
283 the relationship between CO₂ solubility and key parameters of oil under reservoir conditions. The
284 reservoir oil has a strong ability to dissolve CO₂: 0.48 mole fraction of CO₂ can be dissolved in
285 the oil when the oil saturation pressure increases to 1505 psi. Meanwhile, oil viscosity decreases
286 from 2.22 to 0.86 and oil volume swells to 23%, respectively.

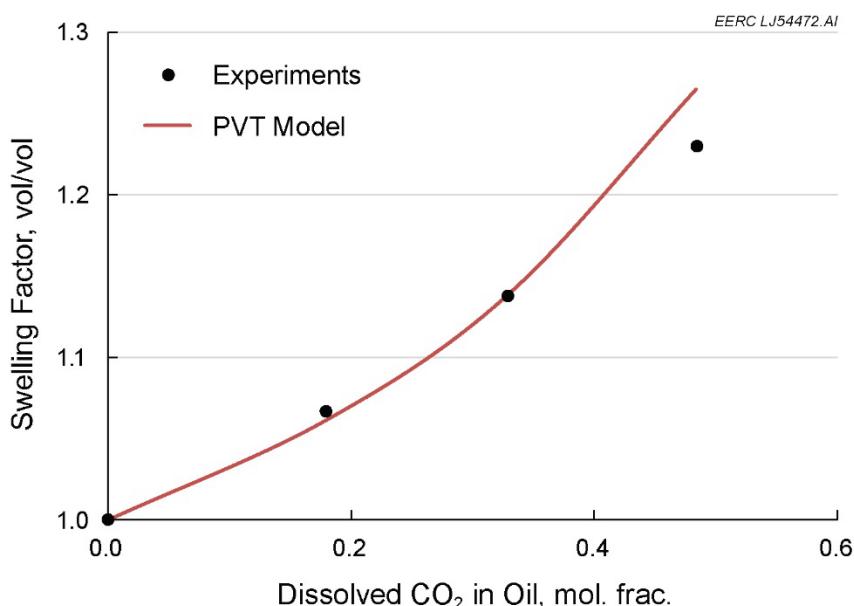
287 Both analytical and numerical correlations have been developed to predict the interactions
288 between oil and CO₂ (Emera and Sarma, 2007; Mulliken and Sandler, 1980). Analytical
289 correlations can be used to calculate the parameters quickly when the system is simple, while

290 numerical correlations are usually used with simulation models to compute the thermodynamic
291 properties of fluids in complex systems.

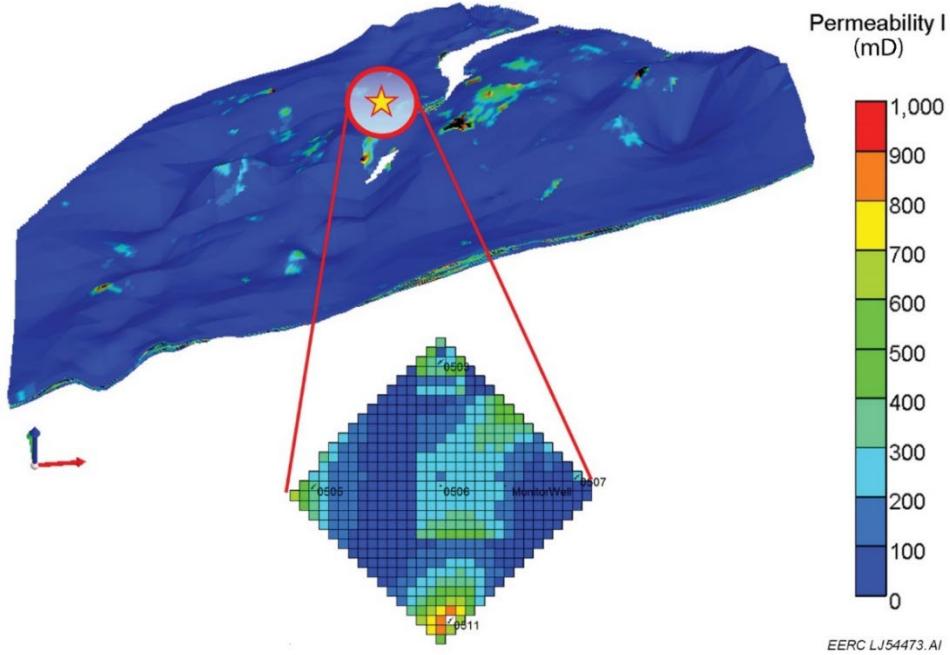
292 **Table 3**
293 Interactions Between CO₂ and Reservoir Oil at 108°F.

CO ₂	Oil			
Solubility, mol. frac.	Saturation Pressure, psi	Density, lb/ft ³	Viscosity, cP	Swelling Factor, vol/vol
0.00	925	49.23	2.221	1.0000
0.18	1038	48.64	1.766	1.0668
0.33	1231	49.19	1.316	1.1377
0.48	1505	50.20	0.859	1.2301

294


295 To couple with the complicated geologic conditions and strong heterogeneity in the
296 reservoir, a numerical correlation (PVT model with cubic equation of state [EOS]) was developed
297 to investigate the CO₂–oil–water interactions in this study. The PVT model has seven components:
298 CO₂ as a single component and other six components lumped together (N₂–C2, C3–C4, C5–C7,
299 C8–C13, C14–C24, and C25–C36). The Peng–Robinson (PR) EOS was applied to fine tune the
300 model using Computer Modelling Group's (CMG's) WINPROP[®] module. Experimental data from
301 saturation pressure, separator, constant composition expansion, differential liberation, and
302 swelling tests were matched at reservoir temperature (108°F) to make sure the model can
303 accurately predict the phase behavior of the reservoir fluids. Fig. 11 shows that the PVT model
304 can capture the CO₂ solubility and oil-swelling behavior satisfactorily.

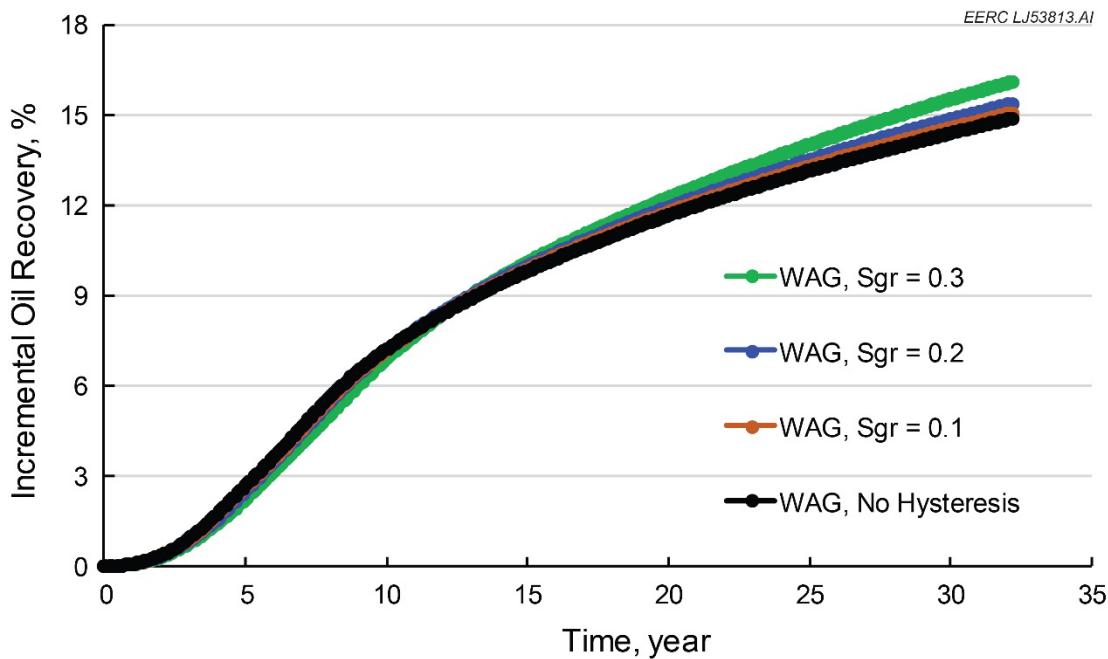
305 **5. CASE STUDY**


306 Reservoir simulation provides a useful means to predict fluid flow behavior in reservoirs
307 with strong heterogeneity and complicated phase behavior. A large-scale simulation model with a
308 total of 859,362 cells (259 × 158 × 21) and 102 wells was constructed to simulate the reservoir
309 performance with CO₂ EOR operations. Satisfactory history-matching results through the primary
310 production, waterflooding, and CO₂-flooding stages showed that the model is able to capture the

311 flow dynamics in the reservoir. Details of the modeling and simulation work have been reported
 312 by Jin et al. (2017b). Since relative permeability hysteresis requires greater simulation time and
 313 sensitivity analysis of hysteretic effect requires a model with a fast running speed, a smaller five-
 314 spot simulation model, as shown in Fig. 12, was clipped from the comprehensive reservoir-scale
 315 model to investigate the effects of relative permeability hysteresis and solubility on associated CO₂
 316 storage performance. The five-spot model has five wells for fluid injection/production and also
 317 keeps the original reservoir heterogeneity in the model. Its fast running speed makes it possible to
 318 conduct sensitivity analysis on residual and solubility trapping effects efficiently.

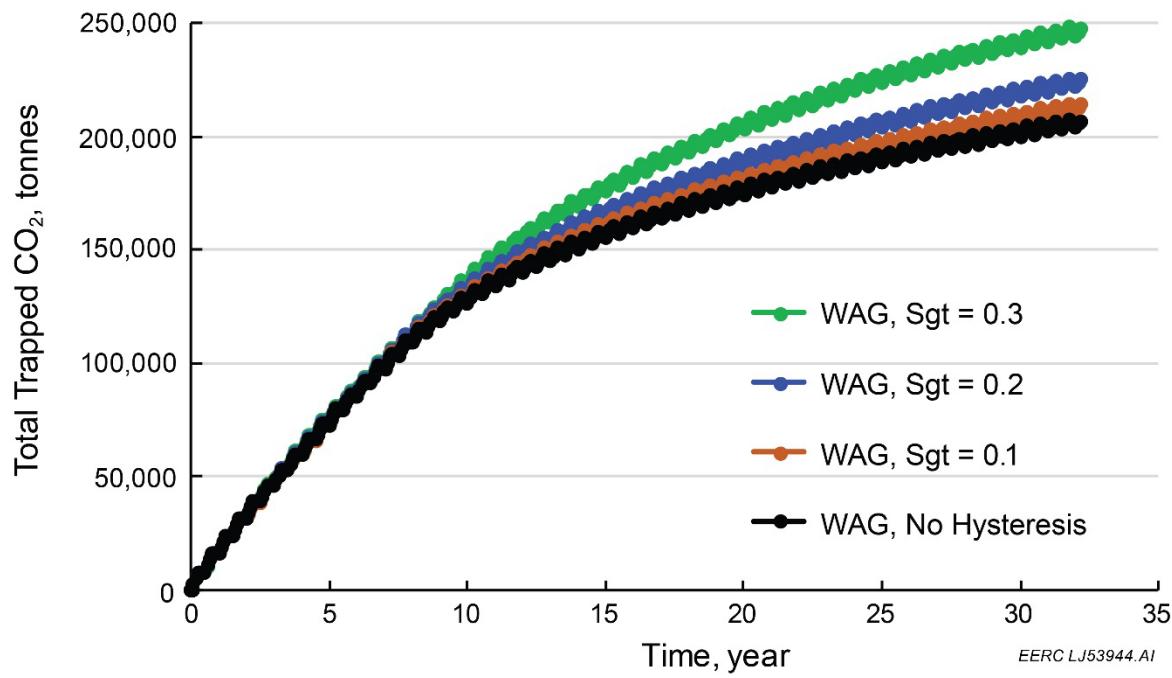
319 Several relative permeability hysteresis models, including Land's trapping model, Carlson's
 320 hysteresis model, and Killough's hysteresis model, are available to predict the effects of hysteresis
 321 on oil recovery and associated storage (Fatemi et al., 2012; Land, 1968; Larsen and Skauge, 1998).
 322 In this study, Land's model was used in simulation cases to evaluate the effect of hysteresis on
 323 CO₂ flood performance. Based on the measured CO₂ relative permeability hysteresis curves shown
 324 in Fig. 10, three different residual CO₂ saturations (0.1, 0.2, and 0.3) were considered in the study

325
 326
 327 **Fig. 11.** Correlation between CO₂ solubility and oil-swelling factor.

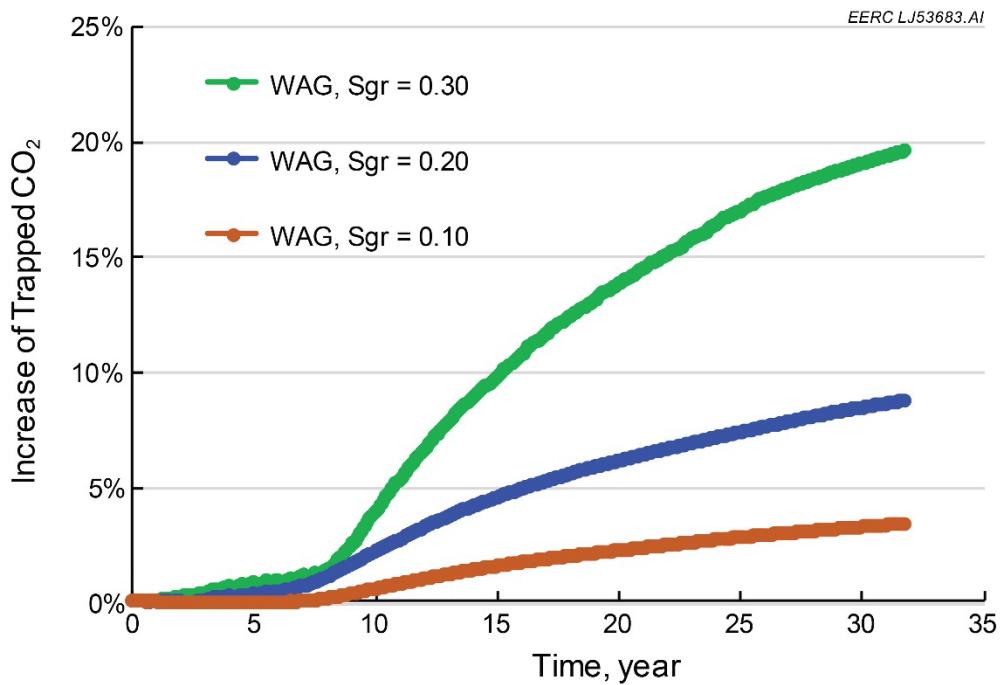


328

329 **Fig. 12.** Simulation model with different scales for the Bell Creek oil field.


330

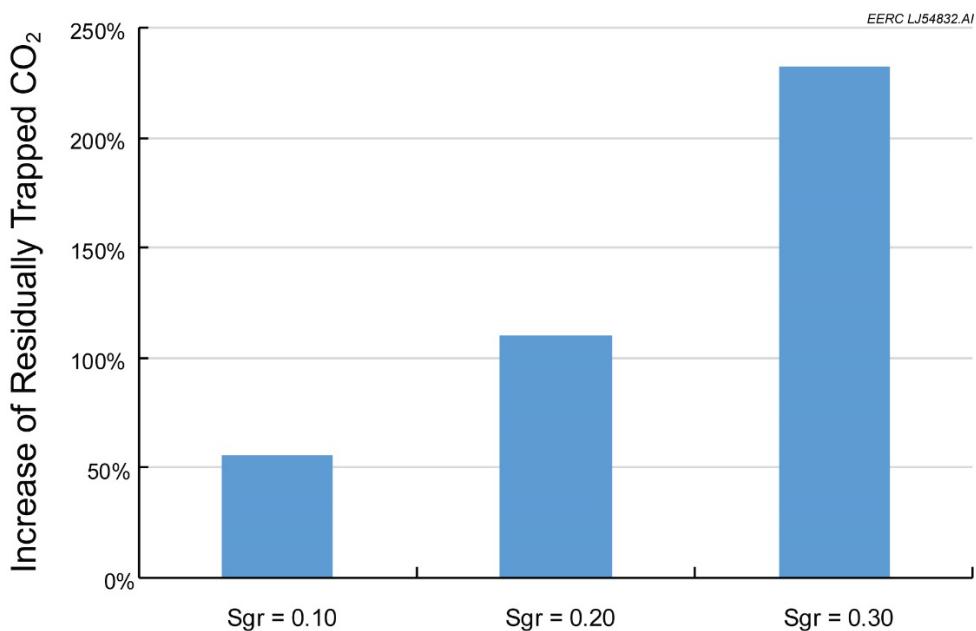
331 to span a range of possible CO₂-trapping scenarios. Fig. 13 shows the comparison of incremental
 332 oil recovery for the five-spot model CO₂ EOR simulation cases with and without relative
 333 permeability hysteresis. The results indicate relative permeability hysteresis does not have a
 334 significant impact on oil recovery in this model. Oil recovery factor is slightly higher when the
 335 residual CO₂ saturation is 0.3, but the difference is negligible between other cases. However, the
 336 effect of relative permeability hysteresis on total associated CO₂ storage is obvious, as shown in
 337 Fig. 14. More CO₂ is stored in the reservoir when residual CO₂ saturation is high, as is expected.
 338 Quantitatively, a difference of approximately 20% of total trapped CO₂ was noted between a case
 339 without hysteresis (referred as base case hereinafter) applied and a case with hysteresis applied
 340 and an assumed residual CO₂ saturation of 0.3 as indicated in Fig. 15. Fig. 16 clearly shows that
 341 the residually trapped CO₂ has increased over 220% for the case of 0.3 residual gas saturation
 342 compared to the base case.


343

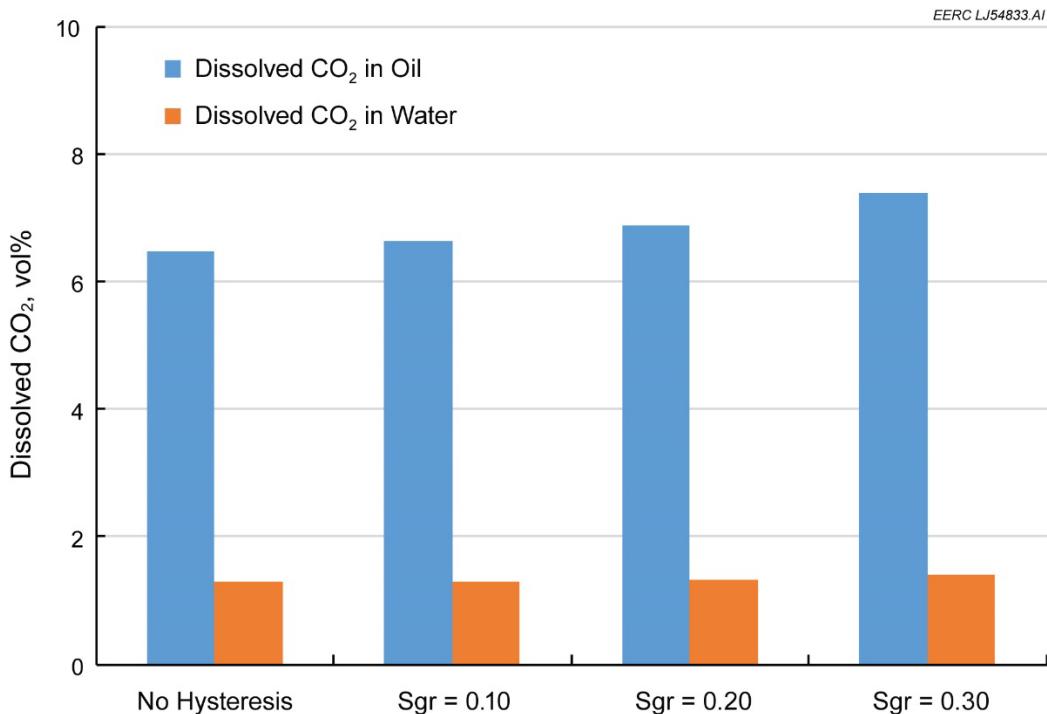
344 **Fig. 13.** Comparison of incremental oil recovery for cases with different residual CO₂ saturations.
 345

346

347 **Fig. 14.** Comparison of total CO₂ trapped for cases with different residual CO₂ saturations.
 348



352


353 **Fig. 16.** Increase of residually trapped CO_2 compared to the case without hysteresis effect.

354

355

356 Simulations accounting for CO₂ dissolution in water and oil were conducted together with
357 the hysteresis cases since the solubility correlation has been included in the simulation model. The
358 results of cases assuming different residual CO₂ saturations are shown in Fig. 17. The results
359 indicate CO₂ solubility in oil is much greater (≥ 5 times) than that of water in the pore volume. A
360 part of residual oil after waterflooding (S_{orw}) is moved by CO₂ and becomes movable oil (S_{om} =
361 S_{orw} – S_{orm}) in the reservoir. This movable oil is then produced to the surface via oil producers,
362 and the CO₂ in the produced oil is separated and continually recycled, i.e., reinjected into the
363 reservoir. However, not all of the movable oil is produced to the surface because of the limitation
364 of producing time (32 years in this study). CO₂ continues to interact with the remaining residual
365 oil (S_{orm}), dissolving into it and being trapped there after EOR operations cease. As such, the
366 higher the S_{orm}, the greater the CO₂ trapping potential in residual oil. Residual oil saturation after
367 waterflooding is usually 0.3 or greater in most conventional oil reservoirs, and a considerable
368 quantity of residual oil still remains in the pore space after CO₂ EOR operations. Thus these oil
369 reservoirs could be great candidates for CO₂ storage. The simulation results also show that more
370 CO₂ is dissolved when the trapped CO₂ saturation is higher, as more CO₂ is available to interact
371 with oil and water in the pore space. [The dissolved CO₂ in water under different residual gas](#)
372 saturations is also different, but the difference is too small to distinguish in Fig. 17 as the quantities
373 of dissolved CO₂ are 20045, 20278, 20829, and 21871 tonnes for the cases displayed from left to
374 right in the figure, respectively.

375

376 **Fig. 17.** Comparison of simulated dissolved CO₂ for cases with different residual CO₂ saturations.
377

378 **6. CONCLUSION**

379 Large-scale CO₂-flooding operations are in progress in the Bell Creek oil field. Encouraging
380 oil production performance shows the success of the EOR project. Simultaneously, a considerable
381 quantity of associated CO₂ storage has occurred in the reservoir. In this study, CO₂-trapping
382 mechanisms in the reservoir associated with EOR operations were analyzed. Two of the primary
383 CO₂-trapping mechanisms responsible for associated CO₂ storage in the Bell Creek oil field,
384 residual trapping and solubility trapping, were discussed in detail. The main findings include the
385 following:

386 1. Production and injection data were analyzed in the CO₂-flooding stage. Despite the
387 continued improvement of oil production during flooding, the rate of associated CO₂
388 storage decreased after 2 years. The results indicate the flow network/channels for CO₂
389 has been well established between injectors and producers in the reservoir.

- 390 2. Over 50 core plugs were collected from the reservoir to characterize rock properties.
- 391 Mineralogical analysis and capillary pressure measurements showed that the mineral
- 392 composition and PSD in the reservoir are favorable for both CO₂ EOR and associated
- 393 storage.
- 394 3. The reservoir oil was characterized based on PVT experiments and PR EOS modeling.
- 395 Results showed that the reservoir oil has a strong ability to dissolve CO₂, which not only
- 396 improves the mobility of residual oil in the reservoir, but also traps a considerable
- 397 quantity of CO₂ in the reservoir – [over 100 thousand tonnes in a five-spot pattern reservoir](#)
- 398 [section under study.](#)
- 399 4. Steady-state relative permeability tests were performed to derive gas-phase relative
- 400 permeability curves using a clean sandstone core sample collected from a monitoring well
- 401 in the reservoir. [The irreducible \(or trapped\) gas saturation increases from 0.07 in the](#)
- 402 [drainage process to 0.19 in the imbibition process due to the relative permeability](#)
- 403 [hysteresis effects.](#)
- 404 5. The relative permeability hysteresis curves were integrated within a five-spot simulation
- 405 model to investigate the effect of residual trapping on CO₂ EOR and storage performance.
- 406 Results showed that oil recovery factor and associated CO₂ storage could increase 1.21%
- 407 and 20%, respectively, considering relative permeability hysteresis with a residual CO₂
- 408 saturation of 0.3.
- 409 6. The five-spot simulation model was also used to investigate solubility trapping of CO₂ in
- 410 the reservoir. Based on the fluid properties and reservoir conditions in the Bell Creek oil
- 411 field, CO₂ solubility in oil is much greater (≥ 5 times) than that in water.

412 **ACKNOWLEDGMENTS**

413 This work was performed under U.S. Department of Energy National Energy Technology
414 Laboratory Cooperative Agreement No. DE-FC26-05NT42592. The EERC would like to thank
415 Denbury Resources Inc. (Denbury) for providing necessary data to perform this work. Special
416 thanks go to the members of Denbury's Bell Creek team for their valuable input and fruitful
417 discussions. We also thank Computer Modelling Group Ltd. (CMG) for providing us with the
418 simulation software package, which makes the high-performance computation/simulation
419 possible.

420 **DOE DISCLAIMER**

421 This paper was prepared as an account of work sponsored by an agency of the United States
422 Government. Neither the United States Government, nor any agency thereof, nor any of their
423 employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
424 for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
425 disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
426 any specific commercial product, process, or service by trade name, trademark, manufacturer, or
427 otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring
428 by the United States Government or any agency thereof. The views and opinions of authors
429 expressed herein do not necessarily state or reflect those of the United States Government or any
430 agency thereof.

431 **CONVERSIONS**

C :	compressibility, psi^{-1}	$\times 0.145 \text{ kPa}^{-1}$
d :	diameter, in	$\times 0.0254 \text{ m}$
k :	permeability, mD	$\times 10^{-12} \text{ m}^2$
l :	length, in	$\times 0.0254 \text{ m}$
m :	weight, g	$\times 10^{-3} \text{ kg}$
p_b :	saturation pressure, psi	$\times 6.895 \text{ kPa}$

p_c :	capillary pressure, <i>psi</i>	× 6.895 <i>kPa</i>
p_e :	reservoir pressure, <i>psi</i>	× 6.895 <i>kPa</i>
q :	liquid production rate, <i>bpd</i>	× $6.625 \times 10^{-3} \text{ m}^3/\text{hr}$
Q :	cumulative liquid production, <i>bbl</i>	× 0.159 m^3
r :	pore throat radius, μm	× 10^{-6} m
S_{om}	movable oil saturation	× 1 <i>fraction</i>
S_{orm}	residual oil saturation after CO ₂ flooding	× 1 <i>fraction</i>
S_{orw}	residual oil saturation after water flooding	× 1 <i>fraction</i>
T :	temperature, °F	= $([\text{°F}] + 459.67) \times \frac{5}{9} \text{ K}$
FVF :	formation volume factor, <i>rb/stb</i>	× 1 m^3/sm^3
GOR :	gas-oil ratio, <i>scf/stb</i>	× 0.178 m^3/m^3
ρ :	density, <i>lb/ft</i> ³	× 16.02 kg/m^3
σ :	interfacial tension, <i>dyne/cm</i>	× 1 <i>dyne/cm</i>
θ :	contact angle between two phases, <i>degree</i>	× 1 <i>degree</i>
ϕ :	porosity, <i>fraction</i>	× 1 <i>fraction</i>
μ :	viscosity, <i>cP</i>	× $10^{-3} \text{ Pa}\cdot\text{s}$

432

433 REFERENCES

- 434 Afonja, G., Hughes, R.G., Nagineni, V., Jin, L., 2012. Simulation study for optimizing injected
435 surfactant volume in a miscible carbon dioxide flood. Proceedings of SPETT Energy
436 Conference and Exhibition, SPE 158220, Port-of-Spain, Trinidad, June 11–13.
- 437
- 438 Ahmed, T., 2006. Reservoir engineering handbook, Gulf Professional Publishing.
- 439
- 440 Al-Khdheewi, E.A., Vialle, S., Barifcany, A., Sarmadivaleh, M., Iglaue, S., 2018. Effect of
441 wettability heterogeneity and reservoir temperature on CO₂ storage efficiency in deep saline
442 aquifers. IJGGC, 68, 216–229.
- 443
- 444 Al-Menhali, A.S., Krevor, S., 2016. Capillary trapping of CO₂ in oil reservoirs—observations in
445 a mixed-wet carbonate rock. Environ. Sci. Technol., 50 (5), 2727–2734.
- 446
- 447 Ampomah, W., Balch, R., Cather, M., Rose-Coss, D., Dai, Z., Heath, J., Dewers, T., Mozley, P.,
448 2016. Evaluation of CO₂ storage mechanisms in CO₂ enhanced oil recovery sites—application
449 to Morrow sandstone reservoir. Energy Fuels, 30 (10), 8545–8555.
- 450
- 451 Bachu, S., Adams, J.J., 2003. Sequestration of CO₂ in geological media in response to climate
452 change—capacity of deep saline aquifers to sequester CO₂ in solution. Energy Conversion and
453 Management, 44 (20), 3151–3175.
- 454
- 455 Bachu, S., Bennion, B., 2007. Effects of in situ conditions on relative permeability characteristics
456 of CO₂—brine systems. Environ. Geol., 54 (8).
- 457

- 458 Belhaj, H., Abukhalifeh, H., Javid, K., 2013. Miscible oil recovery utilizing N₂ and/or HC gases
459 in CO₂ injection. *J. Petrol. Sci. Eng.*, 111, 144–52.
- 460
- 461 Braunberger, J., Hamling, J., Gorecki, C., Miller, H., Rawson, J., Walsh, F., Pasternack, E., Rowe,
462 W., Butsch, R., Steadman, E., Harju, J., 2014. Characterization and time-lapse monitoring
463 utilizing pulsed-neutron well logging. associated CO₂ storage at a commercial CO₂ EOR
464 project. *Energy Proc.*, 63, 3935–3944.
- 465
- 466 Burnside, N.M., Taylor, M., 2014. .Review and implications of relative permeability of CO₂/brine
467 systems and residual trapping of CO₂. *IJGGC*, 23, (1–1).
- 468
- 469 Busch, A., Alles, S., Gensterblum, Y., Prinz, D., Dewhurst, D.N., Raven, M.D., Stanjek, H.,
470 Krooss, B.M., 2008. Carbon dioxide storage potential of shales. *IJGGC*, 2 (3), 297–308.
- 471
- 472 Emera, M.K., Sarma, H.K., 2007. Prediction of CO₂ solubility in oil and the effects on the oil
473 physical properties. *Energy Sources, Part A.*, 29 (13), 1233–1242.
- 474
- 475 Ennis-King, J., Paterson, L.I., 2001. Reservoir engineering issues in the geological disposal of
476 carbon dioxide. *Proceedings of the 5th International Conference on Greenhouse Gas Control
477 Technologies*. Cairns, 1, 290–295.
- 478
- 479 Fatemi, S.M., Sohrabi, M., Jamiolahmady, M., Ireland, S., 2012. Experimental and theoretical
480 investigation of gas/oil relative permeability hysteresis under low oil/gas interfacial tension
481 and mixed-wet conditions. *Energy Fuels*, 26 (7), 4366–4382.
- 482
- 483 Gale, J., Freund, P., 2001. Coal-bed methane enhancement with CO₂ sequestration worldwide
484 potential. *Environ. Geosci.*, 8 (3), 210–217.
- 485
- 486 Gao, C., Li, X., Guo, L., Zhao, F., 2013, Heavy oil production by carbon dioxide injection.
487 *Greenhouse Gases. Sci. Technol.*, 3 (3), 185–195.
- 488
- 489 Gorecki, C.D., Harju, J.A., Steadman, E.N., Heebink, L.V., Romuld, L., Hamling, J.A., Sorensen,
490 J.A., Daly, D.J., Jensen, M.D., Peck, W.D., Klapperich, R.J., Votava, T.F., Pekot, L.J., Ayash,
491 S.C., Ensrud, J.R., 2013. Annual assessment report. Plains CO₂ reduction (PCOR) partnership
492 Phase III Task 12 Deliverable D57 (October 1, 2014 – September 30, 2015) for U.S.
493 Department of Energy National Energy Technology Laboratory Cooperative Agreement No.
494 DE-FC26-05NT42592. Energy & Environmental Research Center: Grand Forks, North
495 Dakota.
- 496
- 497 Gozalpour, F., Ren, S.R., Tohidi, B., 2005. CO₂ EOR and storage in oil reservoir. *Oil & Gas Sci.
498 Technol.*, 60 (3), 537–46.
- 499

- 500 Hamling, J.A., Glazewski, K.A., Leroux, K.M., Kalenze, N.S., Bosshart, N.W., Burnison, S.A.,
501 Klapperich, R.J., Stepan, D.J., Gorecki, C.D., Richards, T.L., 2016. Monitoring 3.2 million
502 tonnes of CO₂ at the Bell Creek oil field. *Energy Proc.*, 114, 5553–5561.
- 503
- 504 Hamling, J.A., Gorecki, C.D., Klapperich, R.J., Saini, D., Steadman, E.N., 2013. Overview of the
505 Bell Creek combined CO₂ storage and CO₂ enhanced oil recovery project. *Energy Proc.*, 31
506 (37), 6402–6411.
- 507
- 508 Hawthorne, S.B., Miller, D.J., Gorecki, C.D., Sorensen, J.A., Hamling, J.A., Roen, T.D., Harju,
509 J.A., Melzer, S., 2014. A rapid method for determining CO₂/Oil MMP and visual observations
510 of CO₂/oil interactions at reservoir conditions. *Energy Proc.*, 63, 7724–7731.
- 511
- 512 Hawthorne, S.B., Miller, D.J., Jin, L., Gorecki, C.D., 2016, Rapid and simple capillary-
513 rise/vanishing interfacial tension method to determine crude oil minimum miscibility pressure.
514 pure and mixed CO₂, methane, and ethane. *Energy Fuels*, 30 (8), 6365–6372.
- 515
- 516 Holm, L.W., Josendal, V.A., 1974. Mechanisms of oil displacement by carbon dioxide. *Journal*
517 *of Petroleum Technology*, 26 (12), 1427–1438.
- 518
- 519 Holubnyak, Y., Watney, W., Hollenbach, J., Rush, J., Fazelalavi, M., Bidgoli, T., Wreath, D.,
520 2018. Pilot scale CO₂ EOR at Wellington filed in South Central Kansas. *SPE-190308*,
521 *Proceedings of SPE Improved Oil Recovery Conference*, Tulsa, OK, April 13.
- 522
- 523 Iglauer, S., 2011. Dissolution trapping of carbon dioxide in reservoir formation brine—a carbon
524 storage mechanism. *InMass Transfer-Advanced Aspects*. InTech.
- 525
- 526 Jia, B., Tsau, J.S., Barati, R., 2017, Role of molecular diffusion in heterogeneous sale reservoirs
527 during CO₂ huff-n-puff. *SPE Europec* featured at 79th EAGE Conference and Exhibition,
528 Society of Petroleum Engineers.
- 529
- 530 Jia, W., McPherson, B.J., Pan, F., Xiao, T., Bromhal, G., 2016. Probabilistic analysis of CO₂
531 storage mechanisms in a CO₂ EOR field using polynomial chaos expansion. *IJGGC*. 51, 218–
532 229.
- 533
- 534 Jin, L., Hawthorne, S.B., Sorensen, J.A., Pekot, L.J., Kurz, B.A., Smith, S.A., Heebink, L.V.,
535 Herdegen, V., Bosshart, N.W., Torres Rivero, J.A., Dalkhaa, C., 2017a. Advancing CO₂
536 enhanced oil recovery and storage in unconventional oil play—experimental studies on Bakken
537 shales. *Applied Energy*, 208, 171–183.
- 538
- 539 Jin, L., Pekot, L.J., Hawthorne, S.B., Gobran, B., Greeves, A., Bosshart, N.W., Jiang, T., Hamling,
540 J.A. Gorecki, C.D., 2017b. Impact of CO₂ impurity on MMP and oil recovery performance of
541 the Bell Creek Oil Field. *Energy Proc.*, 114, 6997–7008.
- 542

- 543 Jin, L., Sorensen, J.A., Hawthorne, S.B., Smith, S., Pekot, L.J., Bosshart, N.W., Burton-Kelly,
544 M.E., Miller, D.J., Grabanski, C.B., Gorecki, C.D., Steadman, E.N., 2016, Improving oil
545 recovery by use of carbon dioxide in the Bakken unconventional system—a laboratory
546 investigation. *SPE Reservoir Eval. Eng.*, 20 (3).
- 547
- 548 Juanes, R., Spiteri, E.J., Orr, F.M., Blunt, M.J., 2006. Impact of relative permeability hysteresis
549 on geological CO₂ storage. *Water Resources Research*, 42 (12).
- 550
- 551 Khosrokhavar, R., Griffiths, S., Wolf, K.H., 2014. Shale gas formations and their potential for
552 carbon storage. opportunities and outlook. *Environ. Processes*, 1 (4), 595–611.
- 553
- 554 Kovscek, A.R., 2002. Screening criteria for CO₂ storage in oil reservoirs. *Petrol. Sci. Technol.*,
555 20 (7–8), 841–866.
- 556
- 557 Krevor, S., Blunt, M.J., Benson, S.M., Pentland, C.H., Reynolds, C., Al-Menhali, A., Niu, B.,
558 2015. Capillary trapping for geologic carbon dioxide storage—from pore scale physics to field
559 scale implications. *IJGGC*, 40, 221–2237.
- 560
- 561 Krevor, S., Pini, R., Zuo, L., Benson, S.M., 2012. Relative permeability and trapping of CO₂ and
562 water in sandstone rocks at reservoir conditions. *Water Resources Res.*, 48 (2).
- 563
- 564 Land, C.S., 1968. Calculation of imbibition relative permeability for two-and three-phase flow
565 from rock properties. *SPE Journal*, 8 (02), 149–56.
- 566
- 567 Larsen, J.A., Skauge, A., 1998. Methodology for numerical simulation with cycle-dependent
568 relative permeabilities. *SPE Journal*, 3 (2), 163–173.
- 569
- 570 Li, D., Jiang, X., 2014. A numerical study of the impurity effects of nitrogen and sulfur dioxide
571 on the solubility trapping of carbon dioxide geological storage. *Appl. Energy*, 128, 60–74.
- 572
- 573 Li, Z., Dong, M., Li, S., Huang, S., 2006. CO₂ sequestration in depleted oil and gas reservoirs—
574 caprock characterization and storage capacity. *Energy Conversion and Management*, 47 (11),
575 1372–1382.
- 576
- 577 Malik, Q.M., Islam, M.R., 2001. CO₂ Injection in the Weyburn field of Canada. optimization of
578 enhanced oil recovery and greenhouse gas storage with horizontal wells. *SPE/DOE Improved
579 Oil Recovery Symposium*, Society of Petroleum Engineers.
- 580
- 581 McGrail, B.P., Schaeff, H.T., Ho, A.M., Chien, Y.J., Dooley, J.J., Davidson, C.L., 2006. Potential
582 for carbon dioxide sequestration in flood basalts. *J. Geophys. Res. Solid Earth*, 111, B12.
- 583

- 584 McGrail, B.P., Schaeaf, H.T., Spane, F.A., Cliff, J.B., Qafoku, O., Horner, J.A., Thompson, C.J.,
585 Owen, A.T., Sullivan, C.E., 2016. Field validation of supercritical CO₂ reactivity with basalts.
586 *Environ. Sci. Technol. Letters*, 4 (1), 6–10.
- 587
- 588 Metz, B., Davidson, O., De Coninck, H., Loos, M., Meyer, L., 2005. IPCC special report on
589 carbon dioxide capture and storage. Intergovernmental Panel on Climate Change, Geneva
590 (Switzerland), Working Group III, July 1.
- 591
- 592 Montana Board of Oil and Gas Conservation. 2017, MBOGC online oil and gas information
593 system. www.bogc.dnrc.mt.gov/WebApps/DataMiner (accessed October 5, 2017).
- 594
- 595 Mulliken, C.A., Sandler, S.I., 1980. The prediction of CO₂ solubility and swelling factors for
596 enhanced oil recovery. *Industr. Eng. Chem. Process Design Devel.*, 4, 709–711.
- 597
- 598 Niu, B., Al-Menhal, A., Krevor, S.C., 2015. The impact of reservoir conditions on the residual
599 trapping of carbon dioxide in Berea sandstone. *Water Resources Res.*, 51 (4), 2009–2029.
- 600
- 601 Perera, M.S., Gamage, R.P., Rathnaweera, T.D., Ranathunga, A.S., Koay, A., Choi, X.A., 2016.
602 Review of CO₂-enhanced oil recovery with a simulated sensitivity analysis. *Energies*, 9 (7),
603 481.
- 604
- 605 Raza, A., Rezaee, R., Bing, C.H., Gholami, R., Hamid, M.A., Nagarajan, R., 2016. Carbon
606 dioxide storage in subsurface geologic medium—a review on capillary trapping mechanism.
607 *Egyptian J. Petrol.*, 25 (3), 367–373.
- 608
- 609 Raza, A., Rezaee, R., Gholami, R., Rasouli, V., Bing, C.H., Nagarajan, R., Hamid, M.A., 2015.
610 Injectivity and quantification of capillary trapping for CO₂ storage—a review of influencing
611 parameters. *J. Natural Gas Sci. Eng.*, 26 (510), 7.
- 612
- 613 Ross, D.J., Bustin, R.M., 2009. The importance of shale composition and pore structure upon gas
614 storage potential of shale gas reservoirs. *Marine Petrol. Geol.*, 26 (6), 916–927.
- 615
- 616 Ruprecht, C., Pini, R., Falta, R., Benson, S., Murdoch, L., 2014. Hysteretic trapping and relative
617 permeability of CO₂ in sandstone at reservoir conditions. *IJGGC*, 27, 15–27.
- 618
- 619 Shelton, J.L., McIntosh, J.C., Hunt, A.G., Beebe, T.L., Parker, A.D., Warwick, P.D., Drake, R.M.,
620 McCray, J.E., 2016. Determining CO₂ storage potential during miscible CO₂ enhanced oil
621 recovery—noble gas and stable isotope tracers. *IJGGC*, 51, 239–253.
- 622
- 623 Soltanian, M.R., Amooie, M.A., Gershenzon, N., Dai, Z., Ritzi, R., Xiong, F., Cole, D.R., and
624 Moortgat, J., 2017. Dissolution trapping of carbon dioxide in heterogeneous aquifers. *Environ.*
625 *Sci. Technol.*, 51 (13), 7732–7741.
- 626

- 627 Spiteri, E.J., Juanes, R., Blunt, M.J., Orr, F.M., 2008. A new model of trapping and relative
628 permeability hysteresis for all wettability characteristics. *SPE Journal*, 13 (03), 277–288.
629
- 630 Srivastava, R.K., Huang, S.S., Dong, M., 1999. Asphaltene deposition during CO₂ flooding. *SPE*
631 *Product. Facil.*, 14 (04), 235–245.
632
- 633 Szulczewski, M.L., Hesse, M.A., Juanes, R., 2013. Carbon dioxide dissolution in structural and
634 stratigraphic traps. *J. Fluid Mechanics*, 736, 287–315.
635
- 636 Verma, M.K., 2015. Fundamentals of carbon dioxide-enhanced oil recovery (CO₂-EOR). A
637 supporting document of the assessment methodology for hydrocarbon recovery using CO₂-
638 EOR associated with carbon sequestration. U.S. Department of the Interior, U.S. Geological
639 Survey.
640
- 641 Wong, S., Law, D., Deng, X., Robinson, J., Kadatz, B., Gunter, W.D., Jianping, Y., Sanli, F.,
642 Zhiqiang, F., 2007. Enhanced coalbed methane and CO₂ storage in anthracitic coals—Micro-
643 pilot test at South Qinshui, Shanxi, China. *IJGGC*, 1 (2), 215–222.
644
- 645 Zhang, Y., Huang, S.S., Luo, P., 2010. Coupling immiscible CO₂ technology and polymer
646 injection to maximize EOR performance for heavy oils. *J. Canadian Petrol. Technol.*, 49 (05),
647 25–33.
648
- 649 Zuo, L., Benson, S.M., 2014. Process-dependent residual trapping of CO₂ in sandstone. *Geophys.*
650 *Res. Letters*, 41 (8), 2820–2826.
651