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low-frequency buncher field-variation study on a 750 keV H

beam to increase Drift Tube Linac capture
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Abstract

w-frequency (such as 16.77 MHz) RF bunchers are widely used in RF accelerator systems

tudinal compression of pulses into a single RF bucket, which increases instantaneous be

sity for time-dependent studies. In this study, the dependency of capture into a 201.25 M

Tube Linac (DTL) was measured as a function of gap voltage for a 16.77 MHz buncher

ped H- beam (approximately 25 ns at 750 keV, 10 mA peak current). The multiparticle c

MILA was used to simulate the phase-space distribution of the 10 mA, 750 keV, H- beam at

nce to DTL with a wide range of the Low-Frequency Buncher (LFB) field (10 kV to 35 k

measurement and simulation indicated that the DTL capture could be dilute (reduced) fo

optimized buncher field to a pre-configured beamline geometry. The data shows that chang

unch field while keeping the incoming beam current and energy constant does not significa

the beam’s emittance. However, downstream beam capture into the DTL is changed fo

optimized phase-space bunching distance with the buncher field.

ge: Beam bunch, Low-Frequency Buncher, Acceleration gap, RF cavity field measurem

tance, radial electric field, RF Linac.

S numbers: 29.20.-c, 29.20.Ej, 29.27.-a, 41.75.Ak, 41.75.Cn.

INTRODUCTION

F bunchers are optimized in charged particle beam accelerator systems to a spec

n or experimental needs [1]. Some of these are (a) specialized compression of the be

icle distribution [2], (b) enhancement of current density, (c) beam pulse separation

mization of bunch lengths [3], (d) longitudinal phase-space manipulation [4], (e) ti

r study [5], and (f) beam loss study [6], etc. In the Los Alamos Neutron Science Cen

NSCE) accelerator system, an RF buncher is used with long wavelengths to bu

ral H- pulses into a single RF bucket for the 805 MHz acceleration frequency [7],

to enhance the peak-beam current in a micropulse. The phase-space bunching [8

icropulses is initially formed in the low energy (750 keV) beam transport (LEB

roy@lanl.gov
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on [10, 11]. A 16.77 MHz buncher, called the low-frequency buncher (LFB), is u

ighly bunch the H- beam for one (Weapon Neutron Research) of five user facilit

LFB takes roughly four normal beam bunches’ equivalence and compresses them i

gle bunch less than 5 ns long. In general, the buncher parameters (voltage and pha

ptimized for the production beam. Yet, there is considerable interest in the stabi

eam parameters with minor or significant LFB voltage changes to maintain captu

capture is defined in percent by current measured (ID) after entry to the DTL’s des

ratrix divided by the incoming beam current(Ib), i.e.,(ID/Ib)100%. It could be easie

ss capture study for any perturbation of the field and phase of a buncher, if there

pre-existing documentation in house or in the literature. In a theoretical study [

as summarized that in RF cavities, emittance growth and halo generation in bea

smaller radii are small up to a certain space-charge current and increase linearly w

fourth power of the radius. But these studies do not discuss the effects a beam m

rience if the RF cavity field was varied in the midway of a transport line. Thus,

rimental observation was necessary. The motivation of this work is to understand h

ing the LFB field on a constant-current-beam affect in measurements (1) beam spot s

eam capture, and (3) final beam quality. Better beam quality is defined as redu

current losses and reduced radiation spill [13] in the transport. The beam curr

is the loss of the charged particles from the primary beam. When a high energy

icle strikes a drift tube wall or devices, it generates x-ray, gamma-ray, etc. – these

tion spill. Transverse beam emittance and acceptance into the 201.25 MHz DTL w

sured as a function of gap voltage to refine tuning of the 750 keV H- beam. A phase-sp

ibution of the beam at the entrance to DTL was simulated using the multiparticle c

MILA [14–17]. Experimental and PARMILA simulated beam sizes for variation of

voltage were evaluated. The results of this study might be useful to beam operat

ave a better view of the study, the setup of the beamline and beam pulse time struct

escribed below.

BEAM TIME STRUCTURE

he LANSCE [18] linear accelerator utilizes H+ and H− [19] beams to support mult

rimental areas [18, 20]. The H+ is used for the isotope production facility (IPF) [
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1. A sketch of the major components of the 750 keV beamline, which consists of 16.77 M

requency buncher (LFB); 201.25 MHz Pre-Buncher (PB), 201.25 MHz Main Buncher (M

r components, such as quads, Bending Magnet (BM), Steering Magnet (SM), diagnost

nd Level Deflector (GLD), emittance scanner (TDEM1 slit, and collector) etc., are also loca

e transport section. A current monitor (TDCM1) is situated between the TDEM1 slit

ollector. The choice of beamline length is based on other calculations in the past.

e the H- species are used for the Weapon Neutron Research (WNR) [18, 22], Pro

iography (pRad) [20] and Lujan Neutron Spallation Center. Cockcroft-Walton [23] ba

tors are used to accelerate H-, and H+ beams up to 750 keV.

schematic of the H- LEBT section of the beamline is shown in Fig. 1. The p

cher (PB) and Main Buncher (MB) operate at 201.25 MHz, which is the fundamen

ency of the LANSCE accelerator. These two bunchers are used with the right pha

amplitudes to bunch the 625 µs chopped beam into the 201.25 MHz DTL. The LFB

to increase the charge per bunch, thus to increase the peak current for the WNR facil

LFB increases the charge per microbunch (≤5 ns) over what would result if only

MHz pre-buncher and main buncher were used. In conjunction with the chopper,

also aids in removing the sidelobes and satellite peaks (low amplitude signals) arou

main single. The frequency (16.77 MHz) is selected by meeting several criteria: (1

sub-harmonic of the 201.25 MHz to ensure it could be phase-locked to the 201.25 M
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2. (a) A typical 750 keV beam envelope section is starting from the end of the 750 keV colu

e first Drift Tube Linac; (b) the temporal pulse length before chopping, chopped pulses,

unched beam of the chopped pulses; (c) longitudinal bunching of WNR beam, with LFB

uncher modulation and the subsequent drift downstream.

ence (thus the integer 12=201.25/16.77), (2) it is low enough to allow sufficient cha

e bunched and captured into a 201.25 MHz RF bucket, 3) it could produce eno

ing between microbunches to allow the desired time-of-flight experiments at WNR

erformed without wrap-around problems; and 4) it could create a bunching struct

was a size that could be easily constructed, yet not so big that it would not fit in

sport, H- transport line.

igure 2(a) shows a typical beam envelope of a 10 mA (peak) H- beam from the exi

750 kV column to the entry point of the DTL. Figure 2(b) shows a time structure

beam. Figure 2(c) shows a process of longitudinal bunching for the WNR beam. T

-pulsed (625 µs) H- beam is chopped for micropulses (25 ns - 30 ns) and is conver

bunches (≤5 ns) and injected into the 201.25 MHz DTL cavities. After traversing

DTL tanks, the bunch energy increases to 100 MeV. The H+ species are deflected i

PF line, while the H- continues to the 805 MHz Coupled Cavity Linac (CCL). The fi

MeV beam is then delivered to the Lujan, WNR, and pRad facilities.

s previously mentioned, the 625 µs direct current (DC) beam is chopped. Each of th
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ped pulses is 36 ns wide. The pulse pattern width (PW) is typically set around 25-30

count for the chopper’s rise and fall time. The correct set point selection is determi

aximizing the charge per micropulse (typically spaced by 1780 ns, having a pulse wi

ns) without introducing charge into adjacent 201.25 RF buckets in the DTL. The ex

ber of spaced (τ) is defined as

τ =
CD

f
,

e, CD is the countdown and f is the frequency of the LFB. So, if the CD = 30, t

ing is 1789 ns. The countdown is changeable as needed for the proton storage ring

ANSCE facility. The low-frequency buncher acts on the chopped beam to concentr

to a shorter pulse approximately 5 ns long. This short pulse is then injected into

25 MHz main buncher and DTL systems, where it is further bunched and ultimat

ured into a single RF bucket that produces the beam for WNR. By the end of

MeV linac, the beam pulse width narrows to 100 ps. The LFB is only in-time w

WNR beam gate. The primary H- pre-buncher was designed for beam to anot

rimental area but was found necessary for sufficient bunching of the WNR beam. T

buncher is primarily used to match the beam with DTL RF acceptance. Once the be

es the LFB, narrower bunching occurs across a distance as beam drifts downstream

PHASE WIDTH BUNCHING DISTANCE AND THE BEAM TUNING

he performance of a buncher depends on the physical parameters of the buncher, such

avity length (l = βλ/2, β=particle velocity/light velocity, λ=light velocity/RF cav

ency); field in the RF gap (Ez(z, r, t) = Eg(z, r)cos(ωt + φ), where Eg is the max

, ω, t and φ are the angular frequency, time and synchronous phase, and z and r

xial and radial components); incoming beam quality (beam size and halo, etc.).

he cavity RF field manipulates the phase space of the beam. The low-frequency bunc

voltage sinusoidal modulates (Vm = Va sin(ωt), where Vm is the modulated voltage

s the peak voltage) the beam energy. The cavity field applies a kick to the pu

to rotation of the phase-space profile, a narrower bunch in phase is formed (pha

sed) at some drift distance (phase-focus distance), based on the correlation of time

omentum particle coordinates [24].
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he minimum phase width bunching distance, L, from a cavity, is written as [7]

L =
λ

2π

mc2(βv)
3(γe)

3

qV0
,

e λ is the RF wavelength; m, c, q have their usual meaning of the mass, velocity

ight, and the charge of a particle; γe is the Lorentz energy factor; βv is the relativi

ity factor and V0 is the peak voltage of cavity (a product of peak RF field and len

vity).

3. A calculated result of bunching distance vs cavity peak voltage for 16.77 MHz (line w

s symbol) and 201.25 MHz RF frequency (line with the triangles), calculated using equa

igure 3 shows the minimum-phase-width bunching distance vs. peak voltage for

cies of 16.77 MHz (line with circles), and 201.25 MHz (line with triangles), calcula

g Eq. (2). The Lorentz energy factor (γe) =1+beam energy/proton rest energy,

ivistic velocity factor (βv) are of 1.0008 and 0.04, respectively, for a H- beam of ene

keV, used in this calculation. The graph shows that a bunch can occur both close

far from the cavity as the magnitude of the peak voltage and frequency change. A

lt, varying the LFB field can change the bunching location along the transport line.
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4. An example of emittance measurement. A slit and collector based device (TDEM1)

. Vertical scan emittance data are represented to the right side. The size and angle of

(here y and y
′
) of this measurement are shown in the top right.

he purpose of beam tuning (optimization) is to provide a matched beam with des

s parameters at critical transport points. The tuning method in this study was ba

e data from emittance scan with its corresponding transport calculation [25]. Figur

s an example of emittance measurement and data screen in this study. Data of

s parameters, including emittance, are shown to the right side of Fig. 4 for a sin

surement, as an example. A modified version of the 2D-TRACE [25] called SciTRA

was used to obtain the beam envelope (Fig. 2a). The program inputs are α, β,

tance (measurement as shown in Fig. 4). For the linear approximation, emittan
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5. Top two rows: x-x′, and emittance data for horizontal measurement; and bottom two ro

and emittance data for vertical measurement, with the variation of the LFB voltage.

], in the (x, x′) -plane is related to the Courant-Snyder or Twiss parameters β, α

x =
√
βε and x′ =

√
γε, where γ = 1+α2

β
. If the dimensionless measure α >

beam converges. For α < 0, the beam diverges; and α = 0, the beam has minim
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st) or maximum (peak) distribution. Twiss parameters are determined at particu

ions by varying the magnets setpoints. Finally, TRACE is used to match the be

the first tank of DTL based on the final emittance measurements. There are sev

ts where it is particularly important to focus the beam (create a waist). These wa

in the middle of a chopper [10], entrance to the pre-buncher (PB), middle of

nd level deflector (GDL), and entrance to the Main-Buncher (MB). In a good transp

ition, initial Twiss parameters of the 80 keV, 10 mA beam, at the entry of 750

mn, are roughly αx=-0.270, βx= 0.408 cm/mrad and 4*RMS un-normalized emittan

.11 π cm-mrad for the x-direction. The corresponding values for the y-direction

-0.339, βy= 0.436 cm/mrad, and 4*RMS un-normalized emittance, εy=5.66 π cm-mr

2RMS beam size in the x and y directions are Rx=1.58 cm and Ry=1.57 cm, respectiv

e numbers are altered based on how correctly the Pierce electrode is centered with

ce converter during the source re-cycle time. Typically, these parameters are used

RACE to model the transport line in the 750 kV column. Then, further emittanc

sured downstream at several locations to reach the desire Twiss parameters.

is necessary to have a specific beam size at the first DTL tank entrance for id

leration. For the 750 keV beam, typically, βx= 0.026 cm/mrad in the x-plane,

0.0059 cm/mrad in the y-plane are used, with a 4*RMS un-normalized emittance

cm-mrad to load the beam in the DTL. These translate to a 2RMS beam size w

0.22 cm and Ry=0.106 cm, roughly, at the entrance of the first DTL. The minim

ture size in the LFB setup is 1.90 cm (0.75 inches); an expected beam size to the apert

e buncher is 0.45 cm (2RMS). Experimentally, the beam size at the aperture locatio

oximately 0.5 cm to 0.55 cm (2RMS), year to year. Thus the beam in general is 4 tim

ler than the LFB aperture. The beam tuning [27], based on hardware and software

zation, is performed to satisfy these requirements. Figure 5 shows measured x-x′

ontal drive), y-y′ (for vertical drive), and emittance profiles for a variation of the L

ge from 22 kV to 26 kV, measured using TDEM1.

BEAM PROFILE AND PHASE-SPACE ANALYSIS USING PARMILA

he computational program PARMILA was used to assess the beam particle distribut

e first DTL entrance. All necessary parameters for the focusing magnets, bend
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6. The transverse beam distribution at the beam entry location of the first DTL tank, with

tion of LFB peak voltage, calculated using the PARMILA code. The low-frequency bunc

) peak voltage was 10 kV, 15 kV, 20 kV, 25 kV, 30 kV, and 35 kV for a beam of 10 mA w

eV energy.

nets, diagnostics, and drift lengths, beam parameters (starting energy=0.75 MeV, be

ent=10 mA, the rest energy, mc2= 939.30 MeV, charge number=1, and 0 degree ph

) were taken into account in the code, starting at a distance from downstream of

per with 1.5 cm bore and ending up to upstream of the first DTL tank. The bunc

l aperture was set to 2.33 cm, the maximum energy gain to 0.025 MeV for a sing

ged particle at the crest of the RF field, cavity frequency to 16.77 MHz, and phase

for the cavity RF field when synchronous or design particle is at the center of gap [

ARMILA, a space-charge calculation is not performed for a cavity element. The p

her cavity (201.25 MHz) power was set to 0, and the main buncher cavity (201.25 M

powered with a maximum energy gain of 0.012 MeV (the main buncher voltage 12

in this simulation). The maximum energy gain was calculated by [17];

∆Wmax = qE0T lcav cos(φ) = qTV cos(φ),
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7. The beam longitudinal phase space at the beam entry location of the first DTL tank,

nge of LFB peak voltage (calculated using PARMILA). The horizontal axis shows a phas

eam in degrees and the vertical axis shows energy variation of the given energy. Simula

tudinal phase space of the WNR beam at DTL [11] (201.25 MHz) is shown on the right

e figure with LFB=25 kV.

e q is the particle charge, E0 is the average axial electric field, T is the transit-t

r for velocity βv of the design particle, and lcav is the length over which E0 has b

ed, and φ is the synchronous phase. A calculated transit time factor of roughly 1

cceleration gap of 0.95 cm was utilized to study the energy gain.

igure 6 shows the transverse beam distribution upstream (at the entrance) of the D

a variation of the LFB field. The spot size was mostly like round when the cav

energized with a peak voltage of 10 to 15 kV. This shape was elongated (ellipti

sversely with the LFB voltage increase within a range of 20 to 30 kV. With a p

ge of 35 kV, the beam spot size returned to a round form with scattered parti

unding. The beam spot size in the y-direction is larger than the x-direction with

voltage of 20 to 30 kV. The phase-space was rotated during the RF bunching by

her field. The coordinates of particles were rotated in phase space after the drift
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h phase focus. Therefore, elongation of the beam with LFB voltage of 20 to 30 kV

to bunching by the LFB voltage. Note that the main buncher voltage was not alte

ng the process.

igure 7 represents the WNR micropulse beam phase-space distribution at the entra

e DTL. The beam energy and phase spread were more significant, relatively, when

was operated with a peak voltage higher than 10 kV to 15 kV (most notably at 25 k

e were fine structures evident with a period of approximately 30◦ in Fig. 7. The m

her most likely caused these structures. The signature of 30◦ was present since

voltage varied from 10 kV up to 35 kV. We deliver the beam H+ and H- using

transport line near the DTL (local name transport line TD). A single main bunche

for both beam species, though these species come from two different beamlines (lo

e transport Line TA and Line TB). The H+ beam is for isotope production, and

is used for WNR and other user facilities. The H- beam was used in this study,

as necessary to keep the main buncher on to keep the H+ beam operational with

ruption in production.

igure 8 shows the beam particle accumulation in a bucket with a variation of LFB

ge. The beam particles were not accumulated well in a single bucket with 10 to 20

graph demonstrates the peak particle counts were relatively lower (as for an exam

vs. 530 arbitrary units) with a lower voltage. The phase spread was shrunk wit

er voltage.

the simulation, a wide range of LFB field (10 kV to 35 kV) was used to observ

ty of phase-space distributions. In practice, there were limitations to using such a w

of the LFB field. In the experiment, the LFB field was narrowed down from 22 kV

V to maintain the RF system and hold the beam current on the collector up to the

e 100 MeV DTL section.

EXPERIMENTAL MEASUREMENTS

he calibration of the 16.77 MHz cavity peak voltage is represented in Appendix

beam emittance was measured downstream of the bunchers (TDEM1 slit locatio

position of the emittance slit was roughly a meter upstream of the first DTL ta

beam size was measured [28] using a harp-type assembly, located just upstream of
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8. The Phase spectrums for variation of a low-frequency (16.77 MHz) buncher voltage

eam entry location of the first DTL tank. The graph shows the beam particles were

mulated in a single bucket with a voltage of 10 to 25 kV but distributed to the slide lo

n a higher voltage (30 kV) was utilized, the beam particles were accumulated in a sin

et, phase spread was shrunk, and the number of the particles was increased for consistin

gle bucket rather than spreading in phase.

tance device. Harps are used to characterizing the beam profile of particle beams

SCE. The harp design at LANSCE’s facility has a 7.6 cm profile width and 1 m

resolution. The harp head assembly needs 77 wires in both the horizontal and vert

es. The beam current was measured between the slit and collector of the emitta

on (TDEM1) and at the downstream end of tank 2 & 3 of the DTL. Figure 5 sh

sured x-x′, y-y′, and emittance data, mentioned early. Table I shows measured x-x′, y

tance, and the beam current data. The horizontal (x) and vertical (y) sizes of the be

increased likely 20% and 9%, respectively, with the LFB voltage variation of roug

V to 26 kV. A change of the modulated voltage (Vm) as well as the LFB field pertur

r-read) the phase-focal distance of the beam (see Fig. 3).

igures 9(a) and 9(b) show the Twiss parameters (α, β) with variation of the LFB
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LE I. Data of measured beam-spot size using harp, beam current, and emittance wit

tion of the low-frequency (16.77 MHz) buncher voltage. The emittance was measured u

tance-station TDEM1 (see Fig.1). The upstream current was measured using a current tra

er located between the slit and collector of the TDEM1. The beam size was measured u

rp device at upstream (within several cm) of the TDEM1 slit. The downstream current

ured at downstream of the 2nd DTL.

Size (16%-84%) Angle (mr) 4*E(rms) (πcm-mrad) Peak curren

Hori.(x) (cm) Ver.(y) cm x′ y′ Hori. Ver. Upstream Dow

6 0.56 0.84 3.87 4.31 2.02 2.67 442

0 0.59 0.85 3.88 4.35 2.05 2.66 449

4 0.62 0.87 3.76 4.52 2.02 2.75 444

2 0.64 0.88 3.74 4.60 2.07 2.70 449

6 0.65 0.90 3.72 4.68 2.08 2.72 441

0 0.67 0.91 3.7 4.74 2.09 2.68 441

ge, measured using TDEM1. The experiment shows a decrease in α along with

ase in β with increase of LFB voltage. A small increase of 4*emittance (RMS) of 3

observed, shown in Fig. 9(d), for a rise in LFB peak voltage (Va) from 22.46 kV

kV. The change however was within the uncertainty of measurement and was likely

ficant.

easured data of the beam size and Twiss parameters indicated that the beam

rgent, though the emittance was not altered significantly. A phase focus occurred

arlier distance (see Fig. 3) with a higher voltage and afterwards was propagated wit

ified envelope. A quadrupole magnet (local name TDQL1) was present in the transp

on upstream of the collector (TDEM1). The strength of the magnet was un-alte

ng the LFB voltage variation study. However, the strength of the TDQL1 was powe

during emittance measurement only to eliminate influence on the measurement.

xperiment, the beam envelope was not tuned further for each step change of the L

ge.

igure 10 shows the beam size measurements were compared directly with PARMI

lation. The regions of overlap show reasonable agreement. The measured data indica
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9. (a) Measured values of the Twiss parameter α for horizontal and vertical scans of

tance station TDEM1, with the variation of LFB amplitude setpoint; (b) Measured value

wiss parameter β, for horizontal and vertical scans, with the variation of 16.77 MHz L

itude setpoint; (c) Measured beam size (2RMS) for horizontal and vertical coordinates at

cation; and (d) Data of un-normalized emittance measurements using TDEM1. 4× emitta

S) was changed by 3.4% with LFB amplitude set point variation from 22.46 kV to 26.90

24 kV to 26 kV are well matched with simulation. A transverse component of

y electric fields (Er = − r
2
∂Ez

∂z
) are effected only if the experimental beam optics w

xis. Yet, the possibility of the beam offset was negligible as it was tuned based on

ization of the centroid.

igure 11 shows measured current of the beam at 750 keV upstream (between TDE
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10. Shows the measured change in the beam size (2RMS) for LFB variation, with a compar

e simulated PARMILA response. The measurement uncertainty of the harp scan diagnos

pically expected at a quarter of a millimeter.

nd collector) of DTL, downstream of the second tank of DTL at 40 MeV, and the th

of DTL (energy 72.7 MeV) with a change of LFB voltage. The peak beam current

ame (' 441µA) at the lower energy side, for a change of 22.46 kV to 26.9 kV. The be

ent of ' 250 µA was measured downstream of tank 2 and tank 3 of DTL for 22.46

the current was changed to ' 155 µA for 26.9 kV. These were due to loss of part

as for divergence of the beam distribution and mismatch of the distribution with

ture of the DTL (transverse and longitudinal mithmatch). In an-early-simulation

he WNR, observed capture was likely 50% and simulated result was 45% with
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11. Plot of the beam current (primary vertical axis) at 750 keV (between TDEM1 slit

ctor), 40 MeV (downstream of the 2nd DTL), and 73 MeV (downstream of the 3rd DT

current captured into DTL was reduced (secondary vertical axis) with the increase of the L

itude.

=32 kV. In the simulation process, a model for the present WNR beam incorporat

sverse and longitudinal beam dynamics through end of the DTL Tank 2 was created

included debuncher in LEBT (Low Energy Beam Transport) section. The PARMI

used to model the evolution of beam (multiparticle simulation required to represent

tion of beam from unbunched to bunched). The modeling space was started at

of 80 kV column and tracked particles to the end of DTL Tank 2 (included compone

to determining chopping, bunching, and capture of the beam). In the simulat

inal transverse focusing strengths corresponding to a LANSCE production reasona

ates for buncher fields were used. The simulation DTL design field, and experimen

ates of transverse beam emittance (IBEM at 80 keV), and best estimates for sp

ge compensation were also used. In simulation capture was calculated by DTL tan

current data / Beam current data measured at TDCM1 station. In a production be
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ally, the capture of the beam was higher as 80% for so called Long Bunch Enab

(LBEG). The H- Low Energy Beam Transport (LEBT) is tuned for the highly spa

ge compensated LANSCE Lujan center beam (LEBG), which typically has a capt

M01/TDCM01) of about 75% to 80% for a 10 mA to 12 mA peak current. The capt

minated by the beam’s longitudinal properties, created by the prebuncher and m

her, and the longitudinal acceptance of the DTL. Of the two bunchers, the main bunc

he most considerable effect on the capture. The situation is very different for the W

EG) beam that we present in this article. MPEG stands for Micro Pulse Enable G

h is the Master Timer beam gate designation for the nominal WNR micropulse be

ad of a sequence of adjacent micro- bunches separated by 5 ns, the WNR beam

e micropulse space roughly 1.8 µs apart. To create this type of micropulse, the chop

t to allow a 25-30 ns long slice of charge through. This slug of charge is bunched

6.77 MHz Low-frequency buncher instead of the pre-buncher. The LFB is the larg

most significant buncher for MPEG. Unlike the LBEG beam, the MPEG has little

pace-charge compensation, which means the beam is trying to blow itself apart onc

s the chopper. As this slug of charge drifts to the main buncher, the energy modulat

essed on it by the LFB causes it to slowly bunch. The main buncher puts more pha

gy distortion on the microbunch leading to lower capture. One assumption is that

reasons for the lower capture for MPEG have to do with the higher charge-per-pu

ower space-charge compensation and that the LFB is good but not great at doing

it is asked to do. For a given beam development time, the beam’s capture into

was >55% for LFB peak voltage of 22.46 kV. This value was reduced to 37% at

aperture, when the LFB cavity peak voltage increased. A significant loss of the be

ent was not observed upstream of the first DTL tank with the increase of LFB volta

as inferred that the beam current monitor captured all the beam particles, even th

diverged, but was diluted gradually downstream for divergence. The beam’s capt

significantly reduced with the increase of the LFB voltage near the optimal phase fo

ition. As the emittance data was not changed dramatically, the capture was not dilu

he emittance. The Proton waveform can be observed on the wall current monitor in

R facility to aid in optimizing the longitudinal bunch form and transverse beam siz
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12. The buncher consists of two gaps, each of 0.953 cm, separated by a distance of 35.7

hronous particles travel this distance during 180◦ of RF rotation.

CONCLUSION

16.77 MHz RF buncher called the low-frequency buncher (LFB) is used in conjunct

two fundamental frequency (201.25 MHz) bunchers (pre-buncher and main bunch

crease the peak charge per pulse by a factor of three for the WNR experimental

t LANSCE. Transverse beam emittance and capture into the 201.25 MHz Drift T

c (DTL) were measured as a function of the LFB gap voltage. The multi-particle c

MILA was used to simulate the beam’s phase-space distribution at the entrance

. Changes were observed downstream in the beam spot size, current, and Twiss

ters, increasing the LFB peak voltage. Data demonstrate that beam emittance

altered significantly for the buncher field variation (Fig. 9d), but the beam diverge
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ern was observed (Fig. 9a-c). Using PARMILA, it was observed that a round beam s

could be vertically increased with an increase of the LFB voltage (Fig. 6) for pha

e rotation. In the experiment, as the LFB voltage was changed, the beam diverge

rred (Fig. 9). The capture changed dramatically (Fig. 11, right vertical axis) for

divergence (Fig. 9a-c). If the beam was not offset significantly, the effect of the ra

ric field would be negligible. But any off-axis particle could receive a different k

ectromagnetic force at the gap and dilute emittance. But emittance dilution was

rved. The measurement and simulated results indicated that an optimal buncher fiel

ired for a given geometrical configuration (length) of the beamline and the transport

ents (quadrupole). The space-charge effect was not included in this study. Though

her experiment [30], it was shown that a well-bunched beam could present an enhan

ent in the pulse, and space charge was dominant that extended the beam spot s

gy variation can also dilute the beam spot size. In this study, compression ratio is v

igible compared to the literature [30]. Thus the space-charge effect is not considera

ever, Eq. 2, which is related to the beam energy, cavity voltage, and the operating

cy, demonstrates that phase focal location of the beam bunching is a crucial parame

crease the DTL capture.
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ppendix A: Calibration of low-frequency buncher

igure 12 shows a sketch of the two-gap cavity low-frequency buncher. The dista

een the gap cavity is ' 35.71 cm, known as cavity length. An acceleration gap len
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