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We solve Einstein’s equations for slowly rotating gravitational condensate stars (gravastars)

up to second order in the rotation by expanding about the spherically symmetric gravastar

with de Sitter interior and Schwarzschild exterior matched at their common horizon. Re-

quiring that the perturbations are finite on the null surface reduces the exterior geometry to

that of a Kerr black hole, implying that a slowly rotating gravastar cannot be distinguished

from a Kerr black hole by any measurement or observation restricted to the macroscopic

spacetime exterior to the horizon. We determine the interior solution, the surface stress ten-

sor, and the Komar mass and angular momentum localized on the slowly rotating horizon

surface. With the interior equation of state fixed at p = −ρ, finite junction conditions on

the null horizon surface necessarily lead to an interior solution with a singular core, where

the perturbative expansion breaks down. Comparison to other models and implications for

more rapidly rotating gravastars are briefly discussed.
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I. INTRODUCTION

Extension of the exterior geometry of a black hole (BH) through the horizon and into the interior

involves the physical assumption that the vacuum Einstein equations apply at and inside the horizon.

Motivation for considering alternative BH interiors arises first from the curvature singularities in the

geometries of mathematical BHs, which according to the classical singularity theorems are a general

feature once some set of conditions involving trapped surfaces and energy conditions applies [1, 2].

In addition to curvature singularities, the BH interiors may show acausal characteristics, such as the

closed timelike curves of the Kerr solution [3]. Such acausal behavior is widely held to be unphysical,

especially since it arises on macroscopic scales comparable to the scale of the BH horizon.

A BH horizon is a marginally trapped surface from which matter and information cannot exit

classically. This horizon boundary is the root of severe difficulties BHs pose for quantum theory,

most notably the apparent nonconservation of probability and enormous BH entropy implied by the

Hawking effect [4]. The resulting “BH information paradox” [5] has been the source of perplexity and

speculation for more than four decades, with a wide range of views on its possible resolution [6], some

of them quite radical, in which no classical spacetime interior may survive at all [7].

Another noteworthy property of horizons is the potentially large, unbounded semiclassical stress

tensor from vacuum polarization effects that can occur on them [8–10]. If by any mechanism a

nonvanishing surface stress tensor is present on the horizon, a globally vacuum solution is inappropriate

and the interior may not be singular or have any unphysical or acausal features at all. Consistency

with quantum unitary evolution can then be maintained in this case. Physical surface stresses on

a BH horizon, whatever their origin, are perfectly consistent with the equivalence principle as any

physical surface is, and can be described within classical general relativity in terms of a sharply peaked

anisotropic stress tensor—in the infinitely thin surface limit, a Dirac δ-function distribution—localized

on the horizon.

An explicit example of surface stresses and a quite different interior solution is provided by the

gravitational condensate star (gravastar) in [11], where the Schwarzschild BH exterior is matched to

a non-singular de Sitter interior with a positive vacuum energy but negative pressure, p = −ρ, at

a surface located at their respective horizons. A similar proposal based on an analogy to quantum

phase transitions in condensed matter was suggested in Ref. [12]. An abrupt change in ground state

vacuum energy at the horizon is characteristic of a quantum phase transition, and would lead to a

dark energy de Sitter interior if ρ = −p > 0 [10]. Independently of the microscopic origin of the

phase transition boundary layer, the interior static de Sitter and exterior Schwarzschild geometries are
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“glued” together at their respective horizons at RS = 2GM/c2 = c/H, where M is the Schwarzschild

mass and H is related to the de Sitter energy density by ρ = 3H2/(8πG). The discontinuity [κ] in

the surface gravities at the horizon results in a positive surface tension τs = [κ]/8πG = c4(8πGRS )−1

[11], and a surface stress tensor δ-function localized on the gravastar physical surface that replaces the

mathematical BH horizon.

A variety of other models for “non-singular BHs” or “BH mimickers” have been proposed over the

years [13–17]. In addition to their different interiors, several of these models have also been called

“gravastars” by their authors, some with thin shells [18–21], some with shells of quite large macroscopic

thickness consisting of stiff matter [22, 23] or anisotropic matter [22, 24, 25]. It is important to recognize

that these alternate models have a timelike outer boundary at radius R > 2GM/c2, not at the null

horizon as in [11]. This distinction is important in whether or not the usual Israel junction conditions

[26] can be used, since these are unsuitable for null hypersurfaces [27].

More importantly, the distinction between timelike and horizon surfaces manifests itself in physical

properties and observational signatures that can distinguish such ultracompact objects from mathe-

matical BHs, for example in their tidal deformability. In the era of gravitational wave and multimes-

senger astronomy it becomes of paramount importance to distinguish these various alternative models,

with different consequences for observations.

At the present time there is no direct observational evidence of the existence of a BH event horizon.

Indirect arguments, based upon accretion models [28, 29], are limited by the assumptions of the models

[30]. The LIGO/LSC gravitational wave data [31], and even the spectacular images of M87 obtained

by the Event Horizon Telescope [32], are sensitive to the light rings at the innermost stable circular

orbits, probing the geometry well outside the BH horizon [33, 34]. As a result, while some thick

shell variants are already ruled out [23], the gravastar of Ref. [11], defined by an extremely thin shell

localized on the horizon, remains consistent with observations [34]. The physics of a surface at or near

a horizon, and possible interior structure of ultracompact thin-shell models, can be probed by the

after-merger ringdown and/or new phenomena such as “echoes” of the original merger event signal

[34, 35], for which at present, there are suggestions but no conclusive evidence [36, 37].

In this paper we shall reserve the term “gravastar” for the universal gravitational condensate star

solution of Ref. [11], where the lightlike null horizon plays a privileged role as the locus of joining

of interior and exterior classical geometries, and the surface layer there is of negligible thickness, so

that its stress tensor is well approximated by a Dirac δ-function. Its generalization to the case of slow

rotation is the subject of this paper.

Given the spherically symmetric gravastar, the method of Hartle-Thorne [38, 39] can be used to find
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slowly rotating solutions by expanding in powers of a small rotation parameter, under the assumption

that the equation of state of the interior is unchanged from the nonrotating case. In Ref. [40] this

method was applied to a slowly rotating constant-density Schwarzschild star of mass M and its radius

R > 2GM/c2 was allowed to approach 2GM/c2 numerically. In this paper we show that analytic

solution of the perturbation equations to second order in the rotation and matching directly on the

horizon at radius 2GM/c2 is possible by the newly developed methods of [41], hereafter referred to as

Paper I. As we shall see, matching at the horizon leads to different conclusions from that of [40], or

that of other models matched at a radius different from 2GM/c2 [19–21].

The structure of the paper is as follows. In the next section the nonrotating spherical gravastar

of Ref. [11] is briefly reviewed. In Sec. III we derive the Einstein equations for the slowly rotating

gravastar. In Secs. IV and V we give the general analytic solution of these equations for the exterior and

interior rotating gravastar metric functions respectively, showing that finiteness of the perturbations

on the horizon requires the exterior geometry to be identical to that of a Kerr BH. In Sec. VI, we

discuss the joining of the interior and exterior at the mutual horizon boundary, relying on the analytic

method of Paper I [41]. In Sec. VII we give the δ-distributional stress energy tensor on the null horizon

and surface gravity discontinuity resulting from this gluing of interior to exterior. Section VIII contains

the Komar mass, angular momentum and moment of inertia of the slowly rotating gravastar solution,

showing that some integration constants can be fixed by eliminating sources at the origin. Section IX

contains a Summary and Discussion of our results, and comparison to other models, while Sec. X

contains our Conclusions and consequences for observations.

There are three Appendices. Appendix A contains the Einstein tensor component for the rotating

metric (3.1) expanded up to second order in the small rotation parameter. Appendix B contains the

Weyl tensor of this metric, and Appendix C contains the conformal diagram that results from gluing

of the nonrotating gravastar interior to the exterior at the horizon surface. Hereafter we generally use

geometric units where G= c=1 to simplify the notation, restoring them only when useful for clarity,

and MTW metric and curvature conventions [42].

II. THE SPHERICAL GRAVASTAR AND HORIZON SURFACE TENSION

In order to establish notation and conventions we first briefly review the spherically symmetric

nonrotating gravastar of Ref. [11]. As shown in [11], this gravastar solution can be obtained from

Schwarzschild’s constant density interior solution [43, 44] by a limiting process in which the star

radius R → RS ≡ 2GM/c2, the Schwarzschild horizon radius. The gravastar of [11] may be viewed
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as a universal limit of the gravitational condensate star model first proposed in [45, 46], where a thin

layer of ultrarelativistic p = ρ material was interposed, straddling the mutual Schwarzschild and de

Sitter horizons. It is universal in the sense that when the thickness of the intervening surface layer

localized on the horizon is taken to zero, the resulting solution is independent of any assumptions

about the intervening layer equation of state, and the surface stress tensor is instead completely

determined by the matching of the interior and exterior spacetimes on their respective horizons. This

universal (nonrotating) gravastar has maximal compactness GM/R = 1/2 (up to possible Planck

scale corrections), and evades the Buchdahl bound R ≥ (9/4)GM , applicable to isotropic fluid spheres

[47], by having an anisotropic stress at its surface. Like the arbitrarily thin shell model of [45, 46],

the gravastar of [11] is a low entropy, cold condensed solution, in no conflict with unitary quantum

evolution or statistical mechanics, possesses no enormous entropy, and hence no information paradox

[45, 46].

The general static, spherically symmetric line element can be expressed as

ds2 = −f(r) dt2 +
dr2

h(r)
+ r2

(
dθ2 + sin2θ dφ2

)
(2.1)

with f(r), h(r) two arbitrary functions of r. Alternately one may write

f(r) = e2ν0(r) =
h(r)

[j(r)]2
, h(r) = 1− 2m(r)

r
(2.2)

in terms of the gravitational potential ν0(r), the mass function m(r), and Hartle’s function j(r), the

latter defined to be positive.

The general spherically symmetric solution of Einstein’s equations requires the three stress-energy

tensor components T tt = −ρ, T rr = pr, and T θθ = T φφ = p⊥, which are functions of r only. If

p⊥ = pr ≡ p, the pressure is isotropic. If in addition ρ + p = 0, as in the exterior and interior of a

gravastar, Einstein’s equations imply that j(r) is constant and m(r) is either a Schwarzschild term or

a de Sitter term (or a sum of the two).

The spherical nonrotating gravastar solution is given by the following piecewise continuous functions

f(r) and h(r) in the condensate interior and vacuum exterior respectively [11],

f(r) =


1

4

(
1− r2

R2
S

)
, 0 ≤ r ≤ RS

1− R
S

r
, r ≥ RS

(2.3a)
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h(r) =


1− r2

R2
S

, 0 ≤ r ≤ RS

1− R
S

r
, r ≥ RS .

(2.3b)

The line element (2.1) with (2.3) describes an interior static patch of de Sitter space with

ρ = −p =
3H2

8π
=

3

8πR2
S

, r < RS (2.4)

joined to a Schwarzschild exterior with

ρ = p = 0 , r > RS (2.5)

at their mutual horizons

r = RS = 2M = H−1 . (2.6)

The function j(r)

j(r) =

√
h

f
=


2 , 0 ≤ r < RS

1 , r > RS

(2.7)

is discontinuous at the horizon surface, and the mass function is given by

m(r) =


1

2
H2r3 , 0 ≤ r < RS

M , r > RS .

(2.8)

Note that just as a Schwarzschild BH can have any mass, so too the spherically symmetric gravastar

can have any mass M , provided only that the de Sitter vacuum dark energy density is fixed by (2.4)

and (2.6).

The discontinuity [κ] = κ+ − κ− in the surface gravity

κ(r) =
1

2

√
h

f

df

dr
=


− 1

2RS

, r → R−
S

+
1

2RS

, r → R+
S

(2.9)
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as r → R±
S

, gives rise to a δ-distributional anisotropic stress tensor whose nonzero components are

(Σ)TAB

√
f

h
= SAB δ(r −RS ) , SAB =

[κ]

8πG
δAB (2.10)

for A,B = θ, φ. This stress tensor corresponds to a surface tension [11, 41]

τs =
[κ]

8πG
=

c4

8πGRS

=
c6

16πG2M
. (2.11)

The surface stress tensor (Σ)TAB in (2.10) is a well-defined distribution when integrated against the

standard coordinate invariant volume measure d4x
√
−g = dt dr r2

√
f/h dθ dφ sin θ, since r2 sin θ is

continuous on the horizon. The result (2.10)-(2.11) may be derived directly from the Einstein tensor

density for the piecewise continuous metric (2.3) [41].

The surface stress SAB differs from that obtained from the usual Israel junction conditions by

[11, 41] (
SAB

)
here

=
√
f(R)

(
SAB

)
Israel

. (2.12)

Whereas the junction conditions as originally formulated in [26] do not apply to the null horizon

hypersurface where f(RH )=0, junction conditions modified by the
√
f =eν0 redshift factor and with

one contravariant and one covariant index as in (2.12) give the well-defined finite result (2.10)-(2.11)

[41]. The relation (2.12) is important for any comparison of the gravastar with its horizon surface

tensor (2.10) to other models with matching at some radius away from the horizon by Israel’s method,

in either the cases of zero or nonzero angular momentum.

III. LINEARIZED EINSTEIN EQUATIONS FOR SLOW ROTATION

We are interested in small stationary and axisymmetric perturbations due to rotation about the

static spherically symmetric gravastar solution summarized in the previous section. There are several

forms for the general axisymmetric and stationary metric line element in the literature which may

be used for this purpose [48–54]. The condition of stationarity and axial symmetry is invariantly

defined by the geometry through two independent Killing vectors corresponding to time translations

and rotations around the fixed rotation axis. Coordinates t and φ adapted to these symmetries can

be introduced such that these Killing vectors are ∂/∂t and ∂/∂φ, respectively. The two remaining
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coordinates r and θ can be chosen so that the stationary axisymmetric line element assumes the form

ds2 = −e2νdt2 + e2ψ
(
dφ− ω dt

)2
+ e2αdr2 + e2βdθ2 (3.1)

where the five functions ν, ψ, α, β, ω are functions of r and θ. There remains the freedom to define a

coordinate condition to reduce these five functions to the minimal four functions necessary to specify

the general such metric. Hartle’s condition [51]

eψ = eβ sin θ (3.2)

fixes this local coordinate freedom, leaving reparametrizations of r still allowed.

Consider now a stationary, axisymmetric, slowly rotating, nearly spherically symmetric solution,

i.e. small perturbations about the static solution that are invariant under the transformations (t, φ)→

(−t,−φ) and θ → π − θ. Hartle and Chandrasekhar-Miller expanded the line element (3.1) to second

order in the angular momentum as [39, 51]

ds2 =− e2ν0(r)
[
1 + 2h0(r) + 2h2(r)P2(cos θ)

]
dt2

+
r

r − 2m(r)

{
1 +

2

r − 2m(r)

[
m0(r) +m2(r)P2(cos θ)

]}
dr2

+ r2
[
1 + 2k2(r)P2(cos θ)

][
dθ2 + sin2θ

(
dφ− ω(r)dt

)2]
. (3.3)

Here Pl(cos θ) is the Legendre polynomial of order l, m(r) and ν0(r) are the metric functions of

the nonrotating solution, and hl(r), ml(r), kl(r) are the monopole (l = 0) and quadrupole (l = 2)

contributions of second order in rotation respectively. The choice k0(r) = 0 is part of Hartle’s choice

of gauge. The function ω(r) is the first-order contribution that gives rise to inertial frame dragging.

The metric line element (3.3) is an expansion of (3.1) with the identifications

e2ν = e2ν0(r)
[
1 + 2h0(r) + 2h2(r)P2(cos θ)

]
(3.4a)

e2ψ = r2 sin2 θ
[
1 + 2k2(r)P2(cos θ)

]
(3.4b)

e2α =
r

r − 2m(r)

[
1 + 2

m0(r) +m2(r)P2(cos θ)

r − 2m(r)

]
(3.4c)

e2β = r2
[
1 + 2k2(r)P2(cos θ)

]
(3.4d)

which will be used both in the interior and exterior of the slowly rotating gravastar, matching at the
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gravastar null horizon surface.

The perturbed stress-energy tensor is taken to be of the same form as in the nonrotating background

gravastar solution, namely

Tµν = −E δµν (3.5)

where E can be expanded up to second order in the rotation as

E = ρ(r) + E0(r) + E2(r)P2(cos θ) . (3.6)

Here ρ is the background energy density, constant in the interior and exterior of the gravastar, given

by (2.4)-(2.5), and E0, E2 are its monopole and quadrupole perturbations. The covariant conservation

equation∇µTµν = 0 for the Tµν in Eq. (3.5) becomes ∂µE = 0, and in particular its ν = r, θ components

and ρ = const require

E0 = const, E2 = 0 (3.7)

in the interior and exterior regions, with E0 = 0 in the exterior.

The forms of the perturbed Einstein equations in Refs. [39, 51] cannot be applied directly to the case

of a rotating gravastar, because they were derived assuming a perfect fluid under uniform rotation Ω,

and use definitions of pressure and energy density perturbations that become undefined when ρ+p = 0,

which is the case of interest here. We have therefore derived the perturbed Einstein equations for the

cases of a slowly rotating gravastar anew. The components of the Einstein tensor for the metric (3.3)

are given in Appendix A.

Because j is constant in both the interior and exterior of the gravastar, and thus its derivatives

vanish there, and because of the specific constant form of the energy-momentum tensor (3.5), having

the same p = −ρ equation of state as the nonrotating case, the resulting linear perturbation equations

are somewhat simpler than the perfect fluid case considered in [39, 51]. In particular, the uniform

angular velocity Ω and the auxiliary function $ = Ω− ω of [39, 51] do not appear.

The first order perturbed Einstein equation

d

dr

(
r4dω

dr

)
= 0 (3.8a)

comes from Gtφ = 0 and gives the frame dragging function ω(r). Making use of (3.8a), the second
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order monopole terms in the Einstein equations Gtt = 8πT tt and Grr = 8πT rr are

dm0

dr
= 4πr2E0 +

j2r4

12

(
dω

dr

)2

(3.8b)

dh0

dr
=

1− 2m′

(r − 2m)2
m0 −

1

r − 2m

dm0

dr
(3.8c)

Here m′ ≡ dm/dr = 4πr2ρ. These equations can be combined to give

h0 = − m0

r − 2m
+ C (3.8d)

where C is a constant. For the quadrupole functions, with v2 = h2 + k2 from [39], we find

m2 = −(r − 2m)

[
h2 −

1

6
j2r4

(
dω

dr

)2]
(3.8e)

dv2

dr
= −2ν ′0 h2 + (1 + rν ′0)

j2r3

6

(
dω

dr

)2

(3.8f)

dh2

dr
= − 2

r(r − 2m)ν ′0
v2 − 2

(
ν ′0 +

m

r2(r − 2m)ν ′0

)
h2 +

(
ν ′0 −

1

2r(r − 2m)ν ′0

)
j2r4

6

(
dω

dr

)2

(3.8g)

where ν ′0 ≡ dν0/dr = (m − 4πr3ρ)/[r(r − 2m)]. The algebraic equation for m2 comes from the

quadrupole perturbations of Gθθ − G
φ
φ = 0. The equation for v2 comes from the equation Grθ = 0

with the replacement of m2 from Eq. (3.8e). Finally, the differential equation (3.8g) for h2 comes from

the quadrupole perturbation term in Grr = 8πT rr. Eq. (3.8e) can also be written in the form

h2 = − m2

r − 2m
+

1

6
j2r4

(
dω

dr

)2

(3.9)

which is analogous to (3.8d). The function k2 is then given by k2 = v2 − h2.

IV. EXTERIOR SOLUTION

Outside the gravastar (r > 2M), the spacetime is empty, and from (2.3)-(2.4), we have

m(r) = M , h = f = e2ν0 = 1− 2M

r
, j = 1 . (4.1)

The solution of (3.8a) for the frame dragging that goes to zero as r →∞ is

ω =
2J

r3
(4.2)
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where J is an integration constant that can be identified as the total angular momentum of the solution.

Using (4.2) in the Eq. (3.8b) for m0, and then using (3.8d) for h0, gives

m0 = δM − J2

r3
(4.3a)

h0 = − m0

r − 2M
+ CE (4.3b)

in terms of two integration constants δM and CE in the exterior.

For the quadrupole functions m2, k2, h2 in the exterior, the two coupled linear first order equa-

tions (3.8f) and (3.8g) for v2 and h2 can be converted to a single second order equation for h2, which

with the change of variable to z = r/M − 1 is recognized as the associated Legendre differential

equation of degree l = 2 and order m = 2, with a particular inhomogeneous term in ω′ 2. The gen-

eral solution for h2 is thus the sum of a particular solution of the inhomogeneous equation and two

independent solutions of the associated Legendre equation, which can be taken to be the associated

Legendre functions of the first and second kind, namely P 2
2 (z) = 3(z2 − 1) and

Q2
2(z) =

3(z2 − 1)

2
ln

(
z + 1

z − 1

)
+
z(5− 3z2)

z2 − 1
. (4.4)

The branch cut in this function is chosen along the real axis from −∞ to +1, since in the exterior of

the gravastar, r > 2M and thus z = r/M − 1 > 1. The function v2 then follows from h2 by use of

Eq. (3.8f), and contains associated Legendre functions P 1
2 (z) = 3z(z2 − 1)1/2 and Q1

2(z), again with a

branch along the real axis from −∞ to +1, where

1√
z2 − 1

Q1
2(z) =

3z

2
ln

(
z + 1

z − 1

)
+

2− 3z2

z2 − 1
. (4.5)

The general solutions for the quadrupole perturbations are thus found to be

h2 =
J2(r +M)

Mr4
+AE

r(r − 2M)

2M2
+BE Q

2
2

(
r

M
− 1
)

(4.6a)

v2 = h2 + k2 = −J
2

r4
−AE

r −M
M

− 2BEM√
r(r − 2M)

Q1
2

(
r

M
− 1
)

(4.6b)

m2 = −(r − 2M)

(
h2 −

6J2

r4

)
(4.6c)

with AE and BE two additional constants of integration besides J , δM , and CE .

If we require the solution to be asymptotically flat, then AE = 0, and moreover a nonzero CE in

(4.3b) is simply a rescaling of the time coordinate gtt(AE = 0, r → ∞) = −1 − 2CE . If the time
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coordinate t and Killing vector ∂/∂t are fixed by gtt → −1 asymptotically, then CE = 0 is also fixed.

The asymptotically flat exterior Hartle-Thorne metric (3.3) depends then on the remaining constants

J , BE , and δM . As r → 2M , the quadrupole function k2 behaves as

k2 → BE

(
8 + 3 ln

r − 2M

2M

)
− J2

4M4
(4.7)

where we retain the subdominant terms for later reference. Not only is k2 supposed to be a small

perturbation, but when it diverges the equatorial circumference also diverges. Finiteness of k2 at

r = 2M requires

BE = 0. (4.8)

Note that BE = 0 also eliminates the BE/(r − 2M) behavior in the function h2 as r → 2M . With

(4.8), the exterior solution simplifies to

m0 = δM − J2

r3
(4.9a)

h0 = − m0

r − 2M
(4.9b)

h2 =
J2

r3

(
1

r
+

1

M

)
(4.9c)

m2 =
J2(r − 2M)(5M − r)

Mr4
(4.9d)

k2 = −J
2(r + 2M)

Mr4
(4.9e)

ω =
2J

r3
. (4.9f)

With (4.9), we see that the combined term e2ν0h0 = −m0/r in the metric function e2ν in (3.4a) remains

finite at all r ≥ 2M , while the function h0 itself generally diverges

h0 → −
1

r − 2M

(
δM − J2

8M3

)
(4.10)

as r → 2M unless

δM =
J2

R3
S

=
J2

8M3
. (4.11)

As shown originally in Ref. [38], the Hartle-Thorne metric with AE = BE = 0 is equivalent to

the Kerr metric for a BH of total mass M = M + δM and angular momentum J = aM ' aM
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to second order in rotation. In fact, the Kerr metric to second order in a= J/M in Boyer-Lindquist

coordinates (rBL , θBL) results from the Hartle-Thorne metric in (3.3) with (4.9) through the coordinate

transformation

rBL = r

{
1− a2

2r2

[(
1 +

2M

r

)(
1− M

r

)
− cos2 θ

(
1− 2M

r

)(
1 +

3M

r

)]}
, (4.12a)

θBL = θ − a2

2r2
cos θ sin θ

(
1 +

2M

r

)
(4.12b)

where we have corrected the sign of the cos2θ term in [38].

Thus the requirement that the perturbations of the spherically symmetric gravastar solution due

to rotation remain finite on the gravastar horizon surface, together with asymptotic flatness, forces

the exterior geometry to be identical to the second order expansion of a slowly rotating Kerr BH.

A slowly rotating gravastar has compactness M/RS = 1/2 (up to possible Planck scale corrections),

and cannot be distinguished from a Kerr BH by any measurement or observation sensitive only to the

external spacetime metric. Note that this conclusion would not follow if we did not require finiteness

of the perturbations on the horizon, since (4.8) would not be required in that case.

V. INTERIOR SOLUTION

The background metric of the gravastar interior is a region of de Sitter space with a rescaled time

coordinate, with

m(r) =
1

2
H2r3 , h = 1−H2r2 , j = 2 . (5.1)

We temporarily leave j unspecified to allow for easier comparison to other work [19–21, 55], where

typically j = 1 is used for Hartle perturbations on de Sitter space. The frame dragging and monopole

perturbations are again found by integrating (3.8a)–(3.8d),

ω = W1 +
W2

r3
(5.2a)

m0 = δMI +
4πE0

3
r3 − j2W 2

2

4r3
(5.2b)

h0 = − m0

r(1−H2r2)
+ C (5.2c)

where W1,W2, δMI , C are integration constants. The stress energy tensor for the interior is given by

(3.5)–(3.7) with (2.4) and nonzero E0 in general.



14

The quadrupole perturbations are a linear combination of two independent homogeneous solutions

and a particular solution of Eqs. (3.8f)–(3.8g). Upon making the change of variable to z = 1/(Hr), the

homogeneous equations may again be combined into an associated Legendre differential equation of

degree l = 2 and order m = 2, this time for rh2, whose solutions are the associated Legendre functions

P 2
2 (z) and Q2

2(z) of (4.4). The general solution for the quadrupole perturbations in the interior is then

v2 = h2 + k2 = −
j2W 2

2

(
3− 10H2r2 + 5H4r4

)
8r4

+
2AI
r
− BIHr√

1−H2r2
Q1

2(1/Hr) (5.3a)

m2 =
j2W 2

2

(
1−H2r2

) (
8− 5H2r2

)
4r3

+AI
(1−H2r2)2

H2r2
− BI(1−H2r2)

2H
Q2

2(1/Hr) (5.3b)

h2 = − m2

r(1−H2r2)
+

3j2W 2
2

2r4
(5.3c)

which together with (5.2) depends upon the six integration constants W1, W2, δMI , AI , BI , and

CI ≡ C.

As r → 1/H, the perturbation functions m0, m2 are finite while k2 behaves as

k2 ' 2HAI −
1

2
j2W 2

2H
4 +

BI
2

(
7 + 3 ln

1−Hr
2

)
(5.4)

where we retain the subdominant terms for later reference. Finiteness of k2 at the de Sitter horizon

r = 1/H requires

BI = 0 . (5.5)

The (5.5) finiteness condition on the perturbation k2 also removes the BI/(1−Hr) behavior from h2.

From (5.2c), the combined term e2ν0h0 = −m0/r in e2ν in (3.4a) remains finite as r → 1/H, while the

function h0 itself generally diverges

h0 → −
H

2(1−Hr)

(
δMI +

4π

3H3
E0 −

j2H3W 2
2

4

)
(5.6)

as r → 1/H, unless

E0 =
3

4πR3
S

(
j2W 2

2

4R3
S

− δMI

)
. (5.7)

Finally, as r → 0, the functions ω, m0, m2, and k2 diverge unless W2 = AI = 0. We do not impose

these conditions since as we show in the following Sec. VI it implies J = 0 in the exterior and so no

rotation at all of the gravastar, which is clearly too strong a condition.
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VI. JOINING EXTERIOR TO INTERIOR ON THE NULL HORIZON SURFACE

The two Killing vectors ∂/∂t, ∂/∂φ determine the location of the null hypersurface r = RH where

the gluing of the interior and exterior solutions occurs by the geometrically invariant condition that

the norm of the vector ` = ∂/∂t+ ω ∂/∂φ vanishes there, i.e.

` · ` = e2ν = f(r)
{

1 + 2h0(r) + 2h2(r)P2(cos θ)
}

= 0 . (6.1)

If we impose that h0 and h2 are finite at r = 2M in the exterior and at r = 1/H in the interior,

resulting in Eqs. (4.11) and (5.7), and in addition use Eq. (2.6) from the nonrotating gravastar, then

the solution of (6.1) is r = RH = RS .

In the coordinates (t, θ, φ) adapted to the Killing vectors, the induced metric on the horizon hy-

persurface at r = RH is

ds2
H = Σ(θ)

[
dθ2 + sin2θ

(
dφ− ωH dt

)2]
(6.2)

where

ωH = ω(RH ) =
2J

R3
H

(6.3)

and using (4.11), (5.7),

Σ(θ) = e2β(R
H
, θ) = R2

H

[
1 + 2k2(RH )P2(cos θ)

]
. (6.4)

The induced metric (6.2) is regular on the null hypersurface, and independent of the perturbation

functions h2, m2. The first junction condition is that the induced metric (6.2) is the same when

approached from both sides, which requires that RH , k2(RH ), and ω(RH ) have the same value on

both sides. These conditions also ensure continuity of the inner products of the Killing vectors, i.e.,

∂/∂t · ∂/∂t, ∂/∂t · ∂/∂φ, and ∂/∂φ · ∂/∂φ.

The equality of the perturbation function k2(r) as r → R±
H

from both sides of the horizon implies

that the interior limit

lim
r→R−H

k2(r) =
2AI
RH

− j2W 2
2

2R4
H

(6.5)
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from Eq. (5.4) with BI = 0 and H = R−1
H

, and the exterior limit

lim
r→R+

H

k2(r) = −4J2

R4
H

(6.6)

from Eq. (4.7) with BE = 0 and M = RH/2, coincide. Equating Eqs. (6.5) and (6.6) gives

AI =
j2W 2

2 − 8J2

4R3
H

(6.7)

fixing the interior integration constant AI in terms of W2 and J . Finally, the equality of ω(r) when

the horizon is approached from both sides imposes

W1 =
2J −W2

R3
H

(6.8)

and fixes the interior integration constant W1.

With the finiteness conditions BE = BI = 0, and the conditions (4.11), (5.7), (6.7), (6.8) on the

horizon, the perturbation functions in the interior of the gravastar r < RH = H−1 = 2M = RS , where

j = 2, become

ω =
2J −W2

R3
H

+
W2

r3
(6.9a)

m0 = δMI

(
1− r3

R3
H

)
+W 2

2

(
r6 −R6

H

r3R6
H

)
(6.9b)

h0 = C +
R2

H
m0

r(r2 −R2
H

)
(6.9c)

m2 =
W 2

2 (r2 −R2
H

)

r3R5
H

(
r3 + 5r2RH − rR

2
H
− 8R3

H

)
−

2J2(r2 −R2
H

)2

r2R5
H

(6.9d)

h2 =
6W 2

2

r4
+

R2
H
m2

r(r2 −R2
H

)
(6.9e)

k2 = − W 2
2

2r4R4
H

(r −RH )(R3
H

+ 3rR2
H

+ 3r2RH + 5r3)−
2J2(r2 +R2

H
)

r3R3
H

(6.9f)

The interior solution (6.9) still depends on the three interior integration constants: W2, δMI , and C.

The first two of these can be fixed by the requirement of the absence of δ-functions at the origin, as

we shall show in Sec. VIII. The Weyl curvature of the interior solution is given in Appendix B.

We note that (6.7) precludes both W2 and AI from vanishing simultaneously for any J 6= 0, which

would be necessary to have a regular solution at the origin as can be seen from Eqs. (5.2a) and (5.3c).

Conversely, if we had demanded that the perturbation functions were regular at the origin (requiring
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W2 = AI = 0), then Eq. (6.7) forces J = 0, which is no rotation at all.

The reason for this is that the `= 2 quadrupole perturbations for h2 (exterior) or rh2 (interior)

satisfy an associated Legendre differential equation with argument z = r/M − 1 or z = 1/Hr respec-

tively, with a particular inhomogeneous term depending upon ω′ 2. The singular points z = (1,∞)

of the Legendre equation correspond to r = 2M = RS and r =∞ for the exterior solution, and to

r = 1/H = RH and r = 0 for the interior solution. The homogeneous solutions Q2
2(z) or P 2

2 (z) are

singular at z=1 or z=∞, respectively, cf. (4.4). Requiring that the quadrupole perturbations remain

finite at these singular points for both the exterior and interior solutions would set all four integration

constants AE =BE =AI =BI = 0 in (4.6a)-(4.6b) and (5.3a)-(5.3b). But then requiring the junction

condition of continuity of the induced metric (6.2)-(6.4) at r =RH =RS requires (6.5) and (6.6) be

equal and thus W 2
2 = 2J2, which if nonzero gives a diverging interior solution for ω, h2, k2,m2 in

(5.2a) and (5.3). Hence the only way to eliminate all divergences in the quadrupole functions is to set

W2 =J=0, i.e. no rotation at all.

Thus it is impossible to obtain an interior solution for a slowly rotating gravastar with finite values

at the origin and the horizon, matched there to an asymptotically flat finite solution at infinity in the

Hartle-Thorne framework—if the equation of state of the interior is unchanged from p = −ρ of the

nonrotating case. We discuss the implications of this and how the divergences might be eliminated in

a more complete treatment in the Discussion of Sec. IX and Conclusions of Sec. X.

VII. SURFACE GRAVITY AND STRESS TENSOR OF THE NULL HORIZON SURFACE

For timelike or spacelike hypersurfaces, one may relate the surface stress-energy to the discontinuity

of the extrinsic curvature defined through the surface normal vector n [26]. For a null surface where

n · n = 0, the extrinsic curvature vanishes, and the second junction conditions cannot be applied as

formulated in [26]. In the Barrabès-Israel method [27], the surface stress-energy for a null surface is

defined in terms of the discontinuity of an “oblique” curvature defined in terms of a second transverse

vector N . As discussed in Paper I [41], this method also does not apply to the case at hand here

where j =
√
h/f and

√
−g are discontinuous. Instead Paper I [41] contains a derivation of the

second junction conditions for a null surface directly from the Einstein tensor density
√
−g Gµν for

the horizon of an arbitrary metric of the form (3.1). Following Paper I, the stress tensor localized on

the null horizon surface is [41]

(Σ)T ab e
α+ν = Sab δ(r −RH ) (7.1)
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for a, b = t, θ, φ, where (Σ)T ab is a well-defined Dirac δ-distribution with respect to the volume integra-

tion measure
√
−g dt dr dθ dφ, analogously to (2.10).

Under transformations of the hypersurface coordinates (t, θ, φ), eβ+ψSab transforms as a tensor

density, while under transformations involving the surface coordinates (θ, φ) only, SAB is a tensor,

Stt is a scalar, and StB, SAt are vectors, for A,B = θ, φ. The null-surface stress tensor has nonzero

components [41]

8πStt = −ωH [J ] (7.2a)

8πStφ = [J ] (7.2b)

8πSφt = −ωH [κ]− ω2
H [J ] (7.2c)

8πSφφ = [κ] + ωH [J ] (7.2d)

8πSθθ = [κ] (7.2e)

where the surface gravity κ is to second order in the rotation

κ =
1

2
e−α−ν

∂

∂r
e2ν =

1

2j

dh

dr

{
1 + h0 + h2P2 −

(
m0 +m2P2

r − 2m

)}
+
h

j

(
h′0 + h′2P2

)
(7.3)

and J , which is first order in the rotation, is

J = −1

2
e2ψ e−α−ν

∂ω

∂r
= − j

2
r2 sin2θ

dω

dr
(7.4)

The square brackets in (7.2) denote the discontinuities in these quantities at the horizon, i.e. for a

function F (r, θ),

[F ] = F+ − F− (7.5)

with

F± ≡ lim
r→R±H

F (r, θ) . (7.6)

With the interior and exterior perturbations given by the results of the previous two sections,

namely the finiteness conditions BE = BI = 0, and the conditions (4.11), (5.7), (6.7), (6.8) on the

horizon, the surface gravity as the horizon boundary at r = RH = RS is approached from the interior
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and exterior is, to second order in the rotation

κ− = lim
r→R−H

κ(r) = − 1

jRH

(
1 + C − 3 δMI

RH

+
3j2W 2

2

2R4
H

)
(7.7a)

κ+ = lim
r→R+

H

κ(r) =
1

2RH

(
1− 6J2

R4
H

)
. (7.7b)

The discontinuity of the surface gravity at the horizon is therefore

[κ] = κ+ − κ− =

(
1

2
+

1 + C

j

)
1

RH

− 3J2

R5
H

− 3 δMI

jR2
H

+
3jW 2

2

2R5
H

(7.8)

which for a gravastar (j = 2) becomes

[κ] =
1

RH

+
C

2RH

− 3 δMI

2R2
H

− 3J2 − 3W 2
2

R5
H

. (7.9)

Similarly J approached from the interior and exterior is

J− = lim
r→R−H

J (r) =
3jW2

2R2
H

sin2θ (7.10a)

J+ = lim
r→R+

H

J (r) =
3J

R2
H

sin2θ (7.10b)

so that its discontinuity at the horizon is

[J ] = J+ − J− =
3(2J − jW2)

2R2
H

sin2θ =
3(J −W2)

R2
H

sin2θ (7.11)

with the latter expression for a gravastar (j = 2).

Dropping the second O(J3) term in (7.2c), Eqs. (7.2) then give for a gravastar,

8πStt = −6J(J −W2)

R5
H

sin2θ (7.12a)

8πStφ =
3(J −W2)

R2
H

sin2θ (7.12b)

8πSφt = − 2J

R4
H

(7.12c)

8πSφφ =
1

RH

+
C

2RH

− 3J2

R5
H

− 3 δMI

2R2
H

+
3W 2

2

R5
H

+
6J(J −W2)

R5
H

sin2θ (7.12d)

8πSθθ =
1

RH

+
C

2RH

− 3J2

R5
H

− 3 δMI

2R2
H

+
3W 2

2

R5
H

(7.12e)
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in terms of the integration constants J,C,W2, δMI , after using the conditions (4.11), (5.7), (6.7), (6.8)

on the horizon at r = RH = RS . In the nonrotating limit, with J,C,W2, and δMI set to zero, the

surface stress-energy tensor of the nonrotating gravastar is recovered [11].

The surface stress components in (7.12) indicate that for general values of the constants W2, δMI ,

and C, there are nonvanishing anisotropic surface stresses, an azimuthal current, and an energy density

localized on the horizon surface. The Sφφ and Sθθ terms are the azimuthal and latitudinal stresses,

containing a zeroth order (nonrotating) term with second order corrections. Because the zeroth order

term is associated with the spherically symmetric unperturbed system, it is the same in the θ and

φ components, but the second order corrections may differ (equal only if W2 = J). The azimuthal

current terms Stφ and Sφt are first order in the rotation. Sφt is nonzero for a rotating gravastar (J 6= 0),

while Stφ is nonzero in general and vanishing only if W2 = J . The energy density term Stt is second

order in the rotation, and vanishes if W2 = J .

VIII. GRAVASTAR MASS, ANGULAR MOMENTUM, AND MOMENT OF INERTIA

Section V of Paper I [41] gives the integrals for the Komar mass and angular momentum functions

for an arbitrary metric of type (3.1). The Komar functions at some radius are given by a surface

integral at that radius, which may be decomposed by Stokes’ theorem into the contribution from a

surface of smaller radius and a volume integral of appropriate energy-momentum components.

A. Komar mass

The Komar mass function is [41]

MK(r) =
1

4π

∫
∂V+

(κ+ ωJ ) dA (8.1a)

=

∫
V

√
−g

(
− T tt + T rr + T θθ + T φφ

)
dr dθ dφ +

1

4π

∫
∂V−

(κ+ ωJ ) dA (8.1b)

where V is the three-volume at fixed t enclosed by two-surfaces ∂V− and ∂V+ at r− and r+ in coordi-

nates (3.1).

In the exterior the Komar mass is easily found to be

M ext
K = M + δM = M , r > RH (8.2)

which is the constant total mass of the exterior Kerr solution, as expected. Since the exterior is a
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vacuum solution with Tµν = 0, there is no volume contribution in (8.1b) and no r dependence to the

Komar mass function in the exterior. Since the exterior is Kerr, we may compare Eq. (8.2) to the

Christodoulou formula for a Kerr BH [56]

M ext
K =

√
M2
irr +

J2

4M2
irr

≈Mirr +
J2

8M3
irr

(8.3)

where Mirr is the irreducible mass and the final equality comes from expanding for small J at constant

Mirr. With h0 finite and δM given by (4.11), one can see from Eqs. (8.2) and (8.3) that the unperturbed

mass of the nonrotating gravastar M equals the irreducible mass of the Kerr BH, as implied by the

RH = RS condition and the definition of the irreducible mass 4πR2
H

= 16πM2
irr.

The two-surface integrals in (8.1) may be evaluated at fixed r with the induced area element

dA = eβ+ψdθ dφ = r2 sin θ
[
1 + 2k2(r)P2(cos θ)

]
dθ dφ (8.4)

and the total area of the horizon is

A =

∫
eβ+ψdθ dφ =

∫
dθ dφR2

H
sin θ

[
1 + 2k2(RH )P2(cos θ)

]
= 4πR2

H
= 16πM2

irr = 16πM2 (8.5)

since the quadrupole term does not contribute. The final equality of (8.5) makes use of the condition

of finite h0 and matching at RH = RS .

Substituting the perturbations h0,m0, h2,m2 for the interior solution (6.9), and performing the

surface integral ∂V+ at r, the quadrupole terms proportional to P2(cos θ) again do not contribute, and

we obtain

1

4π

∫
∂V+

κdA = − r3

jR2
H

(
1 + C +

8πE0R
2
H

3

)
− jW 2

2

r3
+
δMI

j
(8.6)

retaining terms up to second order in the rotation. Likewise for the ωJ term in (8.1a), we obtain

1

4π

∫
∂V+

ωJ dA = jW2

(
W1 +

W2

r3

)
(8.7)

correct to second order. Combining this with (8.6) we find the expression for the Komar mass in the

interior,

M int
K (r) = − r3

jR2
H

(
1 + C +

8πE0R
2
H

3

)
+
j2W1W2 + δMI

j
, 0 < r < RH . (8.8)
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The r dependent term in (8.8) can be identified as the volume contribution from (8.1b),

∫
V

√
−g

(
− T tt + T rr + T θθ + T φφ

)
dr dθ dφ

= −2(ρ+ E0)

∫ r

0
dr

∫
dθ dφ

r2 sin θ

j

(
1 + h0 + h2P2 +

m0 +m2P2

r(1−H2r2)
+ 2k2P2

)
= − r3

jR2
H

(
1 + C +

8πE0R
2
H

3

)
. (8.9)

Extending the latter integration over the whole interior volume 0 < r < RH gives the total interior

volume contribution to the Komar mass

M volume
K = −RH

j

(
1 + C − 2 δMI

RH

+
j2W 2

2

2R4
H

)
(8.10)

where RH = RS and E0 from (5.7) has been used.

The r independent term in (8.8), i.e.,

M origin
K =

j2W1W2 + δMI

j
(8.11)

which is present at arbitrarily small r, can be ascribed to δ-function contribution to the volume integral

in Eq. (8.1b) at the origin by

1

4π

∫
dθdφ

√
−g Kt

(t)

∣∣∣
origin

=

∫
dθdφ

√
−g
(
− T tt + T rr + T θθ + T φφ

)∣∣∣
origin

= M origin
K δ(r) (8.12)

where Kt
(t) is the t component of the Killing vector of time translation ∂/∂t. Thus the general solution

to the slow rotation perturbation equations allows for the constant contribution M origin
K to the Komar

mass in (8.11), much as integration of the mass function equation m′ = 4πr2 ρ allows for an integration

constant and mass at the origin. Requiring the absence of any such δ-function at the origin requires

δMI = −j2W1W2 (8.13)

fixing one of the remaining three constants in the interior gravastar solution.

The contribution to the Komar mass of the arbitrarily thin surface layer stress energy localized on

the horizon is

M surface
K =

∫ π

0

∫ 2π

0

∫ R
H

+ε

R
H
−ε

dθdφdr
√
−g
(
−T tt + T θθ + T φφ

)
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= 2π

∫ π

0

∫ R
H

+ε

R
H
−ε

dθdr eψ+β δ(r −RH )
(
−Stt + Sθθ + Sφφ

)
=

1

4π

∫ ([
κ
]

+ ωH
[
J
])
dA = M ext

K −M volume
K −M origin

K

=

(
1

2
+

1 + C

j

)
RH +

J2

R3
H

+
jW 2

2

2R3
H

− 3 δMI + j2W1W2

j
(8.14)

where RH = RS and δM,E0 from (4.11) and (5.7) have been used.

The total mass in the exterior

M ext
K = M origin

K +M volume
K +M surface

K = M (8.15)

is the sum of the contributions from the interior volume, the possible δ-function at the origin, and

the surface layer, independently of the conditions (8.13). If (8.13) is satisfied, the contribution from

the origin is absent: M origin
K = 0. Note also that changing the integration constant C changes the

contributions to the interior volume and surface terms separately, but drops out of the sum (8.15).

B. Komar angular momentum

The Komar angular momentum is expressed similarly to the Komar mass as [41]

JK(r) =
1

8π

∫
∂V+

J dA =

∫
V

√
−g T tφ dr dθ dφ+

1

8π

∫
∂V−

J dA (8.16)

which shows that J /8π carries the interpretation of angular momentum per unit surface area. Using

(7.4), the surface integral for the interior solution is

J int
K =

1

8π

∫ 2π

0
dφ

∫ π

0
dθ r2 sin3θ

(
3jW2

2r2

)
=
jW2

2
(8.17)

which is first order in the rotation. Since this is independent of r, and T tφ = 0 in the interior, the

volume integral term for angular momentum in (8.16) gives no contribution,

J volume
K = 0 (8.18)

but the constant contribution

J origin
K =

jW2

2
(8.19)
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can be ascribed to the volume term from Eq. (8.16) as a δ-function contribution at the origin,

− 1

4π

∫
dθdφ

√
−g Kt

(φ)

∣∣∣
origin

= 2

∫
dθdφ

√
−gT tφ

∣∣∣
origin

= 2 J origin
K δ(r) (8.20)

where Kt
(φ) is the t component of the Killing vector of azimuthal symmetry ∂/∂φ. Eliminating this

δ-function contribution to the angular momentum requires W2 = 0. Eliminating both the Komar

angular momentum and Komar mass delta functions at the origin thus requires

δMI = W2 = 0 (8.21)

so that the only remaining integration constant of the interior solution is C.

The Komar angular momentum function in the exterior is

J ext
K = −1

8

∫ π

0
dθ

√
h

f
r4 sin3θ

d

dr

(
2J

r3

)
= J (8.22)

which is the expected constant total angular momentum of the Kerr exterior solution. Finally, we

have the angular momentum contribution of the surface layer

J surface
K =

∫ π

0

∫ 2π

0

∫ R
H

+ε

R
H
−ε

dθdφdr
√
−g T tφ = 2π

∫ π

0

∫ R
H

+ε

R
H
−ε

dθdr eψ+β δ(r −RH )Stφ

=
1

8π

∫
dφdθeψ+β

[
J
]

=
3(2J − jW2)

8R2
H

∫ π

0

∫ R
H

+ε

R
H
−ε

dθdr r2 sin3 θ δ(r −RH ) = J − jW2

2
(8.23)

to this order in rotation. This shows that the total Komar angular momentum of the gravastar is the

sum of contributions from the surface and the origin,

J ext
K = J origin

K + J surface
K = J (8.24)

If W2 = 0, then J origin
K = 0 and the entire angular momentum of the slowly rotating gravastar comes

from the rotating surface layer localized on the horizon surface.

C. Moment of inertia

The moment of inertia I of the rotating gravastar is

I =
J

ωH
= 4G2M3 = MR2

H
(8.25)
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which coincides with that of a Kerr BH. This might have been expected from the fact that the external

geometry is identical to the Kerr BH geometry. With W2 = 0, the interior de Sitter condensate carries

no angular momentum from (8.18) and (8.19), and all the angular momentum is carried by the rotating

horizon surface from (8.23). Unlike a BH where there is no mass-energy at all at the horizon to rotate

or to give rise to such a moment of inertia, the rotating gravastar has a well-defined stress energy (7.12)

on its rotating surface where all the angular momentum resides, and it is this rotating mass-energy

that gives rise to (8.25) by straightforward evaluation of the relevant surface integral (8.23).

IX. SUMMARY AND DISCUSSION

With the δ-functions contributions to the Komar mass and angular momentum at the origin set

to zero (M origin
K = 0 and J origin

K = 0), and the condition that h0 is finite at the gravastar surface, all

interior integration constants for the slowly rotating gravastar are fixed by Eqs. (4.11), (5.7), (6.7),

(6.8), (8.21), except for C. The interior slowly rotating gravastar solution in this case simplifies

considerably, becoming

ω =
2J

R3
H

= ωH (9.1a)

m0 = 0 (9.1b)

h0 = C (9.1c)

m2 = −
2J2(r2 −R2

H
)2

r2R5
H

(9.1d)

h2 =
2J2

rRH

(
1

r2
− 1

R2
H

)
(9.1e)

k2 = − 2J2

rRH

(
1

r2
+

1

R2
H

)
(9.1f)

with the exterior solution given by Eqs. (4.9). The surface stress tensor is obtained by setting δMI =

W2 = 0 in Eqs. (7.12), i.e.

8πStt = −6J2

R5
H

sin2θ (9.2a)

8πStφ =
3J

R2
H

sin2θ (9.2b)

8πSφt = − 2J

R4
H

(9.2c)

8πSφφ =
1

RH

+
C

2RH

− 3J2

R5
H

+
6J2

R5
H

sin2θ (9.2d)
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8πSθθ =
1

RH

+
C

2RH

− 3J2

R5
H

. (9.2e)

The constant C does not appear in the bulk (r < RH ) stress-energy tensor or curvature tensor of

the interior solution. Referring to the metric line element (3.3), we observe that the constant 1+C is a

rescaling of the time coordinate of the interior, and thus appears to amount to a choice of coordinates.

It is indeed similar to the constant 1 +CE of (4.3b), which is a rescaling of the time coordinate of the

exterior solution that is fixed by the condition that the asymptotically flat line element assumes the

standard Minkowski form. It is also similar to the j factor, which rescales the interior gtt component

of the metric in the nonrotating gravastar. In that spherically symmetric case the value j = 2 is

fixed by taking the horizon limit R → RH of the Schwarzschild star [11]. Similarly, if the interior

and exterior were continuously connected in an appropriate horizon limit, or if f(r) were to be kept

slightly different from zero near r = RH by a more detailed theory of the surface layer, we may expect

that C would be fixed by the one condition on the Minkowski static time coordinate as r →∞.

As it is, in our present treatment because of the lightlike null surface intervening where f(RH ) = 0,

the time coordinate of the interior solution becomes disconnected from the exterior, and C remains a

free parameter, which appears in the interior bulk Komar mass (8.8), the surface stress tensor (7.12)

and surface contribution (8.14) separately, but drops out in their sum M for the total mass (8.15).

It is important to note that our results are contingent on the surface layer being located on the

null horizon and infinitesimally thin, following the matching method presented in Paper I [41]. An

infinitesimal surface which is located away from the null horizon leads to different results and has

been studied by other authors, to which we may explicitly compare our results. Previous works were

based on matching the interior Hartle-Thorne perturbed de Sitter to exterior geometries on a timelike

[19–21] or spacelike [55] hypersurface r=R= const 6= 2M . These authors made a different choice of

constants for both the exterior and interior perturbations. They use conventional time scaling in the

interior j = 1 and do not consider E0, but allow BE , BI to be nonzero, since they did not require the

perturbations to be finite at the horizon. They set AI = W2 = δMI = 0 in order to have finiteness

of the perturbations at the origin r = 0. Comparing our solution in (5.2) with Eqs. (2.15)-(2.19) of

Ref. [21], we see that the interior solution of Ref. [21] amounts to choosing W2 = δMI =AI =E0 = 0,

with arbitrary W1, BI , C in the present notation. With these choices, k2(r) diverges as rS → 1/H

unless it vanishes identically, i.e. also BI = 0. The latter option would then set m0, h2, k2,m2 all to

zero identically, and leave only ω = W1, h0 = C as constants in the interior. But this interior cannot

be matched to the uniquely well behaved Kerr exterior on the horizon.
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In contrast, finiteness and matching on the null horizon surface requires (5.5) and leaves a generally

nontrivial interior solution for the perturbations, which however may still diverge at the origin if either

AI or W2 are nonvanishing. The junction conditions of matching on the horizon fix the relation (6.7),

which precludes setting both AI and W2 to zero if J 6= 0.

The earlier authors [19–21, 55] applied the Israel junction conditions, which do not apply in the

limit R → 2M , as they produce either a vanishing or a divergent result depending on whether the

extrinsic curvature is computed with both lower contravariant indices, or with one of its indices raised,

due to the fact that the induced metric on the null horizon is degenerate. The relation between the

surface stress tensors of these previous approaches and the present one is given by (2.12) [41].

Another paper [57] uses a different perturbation method in Eddington-Finklestein coordinates

on rotating gravastars derived directly from the Schwarzchild star limit. This work finds regular

perturbative solutions to second order, which fail only at third order. However, the analysis differs

from ours in that the surface of the gravastar is allowed to shift away from being null in the rotating

case, whereas we have performed the matching on a null surface in both the static and rotating cases.

Our analysis also differs from [40], where a sub-Buchdahl Schwarzschild star (R < 9M/4) was

studied numerically in the Hartle formalism by matching the interior and exterior metrics continuously

on a timelike hypersurface and approaching the horizon limit numerically. There it was suggested

that the perturbative corrections were everywhere finite in the gravastar limit. However, below the

Buchdahl bound the equation for frame dragging solved numerically, Eq. (50) of [40], does not follow

from the change of variables given in the definitions in Eqs. (45)-(49) and the original frame-dragging

equation in r coordinates, cf. Eq. (25). Hence the results in [40] would have to be recomputed before

comparing them to our work, although the same result (8.25) for the moment of inertia was obtained.

A major result of our analysis is that although one may remove the δ-function contributions at

the origin to both the Komar mass function M origin
K and angular momentum J origin

K by setting δMI =

W2 = 0, the quadrupole perturbations m2, h2, and k2 remain quadratically or cubically divergent at

the origin for J 6= 0. The perturbations m2 and k2 in (6.9d) and (6.9f) become of order unity at

rmin ∼
(

2J2

RH

)1
3

(9.3)

and hence the perturbative expansion breaks down for r . rmin (or possibly r .
√
|W2| if one allows

for nonzero W2). There are two possible reasons for this breakdown and corresponding possibilities

for removing the divergences at r = 0.

The first possibility is that the perturbative expansion in slow rotation J = aM is nonuniform in r,
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and invalid near the origin. If a diverging a2/r2 behavior is replaced by any smooth function F (r/a) in

a more complete solution, where F tends to unity for large values of its argument, but to zero rapidly

enough as r → 0, the divergence at the origin would be removed. For example

F
(
r

a

)
=

a2r2n−2

(a2 + r2)n
(9.4)

for n > 1 is finite both for a = 0, and as r → 0 for any a > 0, where it behaves like (r/a)2n−2 → 0

near the origin. However, expanding this function to order a2 yields a leading term, a2/r2 which

diverges as r → 0. Thus the diverging behavior at r = 0 in the slow rotation expansion may imply

that the true solution for the interior metric of a rotating gravastar, though everywhere regular, does

not admit a uniform regular expansion in the rotation parameter near the origin. We have not found

an exact rotating metric in the literature with p = −ρ equation of state and regular metric functions

which expands into our solution in precisely this way, although there are solutions with some similar

properties of p = −ρ equation of state and diverging expansion, such as the modified Carter solution

presented in [58].

Another method which is been used in the literature to generate possible interior solutions to the

Kerr BH (see e.g. [59]) and manifests divergences on expansion is the Gurses-Gursey generalization

[60] of the Newman-Janis algorithm [61]. The Gurses-Gursey rotating system has the line element

ds2 = −
(

1− 2rm

Σ

)
dt2 +

Σ

∆
dr2 + Σ dθ2 + sin2θ

(
2a2rm sin2θ

Σ
+ a2 + r2

)
dφ2 − 4arm sin2θ

Σ
dtdφ (9.5)

where Σ(r, θ) = r2 +a2 cos2θ, ∆(r) = r2 +a2−2rm(r), and m(r) is the enclosed mass in the spherically

symmetric system, which may be taken to be H2r3/2 for the nonrotating de Sitter gravastar interior.

Although this metric is completely regular at r = 0, expanding the 1/Σ and 1/∆ functions to order

a2 will generate spurious divergences, similar to (9.4). However, this rotating geometry [62–65] is a

solution of Einstein’s equations with an energy-momentum tensor that does not satisfy the p = −ρ

dark energy equation of state [66].

This brings us to the second possibility for removing the divergence at the origin, which is that

the preservation of the p = −ρ equation of state may be too restrictive for an ultra-compact rotating

gravastar. Our analysis is based on the assumption, eminently reasonable for most fluids, that the

local thermodynamic equilibrium equation of state would not be modified if the fluid sphere is set into

slow rotation. However the dark energy equation of state, at the extreme limit of satisfying the weak

energy condition ρ+p ≥ 0, is not that of an ordinary fluid, and need not follow the expectation of local
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thermodynamic equilibrium under small perturbations familiar from classical fluids. If the equation

of state is altered from dark energy form, as for instance in the Gurses-Gursey system Eq. (9.5),

then there may be angular momentum density distributed within the interior rather than purely on

the surface as in our solution. Indeed if the interior of the gravastar is a gravitational condensate as

originally proposed in [45, 46], one might expect the development of vortex filaments first at the origin,

and then a finite vortex density at higher values of cJ/GM2. Such vortices would alter the equation

of state from its pure vacuum dark energy condensate form, altering the solution markedly, deep in

the interior. One might speculate that even in this case the physical properties of the surface layer

may not be radically changed at the horizon from that given in the present work, at least to second

order in the rotation parameter cJ/GM2.

X. CONCLUSIONS

In this paper we have derived and solved analytically the Einstein equations for a slowly rotating

gravastar by expanding the spherically symmetric gravastar solution of [11] to second order in the

angular momentum, following the methods of Refs. [38, 39, 51], and assuming that the equation of

state of the slowly rotating system is unchanged from that of the nonrotating solution.

In solving the perturbation equations for slow rotation, we applied the lightlike shell junction

conditions of Paper I [41] to the concrete case of a rotating gravastar. Previous studies in the Hartle-

Thorne formalism have focused on the case of matching on a timelike or spacelike boundary [19–

21, 55, 67].

The surface stresses and Komar integrals work as expected, with the modifications appropriate for

matching on a null hypersurface. The δ-function distribution stress tensor on the horizon surface (7.1)-

(7.2) accounts for the difference between the exterior and interior Komar mass and angular momentum

functions.

In the Komar description, the p = −ρ equation of state cannot support any angular momentum

density and the angular momentum must either be localized entirely on the horizon or in singular

concentration at the origin. With the conditions (8.21) removing any δ-function contribution at the

origin, the entire angular momentum J of the rotating solution is carried by the physical surface of

the gravastar at the horizon.

Matching solutions on the horizon, we determine the interior metric and the surface stress tensor

corrections of first and second order in the rotation. The exterior solution for the perturbations (4.9)

yields exactly the same geometry as that of a Kerr BH, expanded to second order in a = J/M ,
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but expressed in Hartle-Thorne coordinates (3.3), which are related to more familiar Boyer-Lindquist

coordinates by (4.12). Thus an important conclusion of this work is

• Matching the interior of a slowly rotating gravastar to an asymptotically flat exterior vacuum

solution of Einstein’s equations at their horizons leads to an external geometry identical to that of

a slowly rotating Kerr BH, notwithstanding a very different interior and the presence of nonzero

energy density and stresses (9.2) localized on the physical surface, that takes the place of the Kerr

BH horizon.

Since the exterior of the slowly rotating gravastar is precisely that of the Kerr BH to order a2, there is

no possibility of detecting the difference to this order by any experiment or observation restricted to

the large scale external geometry such as by accretion flows or light ring images. Like a classical Kerr

BH, a slowly rotating gravastar with a null surface stress tensor also has “no hair” classically, up to

possibly Planck scale corrections very near to the horizon surface. The fact that this surface remains

at the horizon, and the moment of inertia (8.25) remains identical to that of a Kerr BH to this order

also implies that a rotating gravastar defined this way will also have the same zero tidal deformability

or Love number as a Kerr BH, at least to order a2.

If the δ-function surface stress-energies were to be replaced by a microscopically thin shell of radial

extent ∆r, several studies [68, 69] indicate that the corrections to this null result may be of order

[log(∆r/M)]−1, so that even a ∆r of order the Planck length could potentially produce dimensionless

Love numbers of a few tenths of a percent, which could lead to observable tidal effects that can

distinguish ultra-compact objects from BHs in future gravitational wave detectors [21, 68]. This

question remains open for the universal null shell gravastars considered in this paper.

Assuming that the interior equation of state for a slowly rotating gravastar is unchanged from its

nonrotating (3.5)-(3.7) form, the regular matching of the exterior Kerr and the interior spacetime at the

horizon gives Eq. (6.7), which in our calculation implies a divergence of some perturbation functions

at the origin. As explained in Sec. VI, since the horizons of the interior and exterior geometries

are at singular points of the differential equation governing the quadrupolar perturbations, the four

conditions:

(i) Finiteness at the origin,

(ii) Finiteness on the horizon,

(iii) Finiteness at asymptotic infinity (i.e. asymptotic flatness), and

(iv) Matching (first junction condition) on the horizon,

cannot be simultaneously satisfied if the equation of state in the interior is fixed to be p = −ρ. Thus

a second important conclusion of this work is:
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• There is no solution of the Hartle perturbation equations for a slowly rotating gravastar that is

regular both at the horizon and the origin, and can be matched on the horizon to an asymptotically

flat exterior, if the equation of state in the interior is fixed to be p = −ρ of the nonrotating gravastar.

The divergences may indicate that the slow rotation expansion is nonuniform and breaks down as

r → 0, and/or that the assumption that the equation of state is unchanged from p = −ρ is overly

restrictive for ultracompact objects such as gravastars, and should be relaxed. If instead, the equation

of state differs from the dark energy one anywhere in the interior, then the perturbation functions

inside the gravastar will also be different and so their matching to the exterior functions at the null

surface may become possible, while still remaining finite at the origin.

The corollary is that the slowly rotating gravastar model generated in this way by the Hartle-

Thorne formalism [38, 39] from the spherically symmetric case is necessarily incomplete, and not fully

satisfactory. The present work represents an initial exploration of rotating gravastars with a physical

surface localized on the BH horizon, whose results it is hoped will suggest approaches to a solution of

the rotating gravastar interior, beyond the perturbative framework utilized in this paper. This requires

a better understanding of the equation of state appropriate for rotating gravitational condensates.

No attempt has been made in this paper to present either a microscopic theory of the surface

stresses, which requires the incorporation of quantum vacuum polarization effects such as those dis-

cussed in [9, 10], nor a detailed model of the dynamical formation of rotating gravastars with p = −ρ

cores from positive pressure matter. See for example [70] for preliminary study of a model of gravastar

formation. These important issues remain open to further investigation.
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Appendix A: Einstein Tensor and Eqs. to Second Order in the Angular Momentum

With the form of the line element (3.3) the nonvanishing components of the Einstein tensor are:

Gtt = −3H2 +

[
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r2
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j2r2

6
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3
ω
(
rω′′ + 4ω′

) ]

+ 2P2(cos θ)

[
hk′′2 +

(rh′ + 6h)

2r
k′2 −

m′2
r2
− 2k2

r2
− 3m2

r3h
− j2r2

12
ω′2 − j2r

6
ω
(
rω′′ + 4ω′

)]
(A1)

Grr = −3H2 +

[
2h

r
h′0 −

2 (rh′ + h)

hr3
m0 +

1

6
j2r2ω′2

]

+ 2P2(cos θ)

[
(rh′ + 2h)

2r
k′2 +

h

r
h′2 −

3h2

r2
− 2k2

r2
− (rh′ + h)

r3h
m2 −

j2r2

12
ω′2

]
(A2)

Grθ
r2h

= Gθr =
3 sin θ cos θ

r2

[
h′2 + k′2 +

(rh′ − 2h)

2rh
h2 −

(rh′ + 2h)

2r2h2
m2

]
(A3)

Gθθ = −3H2 +

[
hh′′0 +

(3rh′ + 2h)

2r
h′0 −

(rh′ + 2h)

2r2h
m′0 −

h2

r2
− m2

r3h

+

(
r2h′2

h
− 2r2h′′ − rh′ + 2h

)
m0

2r3h
− j2r2

6
ω′2

]

+ P2(cos θ)

[
h(h′′2 + k′′2) +

(3rh′ + 2h)

2r
h′2 +

(rh′ + 2h)

r
k′2 −

(rh′ + 2h)

2r2h
m′2 −

2h2

r2

+

(
r2h′2

h
− 2r2h′′ − rh′ + 2h− 4

)
m2

2r3h
+
j2r2

6
ω′2

]
(A4)

Gφφ = −3H2 +

[
hh′′0 +

(3rh′ + 2h)

2r
h′0 −

(rh′ + 2h)

2r2h
m′0 +

h2

r2
+
m2

r3h

+

(
r2h′2

h
− 2r2h′′ − rh′ + 2h

)
m0

2r3h
− j2r2

2
ω′2 − j2r

3
ω
(
rω′′ + 4ω′

)]

+ P2(cos θ)

[
h(h′′2 + k′′2) +

(3rh′ + 2h)

2r
h′2 +

(rh′ + 2h)

r
k′2 −

(rh′ + 2h)

2r2h
m′2 −

4h2

r2

+

(
r2h′2

h
− 2r2h′′ − rh′ + 2h− 8

)
m2

2r3h
+
j2r2

2
ω′2 +

j2r

3
ω
(
rω′′ + 4ω′

)]
(A5)

where the terms in the large square brackets are second order in the angular momentum J/M2, and
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are first order in this parameter and somewhat simpler. The difference

Gθθ −G
φ
φ = −2

r2

[
h2 +

m2

rh
− j2r4

6
ω′2 − j2r3

6
ω
(
rω′′ + 4ω′

)] (
1− P2(cos θ)

)
(A8)

is particularly simple as well. In these expressions the prime ′ ≡ d/dr and we have used the zeroth

order nonrotating gravastar solution (2.2).

The Einstein equations Gµν = 8πTµν = −8πE δµν for the stress energy tensor (3.5) are easily

obtained from (A1)-(A8). Since ∇µGµν = 0, E = ρ + E0 must be a constant. The terms in (A1) and

(A2) with no cos θ dependence give the monopole equations (3.8b) and (3.8c), the latter in the form

(
r − 2m

)dh0

dr
=

(1− 2m′)

(r − 2m)
m0 − 4πr2E0 −

j2r4

12
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(A9)

after using rh = r − 2m from (2.2), and with m′ ≡ dm/dr. These equations may be compared to

Eqs. (18) and (19) of Ref. [39], taking account of the constant values of j, p = −ρ, and E0 in the

energy-momentum tensor (3.5), as well as $′ = ω′. The vanishing of the difference Gθθ−G
φ
φ in (A8),

of the off-diagonal components Gθr in (A7), and of the P2(cos θ) terms of Gr r in (A2) give
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since all of these must vanish by Einstein’s equations for the stress tensor (3.5) with E2 = 0. Solving

(A10a) for m2 gives (3.8e), which when substituted into (A10b)-(A10c) allows these to be written
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after rearranging. Introducing the notation v2 = h2 + k2, eliminating k2 in favor of v2 − h2, and

using (m − rm′) = r(r − 2m) ν ′0, the two coupled first order Eqs. (A11) may also be expressed as

Eqs. (3.8f) and (3.8g), which are directly comparable to Eqs. (25) and (26) in [39]. The remaining

Einstein equations involving the second derivative terms in (A1)-(A5) are then satisfied automatically

by the Bianchi identities.
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Appendix B: Weyl sector of the interior solution

The curvature tensors of our exterior solution are well known, since it is the Hartle-Thorne expan-

sion of the Kerr metric. The curvature tensors of our interior solution are less well known, and we

collect some information about them in this Appendix.

The Ricci sector of our interior solution is de Sitter like (albeit with a possible second order

constant density shift E0), but the full Riemann tensor has differences of first and second order in the

perturbations. Of the integration constants, the constants W2, AI , δMI , and BI show up only in the

Weyl sector, E0 shows up only in the Ricci sector, and W1 and C do not show up in either sector and

hence do not contribute directly to the curvature of the interior solution.

A convenient method of examining the Weyl tensor is to use of the Petrov Q matrix [71, 72]. We

derive the Q matrix components for an arbitrary stationary axisymmetric metric of the form (3.1)

in Appendix B of [41]. The full Q matrix components for our interior, and hence the Weyl tensor

components, are functions of r, θ and of the integration constants W2, AI , δMI , and BI . Setting BI = 0

as in the finiteness condition (5.5), the nonzero independent components of the Q matrix are:
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To lowest order in the rotation, the Q matrix vanishes, in accordance with the fact that de Sitter space

has a vanishing Weyl tensor. Note that W2 causes a first order correction in the “magnetic” part of

the Weyl tensor (imaginary part of the Q matrix). The correction to the “electric” part (real part of

the Q matrix) is of second order. The Q matrix contains divergences at r = 0 for nonzero J , and it is
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impossible to choose W2 and δMI to cancel all diverging terms in the Weyl tensor at the origin. Since

the Ricci tensor and scalar as determined by the stress-energy (3.5) is finite, the singular behavior of

the Weyl tensor at the origin is the same as that of the corresponding components of the Riemann

tensor. If one eliminates all the δ-function contributions at the origin to the Komar mass and angular

momentum by setting W2 = δMI = 0 as in (8.13), and uses (6.7) for AI , some of the divergences at

r = 0 are removed and (B1) simplifies considerably to

Q11 =
8J2P2(cos θ)(r2 − 3R2

H
)

r5R3
H

(B2a)

Q21 = − 24J2

r5R2
H

√
R2

H
− r2 sin θ cos θ (B2b)

Q22 =
2J2(r2 −R2

H
)

r5R3
H

+
2J2P2(cos θ)(7R2

H
− 3r2)

r5R3
H

(B2c)

Q33 =
2J2(R2

H
− r2)

r5R3
H

+
2J2P2(cos θ)(5R2

H
− r2)

r5R3
H
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Appendix C: Null coordinates and conformal diagram

In the spherically symmetric case, one can move to Eddington-Finkelstein coordinates v or u using

dv = dt+
1√
fh
dr, or du = dt− 1√

fh
dr, (C1)

respectively. Note that in Eddington-Finkelstein coordinates the metric

ds2 = −fdu2 − 2

√
f

h
du dr + r2

(
dθ2 + sin2θ dφ2

)
(C2)

has a discontinuity on the null r = RH hypersurface where f(RH ) = 0.

Because the interior is a de Sitter space and the exterior is Schwarzschild, we may construct a

conformal diagram, which we sketch in Figure 1. It is reminiscent of the conformal diagram for the

extremal Reissner-Nordstrom solution, although now r = 0 is regular, but the null surface is associated

with a Dirac δ-function energy-momentum distribution and hence is singular.
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FIG. 1. Conformal diagram for the static gravastar. Schwarzschild exterior (“squares”) and de Sitter static
patch interior (“triangles”) diagrams are joined at the r = R

H
null hypersurface and may be tiled in a structure

similar to the extremal Reissner-Nordstrom black hole. Unlike the Reissner-Nordstrom spacetime, the static
gravastar is regular at r = 0 but has a singularity associated with the surface at r = R

H
(shown in the diagram

by a dashed blue line). Sketches of constant r hypersurfaces and of constant t hypersurfaces are shown.
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