LA-UR-22-25943

Approved for public release; distribution is unlimited.
Title: PDQ Users Manual Manual Version 2 for PDQ Code Version 1.20

Author(s): Pelak, Robert A.
McDermott, Danielle Marie

Intended for: Report

Issued: 2022-06-24

% Los Alamos

NATIONAL LABORATORY

1% Los Alamos NYSE

NATIONAL LABORATORY National Nuclear Security Administration

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

UNCLASSIFIED

1% Los Alamos

NATIONAL LABORATORY

XTD-NTA Nuclear Threat Assessment

LA-UR-22-

PDQ Users Manual
Manual Version 2

for PDQ Code Version 1.20
June 22, 2022

Robert A. Pelak, XTD-NTA, MS T082
Danielle McDermott, XTD-SS, MS T082

vy
' £O
An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA N ,As%T,ﬂ

UNCLASSIFIED

June 22, 2022

LA-UR-22- UNCLASSIFIED Page 2

1 Introduction

PDQ is a tool for the management of the input and execution of batch jobs for simulation codes that use a text
based input system. It accomplishes this goal by operating at two levels. First, it takes input file templates
(commonly known at LANL as input deck templates) and creates multiple instantiations by performing
substitutions of data from table files into symbols (variables) found in the template. Second, it provides
commands to submit the created files to the SLURM batch system for execution. These two activities taken
together produce a whole that is greater than the sum of its parts and provides an elegant way of executing
studies across multiple similar simulations while minimizing the risk of typographical errors in the input
files.

PDQ was originally developed as a job management system called XVS by Jeff McAninch while he was
at LANL. Besides the capabilities described here, XVS had many other features specific for interactions
with particular simulation codes. After Jeff’s departure, maintenance of XVS was taken over by Rendell
Carver; he added some new features as well as kept it functioning as the batch system at LANL was changed
from LSF to MOAB to SLURM. In 2017, Rob Pelak decided to develop a different version that removed
the additional features (many of which were rendered obsolete with the retirement of the simulation code
or batch system that they supported) and produced a cleaner “bare bones” version of XVS. A few other
behaviors of XVS that Rob found irksome were altered. Rob gave the resulting code a new name: PDQ.

In 2022 Danielle McDermott developed a version that runs under Python 3.X. As suggested by Rob, she

used the python2to3 utility to identify most changes. Given that PDQ continues to operate with Python
version 2.7 we have advanced the version number to 1.20.

2 A Partial Example

The key feature that makes PDQ useful is that it can take values from a table in a file and substitute them
into an input deck template to make multiple versions of the deck while placing them in separate directories.

The following example illustrates this key capability as well as PDQ’s capacity for submitting batch jobs.
Full details for all of PDQ’s capabilities will be discussed in the following sections.

We start with an example of a greatly simplified input deck:

Example input deck

sim_name = 'triall’
method = ’old’
variablel = 1.0
variable2 = 7.5
variable3 = 8.5

YSH

National Nuclear Security Administration

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

UNCLASSIFIED

June 22, 2022

LA-UR-22- UNCLASSIFIED Page 3

Suppose that it was desired to run this simulation with not just the settings given above but over several
other combinations as well. Conventional practice would be to repeatedly copy the input deck and make the
changes by hand. This opens the user up to possibly making typographical errors or simply forgetting to
make a desired change when the deck is much more complex than this example.

PDQ simplifies this task by allowing the input deck to be turned into a template and values to be plugged
in from a data file. To create a template, the text that is to undergo substitution is placed in curly braces
and given a symbol name. Then a table of values using the symbol name is provided in another file named
design.txt. So, converting the above deck to a template would look like this:

Example input deck

sim_name = '{run_ID}’
method = 'old’
variablel = {vl1l}
variable2 = {v2}
variable3 = {v3}

And a design. txt file could look like this.

Table of run values

'run_1ID, vl, v2, v3
triall, 1.0, 7.5, 8.5
trial2, 3.0, 6.0, 9.0
trialX, 1.1, 2.5. 3.6

When PDQ is invoked, three input decks are created, each located in a separate directory with the name give
in the run_ID column. (Note, the exclamation point in that row indicates to PDQ that the row contains
column header names and not values for substitution). Again, for example, the one created in the trialX
directory would look like:

Example input deck

sim_name = 'trialX’
method = ’old’
variablel = 1.1
variable2 = 2.5
variable3 = 3.6

So far, so good, but how does a user actually accomplish this?

PDQ assumes a specific arrangement of directories in order to function. PDQ is run from a directory that is
termed the study directory. Within the study directory there must be two subdirectories, one called runs

YSH

National Nuclear Security Administration

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

UNCLASSIFIED

June 22, 2022

LA-UR-22- UNCLASSIFIED Page 4

and another called setup. Within the setup directory is placed the design.txt file along with the
input deck template file - it can be named anything except for design.txt and a few other reserved
names that will be discussed later.

PDQ is then invoked with the following command issued from within the study directory:
>>> PDQ.py setup

(This assumes that the location of the file PDQ.py can be found in the user’s search path.) When it is
run, this command will create a new directory in the runs directory for each entry in the run_ID column
found in the design.txt file. Within each of these run directories will be found a design.txt file
that contains the parameter settings for that run as well as a copy of the input deck file with all of the
substitutions completed. Any other files found in the setup directory (with a few exceptions noted later)
will be copied into the run directory with substitutions performed in the same manner. If one of these files is
named sbatch.input and contains commands for a SLURM job submission, all of the jobs can be sent
to the batch system with the command:

>>> PDQ.py submit

3 PDQ Reference

3.1 Directories and Files

As mentioned in Section 2, PDQ relies on a certain directory structure in which to operate. It assumes that
it is invoked from a directory (known as the study directory) that has two specific subdirectories; one named
setup and one named runs. PDQ operates on all files in the setup directory (with very few exceptions)
and creates files in new subdirectories of the runs directory. The names of these subdirectories are drawn
from the run_ID column of the design. txt file. The actions taken on those files are determined by the
instructions and symbols contained within the file and other files; if no instructions or symbols are present,
the file is simply copied over to the subdirectory verbatim.

There are four special files that can be placed into the setup directory:

3.1.1 configure.txt

This file is required to be present in the setup directory even if it is empty. It is intended to hold instructions
for PDQ (made using the instructions listed in section 3.2.2) that configure its operation on subsequent
files, and is therefore read in and acted upon first when PDQ operates on files. Unlike other files, it is not
transcribed into a run directory.

NYSE

National Nuclear Security Administration

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

UNCLASSIFIED

June 22, 2022

LA-UR-22- UNCLASSIFIED Page 5

3.1.2 design.txt

Unlike all other files put into the setup directory the design.txt file is not processed by performing
substitutions for its symbols or actions specified by instructions. Instead, it provides names of symbols and
tables of values for substitution into other files. The format of the table is that of comma separated values.
The first column must be labeled ! run_ID. It provides the names for the subdirectories (runs) that will
be created in the runs directory. The exclamation point indicates that this row holds names of symbols
rather than values. Comment lines are allowed in this file. No instructions may be used in this file. The
file is partially transcribed into the run directory; only the symbols and their values for the particular run are
placed in the design. txt file written in the particular run directory.

3.1.3 sbatch.input and restart. input

These files are processed in an identical manner as that of any other file found in the setup directory (except
for the configure.txt and design. txt files). They undergo symbol substitution and any instructions
are operated upon. However, they are special in that they provide the instruction scripts sent to SLURM
when the submit or restart commands are issued, respectively. Also, only the sbatch. input fileis
processed when a setup command is issued (the restart . input file is ignored) and vice versa when
the setrestart command is issued.

3.2 Symbols and Instructions
3.2.1 Symbols

Symbols can be thought of as variables; they designate places in template files where a value substitution
will take place. They are identified in files by simply placing the symbol name within curly braces. A
symbol is built from any combination of alphabetic characters (both upper and lower case), numerical digits
or the characters _ (underscore), - (hyphen), . (period) or ~ (tilde).

Values for symbols can be assigned in two ways. First, symbols are created in the table found in a
design.txt file. The values of the symbols created this way will vary with run_ID and be substituted
accordingly. The second way is through use of an instruction.

Symbol values are initially handled by the PDQ program as strings. PDQ will then attempt to interpret the
symbol value as a float. If it is successful, it will treat it as a float; if not it will next try to interpret it as an
int. If successful, it will treat the value as an int; if not it will treat it as a string. This can create problems:
leading zeroes in strings that can be interpreted as floats or ints will be discarded, possibly thwarting the
symbol’s use in a filename. One exception to this general rule is that symbols that have the string ID in
them will be treated as strings regardless of its content.

YSH

National Nuclear Security Administration

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

UNCLASSIFIED

June 22, 2022

LA-UR-22- UNCLASSIFIED Page 6

Symbols can be nested one inside another; if the symbol v1 is set to cd and the symbol abcd is set to
3.14159, the expression {ab{v1}} will return 3.14159. PDQ makes only one pass through the files it
operates on so symbols must be assigned values prior to their use.

3.2.2 Instructions

Instructions tell PDQ to perform operations. They are distinguished from other portions of the file by being
set in curl braces.

default symbol value

define symbol value

These two instructions allow the assignment of value to symbol. de fine takes precedence over default
meaning that if a symbol is assigned a value first by a define instruction and then the same symbol
is assigned a value by a default instruction, the default instruction will be ignored and the value
assigned by the de f ine instruction is retained. de f ine instructions can supersede default instructions
as well as previous de fine instructions; default instructions can not be superseded by other default
instructions.

Note that either of these instructions causes a message to be left in the output file by the PDQ parser. If this
is a problem, either make sure that the appropriate output comment character is set (see Section 3.2.3) or
issue the instruction in another file such as the config. txt file.

python expression

This instruction allows expression to be evaluated as if it were a piece of python code. This is accomplished
by executing a statement of the form exec value = expression. The primary use for this instruction is
to allow the implementation of mathematical formulas that depend on symbols. For instance, a statement of
the form

variable3 = {python {vl} + {v2}}
would be processed to produce (if the symbols v1 and v2 were set to 1.0 and 7.5):
variable3 = 8.5

In this way, the above statement could be used to replace the v3 symbol in the example of Section 2. Users
need to be careful about variable types for symbols and pay attention to the guidelines presented in Section
3.2.1.

NYSE

National Nuclear Security Administration

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

UNCLASSIFIED

June 22, 2022

LA-UR-22- UNCLASSIFIED Page 7

file filename
This instruction allows the importation of the file given by filename into the current file. The contents of
filename are processed as if they were part of the original file.

field column row filename
This instruction allows values from tables in other files be accessed. The file must be formatted in the same
manner as that in the design.txt file.

format format expression
This instruction causes the value returned by expression to be output according to the python format expres-
sion.

replace strl str2 target
This instruction generates an output where occurrences of str/ are replaced with str2 within target.

set_jobDepend
This instruction adds lines of the form

#SBATCH —--dependency=value
#SBATCH —--job-name=newname

to the output file for the purpose of constructing restart batch scripts (typically these files are named
restart.input. The quantity value is set to be the job identification number for the most recently
submitted job for this simulation (found in the sbatch. jobid file created in the run directory). The
quantity newname is constructed from the original job name with the suffix 'ResX’ attached where *X’ is a
number indicating the current restart number.

set_jobDepend0
This instruction does what set _jobDepend does but adds two additional lines for directing job output:

#SBATCH —-output=newoutfilename
#SBATCH —-—-error=newerrfilename

where newout filename is a file name (with ’'ResX’ suffix) to which data sent by SLURM to standard
output is directed. Similarly, newerrfilename is a file name (with "ResX’ suffix) to which data sent by
SLURM to standard error is directed.

NYSE

National Nuclear Security Administration

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

UNCLASSIFIED

June 22, 2022

LA-UR-22- UNCLASSIFIED Page 8

echo_symbol_table
This instruction causes the internal PDQ symbol table to be written out. This is made available for debugging
purposes.

3.2.3 Pre-defined Symbols

When PDQ is run, regardless of the command issued, a number of symbols are set so as to be available to
the user. For the most part, the values of these symbols should not be changed by the user. They are present
so that the values they hold can be accessed for use in files such as sbatch. input or restart.input.
Exceptions are the symbols source_comment_char and object_comment_char which are provided
to the user so that they can be changed in accordance with the simulation codes that they are using.

source_comment _char and object_comment _char When afile is processed by PDQ, the value of
the symbol source_comment_char is replaced with object _comment _char and the rest of the input
line following source_comment _char is not acted upon but is transcribed. This substitution takes place
after other symbol substitutions are complete so be very careful if the value of source_comment_char
occurs in the value of a symbol. The default value for both of these symbols is a hash, #.

Another important note about comments: Lines that begin with two or more hash characters, ##, will
not be operated on nor transcribed into an output file. This behavior is not affected by the settings of
source_comment_char or object_comment_char. At this time, this behavior is unalterable.

run dir and run root These symbols hold the path to the runs directory and that of the directory
immediately above the runs directory.

setup_dir This symbol holds the path to the setup directory.

study dir, study root and study name These symbols hold the path to the study directory (the
one in which the setup and runs directory are found), the path to the directory immediately above the
study directory, and the name of the study directory.

run_ID, run_ ID list These symbols hold the current run_ID from the design.txt file while
run_ID_1ist holds a list of all of the valid run_IDs that will or have been processed during the exe-
cution of the current command.

jobname Reserved for internal use by PDQ. It is a composite of the study name and the value of the
run_ID symbol.

3.3 The PDQ Command Line

The previous sections document the symbols and instructions that are part of the contents of the files that
PDQ acts upon. They are required to be issued from the study directory (the directory in which the runs

YSH

National Nuclear Security Administration

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

UNCLASSIFIED

June 22, 2022

LA-UR-22- UNCLASSIFIED Page 9

and setup directories are found). The command line commands are used to initiate the file processing and
job submission. The format of the commands are:

PDQ.py command [options] [runlist]

Options exist for only two of the commands setup and ki11; they will be detailed with those commands.
For all of the commands, the runlist is a list of the names of runs as given in the design. txt file that are
to be operated upon. If no runlist is given, all of the names in the run_ID column in the design. txt file
are entered into the runlist.

33.1 setup

This command causes new directories for each entry in the runlist to be created within the runs directory. If
a directory for an entry in the run list already exists, an error occurs and execution is terminated. After the di-
rectories are made, the files in the setup directory are acted upon, first the file config. txt, then the file
design.txt and then all other files in alphabetic order with the exception that the file restart . input
is ignored.

There are two options available to this command. ——rm will cause any run directories corresponding to
names in the runlist to be removed and their contents deleted prior to creation of new directories. ——ow
will allow execution to proceed even if a directory corresponding to an entry in the runlist is present but will
overwrite any files in that directory as needed to complete the transcription process.

3.3.2 submit

Issuance of this command results in the submission of an sbatch. input file to the SLURM squeue
command for each entry in the runlist, thereby performing a job submission for each job in the runlist. The
job name and numerical ID are stored in a file named sbatch. jobid for use by other PDQ commands.

3.3.3 setrestart

This command performs a transcription of the file restart . input after processing first the configure.txt
and then the design. txt file. This action is performed for each entry in the runlist. All other files in the
setup directory are ignored.

NYSE

National Nuclear Security Administration

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

UNCLASSIFIED

June 22, 2022

UNCLASSIFIED Page 10

3.34 restart

Issuance of this command results in the submission of a restart . input file to the SLURM squeue
command for each entry in the runlist, thereby performing a restart job submission for each job in the
runlist. The job name and numerical ID are stored in a file named sbatch. jobid for use by other PDQ
commands.

3.3.5 kill

This command causes a SLURM scancel command to be issued for each job (running or pending) for
each entry in the runlist. If the ——s1i option is issued, a ——signal=23 option is added to the scancel
command.

3.3.6 help

This command displays a short, not-particularly-helpful message (especially if you are already reading this
document) and terminates execution of the code. The same behavior can be triggered witha ~h ora ——help
option on the command line regardless of what command is present.

4 Manual Revision History

4.1 Manual Version 1 (08/14/2020)

e Initial release for code version 1.12.

4.2 Manual Version 2 (06/22/2022)

e Release for code version 1.20

S Code Revision History

5.1 Code Version 1.00 (05/19/2020)

e Initial release.

NYSE

National Nuclear Security Administration

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

UNCLASSIFIED

June 22, 2022

UNCLASSIFIED Page 1

5.2 Code Version 1.10 (06/15/2020)

5.3

54

5.5

5.6

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Renamed some of the python source files so that PDQ . py is the one called by users.
Removed ——de debug option.

Added welcome message, pared down help message.

Corrected copyright holder to Triad National Security.

Fixed bug with ——s1i flag.

Eliminated options for alternate specifications for some files.

Changed command line option prefix from single dash to double dash.

Changed headers in design.txt files written to run directories.

Code Version 1.11 (07/29/2020)

Fixed typographic error in job_status_run function in PDQstudy . py.

Fixed typographic error in get_table function in PDQtables.py

Overhauled get_table function in PDQtables.py to eliminate all vestigial references to different
table types.

Eliminated functions id_header_line, str_table and write_table as well as global variables table_types
and status_keys from PDQtables . py because they are no longer used.

Removed exception raising from PDQtables.py and PDQparse. py; replace it with a print state-
ment and sys.exit() call.

Removed ’abbreviation’ tests from make_jobname function in PDQstudy . py.

Code Version 1.12 (08/14/2020)

Changed overlooked XVS references to PDQ in error messages.

Added python version information to welcome message.

Code Version 1.13 (03/22/2022)

Added hyphen and period as acceptable characters for use in runIDs; prohibit hyphen and period from
being the first character and prohibit hyphen from being the last character.

Code Version 1.20 (06/22/2022)

Works with either Python 2 or Python 3

YSH

National Nuclear Security Administration

UNCLASSIFIED

