

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government

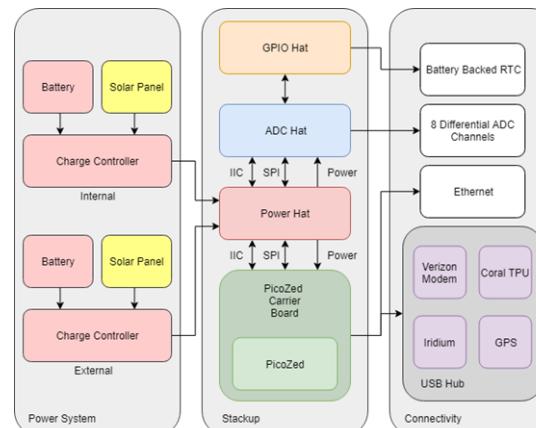
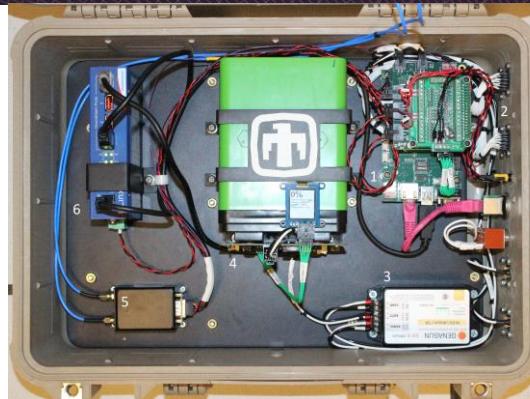
Unattended Ground Sensing and In-Situ Processing of Geophysical Data

William O'Rourke, Tyler Morrow, Anirudh Patel, Matthew DeKoning, Brian Evans

O3.3-153

Sandia
National
Laboratories

ORAL
PRESENTATION



- In some cases, it may not be feasible and/or desired to install a permanent geophysical monitoring station.
- Unattended Ground Sensors(UGS) can help fill the gap in these instances.
- UGS deployments present challenges that permanent monitoring sites do not have.
 - Typically, no access to internet or other means to send data
 - Typically, no access to electrical power
- Sandia has a long history of developing custom UGS systems for other applications.

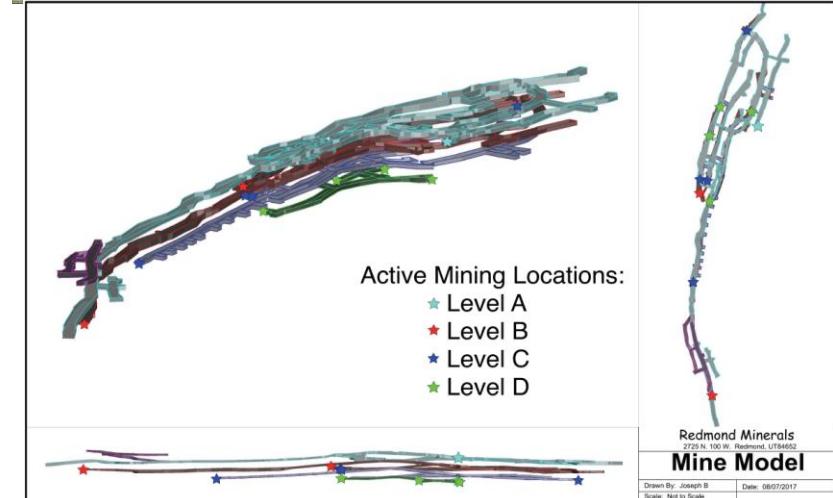
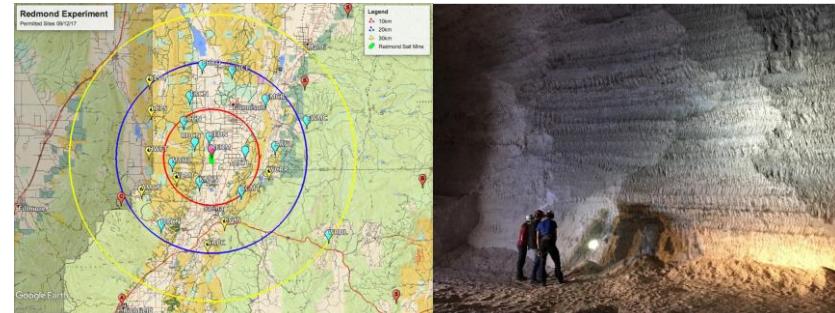
- The goal of our work was to develop a real-time sensing system with data collection for on-board processing of seismic/acoustic data. At a minimum, the system must provide the follow capabilities:
 - Operate autonomously once deployed without the need for servicing
 - Operate continuously on battery and solar power only
 - Provide a communication path that allows for command and control along with data-exfil capability
 - Provide a processing capability to discriminate between events of interest and clutter/noise in the local area
 - Small Size Weight and Power (SWaP) constraints to allow for transport by foot to deployment locations
- This system will not serve as a final solution but rather a test system that allows for a concept to field capability.
 - Algorithms can be rapidly deployed onto the hardware and tested in the field

- Sandia has developed a sensor platform that allows for rapid integration of sensors and software for rapid prototyping.
 - A fieldable hardware and software platform for rapidly deploying novel algorithms to detect, discriminate, and classify a wide range of targets in a testbed
 - Hardware is largely commercial with custom Sandia designs as needed
 - Variety of sensor types including acoustic, seismic and infrasound
 - Comms: Cellular, Iridium, Wi-Fi, other

- Integrated Sensor Platform (ISP)
 - Designed for rapid prototyping of algorithms from a variety of sensors
- Currently uses a Pico-Zed Processor
 - Early version of this system utilized the Raspberry Pi
 - FPGA with Arm 9 SOC
- Coral TensorFlow Processing Unit (TPU)
 - Processor optimized to run TensorFlow machine learning models
- Linux OS (Debian)
 - Allows for easy deployment of MatLab algorithms via Simulink, Python, etc.
 - 8 Synchronized Differential ADC channels allow multiple sensors
 - Tested up to 16ksps per channel
 - Iridium SBD communication enables remote alerts and data transfer
 - Verizon cellular modem
- Power system and solar design
 - Indefinite operation in most environments

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO PrepCom.

Pres. No.:

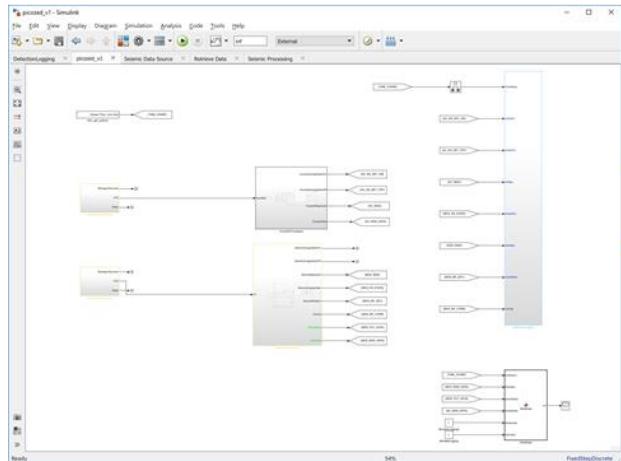


03.3-153

Sandia National Labs

- Sandia has had an active experiment in southern Utah since 2017
- The experiment has focused on seismic monitoring of activities at the Redmond Salt Mine
 - Blast logs from 7 months received from mine engineer
 - 300+ blasts with time, mine level and drift ground truth data
 - Blasts are on the order of 1000 pounds TNT

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO PrepCom.

- Currently deployed ISP at Redmond Salt Mine
 - Running since July 15th, 2020
 - Communications:
 - Via Cellular we can update code and pull data
 - Via Iridium SatCom we can receive State-of-Health messages from the ISP via email
 - Processing:
 - Currently running STA/LTA detector and saving off data
 - STA/LTA detections will then be processed by a 2D-CNN Classifier (current work)
 - Trillium Compact Seismometer
 - Running a “shadow” system locally at Sandia for testing of code prior to deployment on fielded system

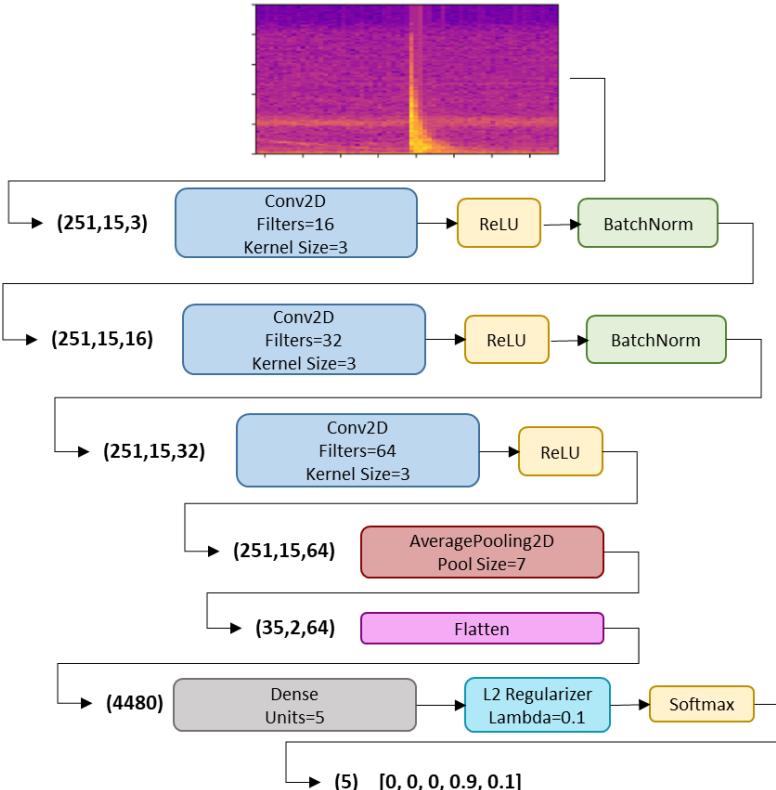



```
Tasks: 77 total, 1 running, 44 sleeping, 0 stopped, 0 zombie
%CPU(s): 0.6 us, 0.4 sy, 0.0 ni, 98.7 id, 0.2 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 1029296 total, 842092 free, 87532 used, 99672 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 905400 avail Mem

PID USER PR NI VIRT RES SHR %CPU %MEM TIME+ COMMAND
2053 root 5 0 20852 1128 1008 5 39.3 0.1 0:02.21 picocore_v1+
1433 root -51 0 0 0 0 0 0.7 0.0 0:06.62 irq/54-dou+
2096 root 20 0 5388 2304 1888 R 0.7 0.2 0:00.07 top
23 root 20 0 0 0 0 0 0.3 0.0 0:05.34 kworker/1:1+
1 root 20 0 7916 4676 3716 S 0.0 0.5 0:02.10 systemd
2 root 20 0 0 0 0 0 0.0 0.0 0:00.00 kthread
3 root 0 -20 0 0 0 0 0.1 0.0 0:00.00 rCU_gp
4 root 0 -20 0 0 0 0 0.0 0.0 0:00.00 rCU_par_gp
5 root 20 0 0 0 0 0 0.1 0.0 0:00.23 kworker/0:1+
8 root 0 -20 0 0 0 0 0.1 0.0 0:00.00 mm_percpu+
9 root 20 0 0 0 0 0 0.0 0.0 0:00.01 ksoftirqd/0
10 root 20 0 0 0 0 0 0.0 0.0 0:00.07 rCU_prempt
11 root 20 0 0 0 0 0 0.0 0.0 0:00.00 rCU_sched
12 root 20 0 0 0 0 0 0.0 0.0 0:00.00 rCU_nocb
13 root 5 0 0 0 0 0 0.0 0.0 0:00.00 migration/0
14 root 20 0 0 0 0 0 0.0 0.0 0:00.00 cpuhp/0
15 root 20 0 0 0 0 0 0.0 0.0 0:00.00 cpuhp/1

root@WeaselBoard:/home/root#
```

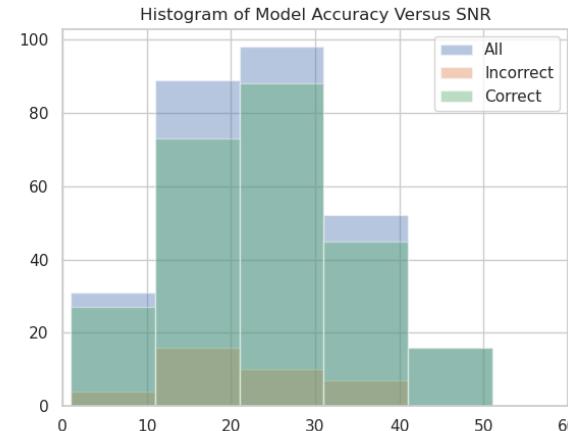
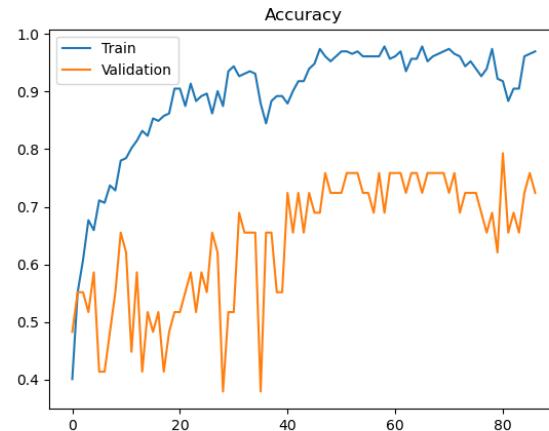
- Algorithms can be developed in MatLab Simulink then C++ code can be auto-generated for execution on the ISP.
- The ISP is running Debian Linux OS so it also supports Python.



C++ Code Generation

MatLab Simulink model and code used to generate C++ Code to run on sensor platform

- Goal: Develop a ML algorithm to run on the ISP as an exemplar for proof-of-concept
 - Use ground truth catalog data to develop a classifier of events by mine location (level, drift, etc.)
 - Probability of detection (Pd) goal 70%
 - Develop algorithm on a workstation then move to the ISP
 - Using Python and Tensor Flow 2.0
 - Initially focus on implementation of inference model then eventually look into training on the ISP

- 2-D Convolutional Neural Network
- Adam Optimizer
 - $\beta_1 = 0.9$
 - $\beta_2 = 0.999$
 - $LR = 0.001$
- Categorical Cross-Entropy Loss
- Minibatch size of 32
- 500 Epochs with Early Stopping

	Loss	Accuracy
Train	0.22	0.95
Validation	0.87	0.76

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO PrepCom.

ML RESULTS

- Train Accuracy: 95.3%; Validation Accuracy: 75.9%
- High amount of overfitting motivates further regularization
 - As we are focused on inference, we have accepted the overfitting for now.
- As expected, signals with lower SNR are more difficult to classify

- We have developed a custom UGS capable of remote and autonomous operation.
- We have demonstrated a semi-complex ML model running on the system.
- As expected, we saw a reduction in performance when we quantized the model to run on the Coral TPU. The result was our validation accuracy dropped to 52%.

- Short-term
 - Event association across multiple spatially separated (5-10s of km) units
 - Explore ways to overcome the drop in performance due to quantization on the Coral TPU
- Long-term
 - Identify one or more candidate algorithms with real-world use for implementation on the ISP
 - i.e., earthquake vs. explosion
 - Attempt to train the models on the ISP