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3. Executive Summary  

How can probabilistic solar forecasts lower costs and improve reliability for independent 
system operator (ISO) markets? We tackle this question in three steps (Fig. 1).  First, we 
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enhance an existing solar forecasting system to provide well-calibrated hours-ahead 
probabilistic forecasts. We then relate the degree of uncertainty in those forecasts to error 
distributions for net load ramps for the California ISO (CAISO) using statistical and ma-
chine learning methods. Projected net load errors conditioned on solar uncertainty are 
translated into flexible ramp requirements that therefore reflect real-time meteorological 
and solar conditions, improving on typical ISO procedures. Finally, a multi-period look-
ahead production cost model quantifies how conditional ramp requirements can a) de-
crease operating costs by lowering requirements compared to often conservative uncon-
ditional methods, and b) reduce generation scarcity events and consequently improve 
reliability by increasing flexibility requirements at times when unconditional forecast-
based requirements understate actual ramp uncertainty. 
 

 
Fig. 1.  Organization of analysis of the cost savings and reliability improvements result-

ing from use of probabilistic solar forecasts to define ramp product requirements 
 
In addition to the products just described (quantification of solar uncertainty, its translation 
into requirements for ramp capability product, and quantification of the benefits of more 
accurate ramp requirements), this project also developed a visualization system that 
alerts system operators of ramp and uncertainty conditions within the network based on 
solar forecasts.  The system is called Resource Forecast and Ramp Visualization for Sit-
uational Awareness (RaVIS). 

These four products represent significant advances in the state-of-the-art of probabilistic 
solar forecasting, development of weather-informed reserve requirements, production 
costing methods for estimating the benefits of more accurate reserve requirements, and 
visualization of system status, respectively.  Yet the products are also practical and can 
be immediately implemented, potentially enabling system operators to save millions of 
dollars in ramp product procurement costs per year.  
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5. Background  
5.1  Task 1 Background: Solar Forecasting 

The field of big data-driven probabilistic solar forecasting is evolving fast, driven by the 
rapid growth in cleaner energy sources, adoption of new decision-making processes by 
grid operators, and forecasting advances [1].  Solar forecasting research can be divided 
into (i) improved physics in numerical weather prediction models, (ii) developing non-
physical (data-driven) forecasting approaches leveraging statistics, machine-learning and 
AI, and (iii) fusing physical and data-driven approaches [2]. 

What models may provide the best skills is a very complex question and depends on 
multiple factors including forecast horizons, forecast locations, and weather situations. In 
general, physics-based models perform well between 1-10 days and often cover large 
ranges, while data-driven approaches can have competitive or superior skills in short-
term and longer-term forecasts but are often limited to point locations. The fundamental 
challenge with physics-driven approaches is not only that they are computationally very 
intensive as they require solving the full Navier-Stokes Equations on a “grid”, but perhaps 
more fundamentally that the physics is simply too complex and not fully understood, es-
pecially as it relates to turbulence, cloud formation and dissipation mechanisms. On the 
other hand, the trouble with purely data-driven approaches is that they not only perform 
poorly if there is not sufficient clean “training” data available but on a more fundamental 
level, they often fail in extreme weather situations, where there is no prior in the training 
data while at the same time good forecasting skill is most crucial.   

Advances of physics-based numerical weather predictions have been described and 
summarized by Bauer et al [3].  An example of improving the forecast skill for solar radi-
ation from a physics-based model is the development of WRF-Solar, a customization of 
the Weather Research and Forecasting (WRF) Model for solar forecasting applications. 
The customization included improved representation of aerosol–radiation feedback, the 
incorporation of cloud–aerosol interactions, and improved cloud–radiation feedback [4]. 

There is no shortage of research on data-driven methods, which include many regression, 
machine learning (ML), and AI models. Overviews can be found in [5-7]   

It became evident from our review of prior work that we not only must integrate physical 
and data-driven approaches but also must make data-driven approaches more robust. 
Hence, more scalable approaches that leverage big data technologies are required. With 
such technologies models will have more training data, enhancing their robustness. Also, 
tens to hundreds of different models can be leveraged for model blending and selection.  

Towards that end, the approach in this research project is unique and ahead of its time 
by pioneering the limits of data-intensive solar forecasting approaches. While scaling 
such approaches to larger and more complex situations remains a challenge, we have 
begun to make significant contributions by applying big geospatial data technologies to 
probabilistic solar energy forecasting, which for example enabled the scalable integration 
of multiple models and exploitation of massive data sets such as GOES-R.   

5.2  Task 2 Background: Informing Reserve Requirements with Forecasts 

The increased contributions of uncertain and variable resources has prompted changes 
in power market design and operator practices [8]. Operators assess solutions that help 



DE-EE0008125  
The Johns Hopkins University 

 

4 
 

manage the uncertainty and variability of load and renewable generation. Among these 
are reserve products, especially the novel ramp product, which is an important feature in 
several U.S. power markets (MISO [9], CAISO [10], Southwest Power Pool [11]) to miti-
gate rapid net load changes caused by increased penetration of variable resources. 

A key step in the market scheduling process is to define ramping product requirements. 
This involves trade-offs between market efficiency and system reliability. Too low or too 
high requirements can pose a risk to system reliability or system costs, respectively.  

Historically, studies that define requirements for reserves and co-optimize energy and 
ancillary services can be divided into two categories based on how the requirements are 
determined: endogenous and exogenous [12,13]. Endogenous methods usually model 
the renewable and load uncertainties explicitly using a variety of techniques, such as sto-
chastic optimization, robust optimization, and chance constraints, and simultaneously op-
timize where, how much, and when reserves are most economically provided to meet 
possible realizations of net load. However, the computational burden of endogenous 
methods is at least one of the reasons why no U.S. power system operators have adopted 
such a method. Instead, in practice, power system operators rely on exogenous methods. 
The exogenous methods estimate system-level ancillary service requirements ex ante 
with lead times specific to particular markets. Traditionally, system operators use deter-
ministic methods, where certain percentages of peak load are used as reserve margins. 
This method, despite its simplicity, usually fails to satisfy system reliability standards effi-
ciently owing to growing uncertainties caused by increasing renewable penetration.  

Consequently, probabilistic methods [14] are sometimes adopted to estimate ancillary 
service needs based on the uncertainty levels of net load. Probabilistic forecasts explicitly 
account for uncertainty information, usually in the form of parametric probability distribu-
tions, or non-parametric forms such as quantiles, uncertainty intervals, and kernel density 
estimates. In the last decade, the value of probabilistic forecasts became increasingly 
recognized in power system applications [5]. For example, in [16], probabilistic wind and 
load forecasts were used to determine operating reserve requirements based on trade-
offs between reliability and procurement costs. In a SF-II project supported by SETO, Ref.  
[17] also used probabilistic forecasts as input for generation of scenarios that were later 
used to determine operating reserve requirements. Refs. [18], [19] showed how to reduce 
the regulation requirements by employing probabilistic net load forecasts, which were de-
rived from probability distributions of multiple net load components by convolution. 

Although probabilistic forecasting is adopted in some markets, it is used primarily to im-
prove situational awareness and rarely plays any important role in the decision-making 
process. Our work in this project represents a practical method that is easily implementa-
ble and extensible by any power market operators. This section features a particular 
method for relating solar probabilistic forecasts to reserve requirements, the k-nearest 
neighbors (kNN) method, which can also be used to define requirements for other market 
products that depend on historical data, such as regulation and non-spinning reserves. 

5.3  Task 3 Background: Existing Visualization Capabilities & Forecast Integration 

Control centers typically host several screens for visualizing network situational aware-
ness, such as network one-line diagrams, circuit breaker/switch status, and graphs sum-
marizing available reserves. Information about impending high-impact contingencies, as 
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well as their impact on transmission line overloads, and in some cases system voltage 
and transient stability are displayed [20]. The idea of situational awareness in the form of 
real-time visualization, updates on event alerts, and plausible control locations/parame-
ters is not new; however, enhancements are desirable because there are higher penetra-
tion levels of variable renewable generation and associated uncertainties.  

With increasing uncertainty and emergent dynamic events, the awareness that is conven-
tionally reported at aggregated levels is insufficient. The following capabilities are needed: 

 Innovative ways to integrate variable renewable forecast data—including at higher 
spatial resolutions and for distributed site-level resources—apart from conventional 
aggregated data. Given the role of distributed variable renewable resources to pro-
vide system flexibility in the future, individual resource’s forecasts will become key 
to improved visualization and observability to the system operators. 

 Probabilistic forecast data integration that quantifies uncertainties related to variable 
renewables, which will be key to assessing risk associated with system dispatch. 

 Timely alerts of excessive ramping events for net load and for each component of 
the net load—namely, different variable renewable resources. 

 Zonal-, regional-, and even nodal-level generation flexibility information, which will 
ensure the timely deliverability of flexible resources in to offset unanticipated re-
source or net load ramps and to ensure reliability and resilience. 

This section discusses some salient work performed in this space during the last dec-
ade—specifically, visualization capabilities that were built in response to the drastic in-
crease in wind and solar generation penetration across the world, as reported in [21,22]. 

 

Fig. 2. BPA prototype of forecast display in the control center [21] 

The simplest control center visualization tool for variable renewable forecasts is a time 
series of an aggregated average forecast (typically at 5 or 60 min intervals), bounded by 
upper and lower limits [21], as well as past observed generation. Fig. 2 [21, Fig. 57] shows 
an example from the Bonneville Power Administration. Worst-case scenarios define 
bounds in most cases, such as power loss from icing.   

Some operators like to use these data to gain further information on the needed reserves, 
as shown in Fig. 3 from the Organization of the Nordic Transmission System Operators 
[21]. This is an example of using the variable renewable generation forecasts to estimate 
the needed reserves; it displays the available reserves across various regions.  
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Fig. 4 [21] presents another 
prototype decision support 
tool, developed by the Al-
berta Electric System Oper-
ator for their generation dis-
patch operations. This visu-
alization and decision sup-
port tool facilitated the inte-
gration of variable renewa-
ble generation forecasts 
(specifically wind power in 
the Alberta, Canada, region) 
and system load forecasts 
into system operations. The 
visualization screen shows 
forecasts and available re-
serves (capacity & ramp) in 
the 60-minute time interval.   

The illustrations shown so 
far include aggregated dis-
plays of forecasts and 
needed reserves. Fig. 5 [21, 
Fig. 78] shows regional 
(heat map) wind speed fore-
casts and expected ramp 
events and alerts in the 
Texas system. Fig. 6 (from 
[21]) shows another exam-
ple from RTE France, where 
site-level wind power fore-
casts are related to real-
time power flows on the 
transmission system and re-
sulting bottlenecks. 

 

Fig. 5. Electric Reliability Council of Texas large ramp alert: (L) wind speed, (Center) 
wind speed change (hourly), (R) radar reflectivity [21, Fig.  78] 

 

Fig. 4. Alberta Electric System Operator display on net 
load ramp [21] 

 

Fig. 3. Nordic Transmission System Operators reserve 
status situational awareness [21] 
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Most previous efforts 
used deterministic 
forecasts, and there 
were facilities to in-
clude additional “what 
if” scenarios and the 
consequent events 
and alerts. Fig. 7 
shows a collaborative 
effort from the Pacific 
Northwest National 
Laboratory (PNNL) 
and CAISO to inte-
grate probabilistic 
forecasts specifically 
to understand if there 
was enough real-time 
ramping capability in 
CAISO [23]. Fig. 7 
shows the available 

generation capacity (the gray area) overlaid with the probabilistic net load forecasts, indi-
cating the points in time where generation availability might not be enough to meet the 
net load changes. Fig. 7 shows—apart from the available generation and probabilistic 
forecast—the up/down ramping capability that is needed from the generation.  

5.4 Task 4 Background: System Simulation to Assess Cost and Reliability Im-
pacts of Improved Reserve Requirements Based on Solar Forecasts 

Past projects have demonstrated the ability of ramp products to manage uncertainty and 
variability. Ref. [24] showed that ramping constraints can help operators meet expected 
variability; however, ramping constraints might not be cost-efficient when the deployment 
costs of ramping are not considered in the objective function that the market software 
optimizes. Refs. [25,26] demonstrated how ramping constraints can assist system oper-
ators in managing uncertainty, but ramping constraints might be less cost-efficient than 
an “ideal” stochastic unit commitment method. Ref. [27] discussed how the occurrence of 
variability and uncertainty can lead to energy imbalances and undesirable outcomes, 
such as power balance violations, real-time price spikes reflecting administrative penal-
ties for violating constraints, leaning on regulation or interconnection, and out-of-market 
corrections. That paper concluded that a ramping constraint and product are more prac-
tical for managing uncertainty and variability than complex, time-consuming models and 
market formulations that capture stochastic processes and multiple possible futures. 

However, the economic efficiency of ramping products depends on effective estimates of 
ramping requirements [25,28]. In practice, ISOs use samples of past forecast errors and 
calendar information, such as hour and type of day, in order to estimate a parametric or 
empirical probability distribution function (PDF) of net load (load minus renewable gener-
ation) [9,10]. Then, operators estimate either moments of parametric distributions [29] or 
percentiles [30] that they later use to determine ramping requirements. As systems 

 

Fig. 6. RTE France main operator display for regional fore-
casts and congestion [21] 



DE-EE0008125  
The Johns Hopkins University 

 

8 
 

change, ISOs assess the impact of additional factors on the PDF of net load. In particular, 
with the increase in variable energy resources (i.e., solar and wind generators), uncer-
tainty related to forecasted generation by those resources might also increase. Weather 
conditions affect uncertainty related to forecasted generation by variable energy re-
sources [31]. Therefore, state-of-the-art research is investigating whether real-time 
weather forecasts and measurements can be leveraged to estimate the net load PDF and 
associated balancing needs with increased accuracy. 

  

   

   

Fig. 7. CAISO ramping feasibility visualization developed by PNNL: (a) net load ramp, 
(b) load-following capacity requirements and availability, and (c) load-following ramping 

requirements [23, Used with permission] 

For instance, CAISO is currently exploring the impact of weather variables on historical 
uncertainty of net load. Preliminary quantile regression analysis suggests that generation 
forecasts for variable energy resources and potentially temperature are statistically sig-
nificant for the historical uncertainty of net load [32]. Ref. [33] used forecasts by numerical 

(a)    

(b)    

(c)    
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weather prediction models to develop probabilistic forecasts of net load and concluded 
that weather- informed probabilistic forecasts of net load can yield different (on average 
lower) balancing and regulation requirements than status-quo methods. Ref. [34] reached 
a similar conclusion by integrating forecasts of renewables as well as weather (irradiance, 
wind speed, temperature) into a dynamic reserves sizing methodology in Belgium. 

The effectiveness of such new sizing methods for balancing products [33,34] has been 
assessed in two ways. First, researchers record how frequently estimated requirements 
exceed the actual needs during a historical period, thereby estimating the reliability level 
of the proposed methods [33]. Second, researchers [33,34] compare the estimated re-
quirements to the status quo requirements. They hypothesize that higher (than the status 
quo) requirements will improve system reliability, whereas lower requirements will reduce 
costs; however, there are no reports in the literature of estimates of the value of alterna-
tive balancing product sizing methods in terms of quantitative reliability and economic 
performance. Therefore, the validity of the hypothesis is yet to be tested. 
 
6. Project Objectives 

This project’s objective is to assess the impacts of adopting improved flexible ramp prod-
uct (FRP) requirements on power market operation from both economic and reliability 
perspectives. FRP is the procurement and possible deployment of spare capacity in op-
erating markets in order to accommodate forecast or unpredicted changes, or “ramps,” in 
net load (gross power demand minus wind and solar generation). This product is an in-
creasingly important tool for managing net load variability and uncertainty in day-ahead 
and/or real-time markets run by three major ISOs (CAISO, MISO, and SPP).  Solar gen-
eration is large and growing contributor to this variability and uncertainty, and its effective 
management will be critical to economic and reliable integration of the large amounts of 
solar energy that is anticipated to come on-line in coming decades. Achieving the nation’s 
energy transition goals depends critically on the success of this integration. 

Since net load variability and uncertainty depends strongly on weather conditions and 
instantaneous amounts of wind and solar output, so too will the amount of FRP needed 
to manage them. Too much FRP, and the economic efficiency of the grid will degrade 
because of unnecessary procurement costs are incurred.  Too little FRP, and system 
reliability will be at risk or excessive costs will be incurred due to the need to quickly start 
up high-cost generators.  Recent developments in forecasting tools that enable operators 
to characterize uncertainty in the components of net load—gross load, solar, and wind—
have the potential to help define FRP needs more accurately since uncertainty in those 
components likely contribute significantly to uncertainty in net load ramps.   

The objective of this project is to test this hypothesis by developing a state-of-the-art solar 
probabilistic forecasting tool (Task 1); developing and testing statistical and machine 
learning models that relate solar prediction width forecasts (a measure of solar uncer-
tainty) to net load uncertainty, based on ISO data (Task 2);  creation of visualization tools 
that communicate ramp and uncertainty forecasts to operators (Task 3); and production 
simulation analyses for an ISO to quantify the reliability and operating cost benefits of 
more accurate forecasts of FRP needs (Task 4).  Detailed goals by task are summarized 
next.  These tasks have been conducted in close consultation with two ISOs (MISO and 
CAISO), and have yielded practical and demonstrably beneficial tools for forecasting solar 
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uncertainty and defining FRP requirements.  In particular, as described later in this final 
report, the tools have met the forecast improvement and cost savings targets set forth in 
the project’s milestones and go/no-go decisions. 

Task 1 Goal: Advanced big data-driven probabilistic solar forecasting platform. 
Task 1 of this project includes subtasks to enhance the previous deterministic IBM Watt-
Sun forecasting system to provide high fidelity and accurate probabilistic forecasts for the 
CAISO and MISO balancing areas. Because the Watt-Sun technology is based on ma-
chine-learned blending of multiple forecast models, it works best with a large amount of 
historical data (TB per day). Towards that end, the team integrated the Watt-Sun fore-
casting system into IBM’s PAIRS big data technology, based on a Hadoop/Hbase cluster, 
allowing distributed and scalable processing [35,36].  PAIRS provides a generic and 
highly scalable platform to train Watt-Sun on hundreds of terabytes of big data from many 
forecasting and historical sources. Based on PAIRS big data-based error characteriza-
tion, multi-expert machine learning methods were to be employed to enhance Watt-Sun’s 
model blending, and to generate probabilistic solar power forecasts. This allows system-
atic and thorough characterizing of forecast errors of current models as a function of fore-
cast horizon, weather situation and locations, and to learn a blended “super” model for 
many sites and regions in the respective ISOs. The resulting probabilistic forecasts have 
also been shared in mutually agreed upon formats to the validation team in Topic Area 1. 

There are four innovations we planned to add to the original Watt-Sun forecasting system 
from Solar Forecasting I. 

Innovation 1. The big data bus of the initial Watt-Sun system reached its limitation in terms 
of scalability and how much data can be injected. The reason is that the data size relevant 
to solar forecasting has been exploding, for example: 

 Global Forecast System (GFS): 140GB/day, increasing to 1.5 TB/day 
 Global Ensemble Forecast System: 302GB/day, increasing to 3 TB/day 
 GOES: 80GB/day for CONUS, increasing to 900 GB/day 

Thus, the Watt-Sun data management system has been replaced by PAIRS (Physical 
Analytics Integrated Data Repository and Services), a scalable platform for geospatial-
temporal data. PAIRS improved speed, maturity, and data processing throughput more 
than 50-fold compared to the previous system. It enables “automatic” fusing of satellite, 
weather and sensor data; support tens of PB; and can inject data much faster than the 
current system (eventually up to hundreds of TB/day). Crucially, PAIRS can distribute 
forecast data in a scalable matter.  PAIRS supports a state-of-art REST API and SDK, 
enabling project partners and others to build applications on top of the system. In addition, 
PAIRS supports WMS mapping services as inputs to visualization applications. 

Innovation 2. This goal was to develop a new short-term solar forecasting module, lever-
aging initial work from Solar Forecasting I, where we enhanced “convection-based” fore-
casting-based GOES satellite observations with a 2D Navier-Stokes equation. This mod-
ule needed to be more thoroughly tested and then put into operation for the continental 
US. We leveraged the new GOES-R data in this task; that data has significantly better 
spatial, temporal, and spectral resolution than the previous GOES (-13/-14) satellite data. 

Innovation 3. A powerful innovation that resulted from the Solar Forecasting I project is 



DE-EE0008125  
The Johns Hopkins University 

 

11 
 

situation categorization for the machine-learning. This allowed separate modelling of spe-
cific weather situations, thereby enhancing overall accuracy. In Solar Forecasting I, the 
situations were identified using FANOVA (functional analysis of variance), which has its 
limitations because in essence it only identifies categories based on “point” validation 
data (such as from a single solar plant). A goal of Task 1 of this project was to extend this 
work by using deep learning techniques, which can identify situations based on full im-
ages or raster observations, such as from the GOES satellite. 

Innovation 4. A primary goal of Task 1 of this project was to extend Watt-Sun’s capabilities 
to include probabilistic estimates for irradiance for points and regions. 

Task 2 Goal: Coordinated reserves procurement in UC/ED with probabilistic fore-
casts. The goal of this task’s activities was to develop the modeling framework for usinig 
the probabilistic solar power forecasts to estimate requirements for flexible ramping prod-
uct and dynamic regulation reserves in the ISO unit commitment and energy dispatch 
processes. Short-term (0-6 hr) as well as day-ahead forecasts were to be used to esti-
mate reserves requirements for day-ahead and real-time markets. The amounts and reli-
ability of requirements were then to be compared with baseline ISO methods. 

Task 3 Goal: Visualization of probabilistic ramp forecasts for situational aware-
ness. This task had the goal of developing visualization tools for presenting the probabil-
istic solar and net-load ramp forecasts to ISO control room operators, and update the 
visualization, as new forecasts become available. This task also involved performance of 
simulations to mimic real-time control center decisions to evaluate feasibility and impacts 
of advanced visualization on operational decisions. The activities included working with 
the ISOs, demonstrating early prototypes, identifying ISO-tailored functionalities, tool 
specifications and software requirements. In addition, it encompassed developing the 
back-end probabilistic ramp forecast database for front-end visualizations. 

Task 4: Co-ordination with ISO for testing probabilistic solar forecast integration.   
This task began with efforts to understand the requirements and process of integrating 
probabilistic solar power forecasts-based products into ISO operations and control center 
visualizations. Then Level-2 integration testing was performed with ISO collaboration. The 
task focused on working closely with the ISO partners’ forecasting, market operations, 
and control center teams throughout the course of the project to enable effective integra-
tion of forecasting products into their development environment and assess the cost-ben-
efits. The impact of those products integration on system economics and reliability was 
first assessed using IEEE test systems and later with CAISO scale system models. Test-
ing in BP2 took place on ISO-scale systems at NREL; it was also intended that BP3 test-
ing would be conducted at the CAISO using off-line ISO testing software and databases, 
but COVID restrictions shifted the location of those simulations to NREL’s high perfor-
mance computing facility. This task also assessed the barriers for market adoption and 
develop mitigation or promotional strategies for market transformation. 

Table 1 on the next two pages summarizes the milestones associated with each task, 
and the status of each milestone.  Please note that Tasks 1,5, and 9 are the activities of 
Task 1 (forecasting system) occurring in BP1, BP2, and BP3, respectively.  Similarly, 
Tasks 2, 6, and 10 are the year-by-year activities of Task 2, and so forth.  
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Table 1.  Project Tasks, Milestone Completion Dates, and Milestone Status 
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Table 1.  Project Tasks, Milestone Completion Dates, and Milestone Status (Cont.) 

 
 

7.  Project Results and Discussion 

Space limitations prevent us from present full descriptions of all results. The reader is 
referred to the 18 Milestone reports described in Table 1, above. The file name of each 
report is in the form “8215_QQQ_Johns Hopkins_MilestoneNNN_DATE,” where QQQ is 
the project quarter, NNN is the milestone number, and DATE is the date of preparation. 

7.1  Task 1: Developing Probabilistic Solar Forecasting using Watt-Sun/PAIRS 

7.1.1.  Year 1 Milestones: Probabilistic Watt-Sun 1.0.  The original IBM Watt-Sun solar 
forecasting system is based on situation-dependent error analysis of multiple forecast 
models and subsequent multi-expert machine learning to blend such models to obtain the 
best possible forecast. This system was enhanced and integrated with a highly scalable 
big data platform, the IBM PAIRS Geoscope [37,38] (Fig. 8). PAIRS provides multiple 
benefits including its ability to scale, process literally unlimited data sizes and therefore 
to take advantage of truly big data to build more robust forecast models. PAIRS also 
allows disseminating the forecasts effectively, combining forecast data with other geo-
spatial information and providing improved integration capabilities with other decision 

Met, see Sect. 7.2.2. Day-ahead regu-
lation method did not improve on ISO 
method; but real-time method lowered 
requirements & maintained reliability 
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support systems such as the RAVIS (Resource Forecast and Ramp Visualization for Sit-
uational Awareness) visualization system discussed below. 

Subtask 1.1.1 provided, 
as a first demonstra-
tion, probabilistic fore-
casts (with a mean, 
95% upper confidence 
interval, and 95% lower 
confidence interval), 
which were generated 
by this enhanced fore-
casting system (Ver-
sion 0.0) for a single so-
lar site in Topez, CA. It 
was shown that the 
Brier Score over three 
28-day periods were 

below 0.4. The system provided the solar forecast at 15 minutes intervals with 4-hour 
forecast horizon and a refresh rate of every hour. This met Milestone 1.1.1. Along with 
the solar irradiance forecasts (i.e., Global Horizontal Irradiance (GHI), Direct Normal Irra-
diance (DNI), and Diffused Horizon Irradiance (DHI)), solar power forecasts were also 
provided, using the PV Lib [39] to convert the solar insolation to solar power production.   

In Milestone 1.1.2, we reported on our techniques of model blending for solar forecasting 
and the data sources used for it. In this approach, the forecast errors of different numerical 
weather prediction models (NWPs) are analyzed and used to characterize weather situ-
ations that will be treated differently (i.e., trained upon individually). At the training stage, 
the multiple NWPs and measurement data are preprocessed to filter outliers, and the 
functional analysis of variance fANOVA method [40] is used for feature selection by using 
an empirical performance model (EPM). The EPM is based on random forests to analyze 
how much of the performance variance in the configuration space is explained by single 
parameters or combinations of few parameters. Then, forecast errors are predicted using 
a Random Forecast model, which are then used in the situation categorization. In the next 
step, for each situation in each category, we train a quantile regression model. For fore-
casting, first, forecast errors generated from a Random Forest model are used to catego-
rize the situations, and then for each category, the corresponding trained quantile regres-
sion model is used to forecast GHI. Fig. 9 below depicts the approach. 

The basic data sources required are outputs from NWPs and measurements. We used 
the PAIRS platform for these data sets and to be able to exploit very large data sets. The 
training and forecasting data needed for the machine learning were realized by querying 
PAIRS in a consistent and scalable manner. PAIRS takes care of the different spatial and 
temporal resolutions [35,36] of the input data.  PAIRS has over 1000 different NWPs data 
sets and layers. For V. 1.0 we used the sub-hour High Resolution Rapid Refresh (HRRR) 
model [41], the North American Mesoscale Forecast System (NAM) [42], the US Climate 
Reference Network [43], and other data where noted.   

A report on model blending and the data sources concluded Milestone 1.1.2.  

 

Fig. 8. The PAIRS platform-based Watt-Sun Solar Forecast 
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Milestone 1.1.3 con-
cerned documenta-
tion and testing of an 
enhancement of the 
initial prototype of the 
PAIRS- integrated 
version of Watt-Sun, 
yielding Watt-Sun 
1.0. We designed the 
original Watt-Sun 
system for determin-
istic solar forecasting 
instead of probabilis-
tic. So we changed 
the last step of the sit-
uation-dependent er-
ror analysis to linear 
quantile regression 

because the forecast distribution is not normally distributed and therefore will be better 
captured by quantile regression. This contributed to improved probabilistic solar power 
forecasts. In addition, an Autoregressive Integrated Moving Average (ARIMA)-based 
smart persistence model was created for benchmark purposes. Such model is state-of-
the-art at the ISOs and therefore useful to compare the Watt-Sun forecasts against it.  

This second demonstration included probabilistic solar forecasts for 20 sites (10 sites in 
CAISO and 10 sites in MISO regions). Forecasts were operational with 5 quantiles (0.05, 
0.25, 0.5, 0.75, 0.95), an extended forecast horizon of 24 hours at 15 min frequency and 
refresh rate. We evaluated these forecasts initially over two periods of 28 consecutive 
days.  All Brier scores for each site were below 0.3, which is an improvement of 25% over 
Watt-Sun 0.0. Compared to the ISO standard ARIMA method 25% improvements for the 
10 CAISO sites and 21% for the 10 MISO sites were achieved. These performances ex-
ceeded the Milestone 1.1.3 targets. Thus, Milestone 1.1.3 was satisfied by submitting a 
report on Demo #2 (Version 1.0) of Watt-Sun probabilistic forecasts (Q3), and by Version 
1.0 performing at least 10% better than a standard practice persistence-based method.   

To meet Milestone 1.2.1, a data management plan was developed and submitted. For all 
data management the PAIRS platform was used. This platform is maintained by IBM and 
has been growing by more 10 Terabytes/day since 2016. PAIRS standardizes the spatial 
and temporal resolutions of the ingested data [37,38] by employing a global reference 
systems of layered resolution layers, thereby linking data in space and time. The platform 
has both the input data for the model blending as well as the generated forecast data. 

The platform does not only enable easy integration via OGC (open geographic consor-
tium) compliant services (Web mapping services, Web processing services, Web cover-
age services, Web feature services) via an open source geoserver [44] with other appli-
cations but it also has also a very powerful, open-sourced SDK/API for querying, filtering, 
or more complex computational tasks without downloading the raw data. PAIRS is avail-
able through an academic license to everyone for research purpose.  

Fig. 9:  Model blending Flow chart Overview 
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7.1.2. Year 2 Milestones: Probabilistic Watt-Sun Version 2.0. Next, we developed ver-
sion 2.0 of Watt-Sun probabilistic forecasts systems as part of the effort towards Mile-
stone 5.1.1, which embodied several improvements. We concluded that the Brier score 
was less useful for assessing quality of probabilistic forecasts compared to the P-P-plot 
based metric, which we therefore used for forecast performance evaluations along with 
the Mean Absolute Percentage error. Watt-Sun 2.0 leverages level 2 (L2) data from 
CLAVR-x (Clouds from AVHRR (Advanced Very High-Resolution Radiometer) Extended 
System) [45], which provides real-time cloud information from a Geostationary Environ-
mental Satellite (GOES-16) [46].  GOES-16 data can enable better solar forecasts for 
short-term forecast. A data pipeline was developed pushing GOES-16 data into PAIRS 
operationally. GOES-16 also opens the opportunity to provide gridded forecasts.   

Fig. 10 shows our approach for a meas-
urement informed, gridded short-term 
solar irradiance forecasts with (i) a deep 
learning model to provide gridded fore-
casts from the GOES L2 data of cloud 
optical depth for a 1-hour horizon, (ii) a 
quantile regression-based ML model to 
map the forecasts to the measured 
ground-level GHI and (iii) trained ML 
model to forecast every grid point pixel 
with a 3km resolution of the defined re-
gion to generate the measurement-in-
formed rasterized forecast.   

We experimented with networks which 
are similar to the ImageNet challenge 
winning models AlexNet [47]. However, 
instead of a spatial convolution layer, 
we used the volumetric convolution neu-
ral network (VCNN) layer, which applies 
a 4D convolution over a 4D input tensor 

composed of several input planes (here, multiple timestamps and multiple bands from the 
GOES L2 product) (see Fig. 11). By using VCNN, the extracted features have access to 
multiple channels of weather information across both temporal and spatial dimensions. 
Therefore, the VCNN can learn the cloud movement patterns which is important for solar 
irradiance prediction.  

 
Fig. 11. Schematic diagram of a raster forecast Deep Neural Network (VCNN)  

 
Fig. 10: Flowchart for our short-term solar 

irradiance forecast approach 
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Milestone 5.1.1 includes development of Version 2.0-Advanced Watt-Sun probabilistic 
solar power forecasts for 4-hour and 24-hour ahead for 6 points, which are planned to be 
shared with Topic Area 1 validation team.  The forecasts were to include an improvement 
in Point forecast accuracy > 15% compared to persistence baseline models as measured 
by Brier Score, especially for CAISO and MISO regions. Watt-Sun 2.0 performs better 
than the previous versions with an improvement in the P-P-plot score over bias-corrected 
HRRR GHI forecasts by 20%. Thus, this exceeded the target set by Milestone 5.1.1. In 
terms of rMAPE, Watt-Sun 2.0 performs better as well, with 17% improvement over HRRR 
bias-corrected forecast. In Watt-Sun 2.0 we also introduced an in-depth forecast calibra-
tion index. It enables evaluating the quality of calibration that allows for exploration of how 
well a probabilistic forecasting model performs over different intervals of the day, and over 
different months. A report on PAIRS data used, multi-expert machine learning models, 
and region-specific model blending performed, was generated and accepted by DoE, 
which satisfied Milestone 5.1.2 

Milestone 5.2.1 addressed documentation of data sources for PAIRS updating and web-
link documentation. There were three major enhancements to the PAIRS data. First, we 
significantly enhanced the data catalog in PAIRS, which is now completely standardized 
across different data sources and can be queried with elastic search. Second, in addition 
to the GOES-16 data, data pipelines for weather station data from the NOAA-ISD (Inte-
grated Surface Database) [48] and RAWS [49] were developed. This data is now being 
curated, ingested and is available in PAIRS. Third, additional capabilities for batch data 
exports were added, especially for deep learning applications by implementing a SPARK 
connector on top the PAIRS HBASE data source. This was reported along with the list of 
available data in PAIRS, which was accepted by DoE. This concluded Milestone 5.2.1 

Milestone 5.2.2 addressed documentation of US coverage of PAIRS, curation rate, and 
integration of multiple data sources.  While the PAIRS catalog provides detailed docu-
mentation of data across space and time, fast sampling techniques are also available in 
the PAIRS systems to check interactively what regions, timestamps are available. This is 
documented in the PAIRS tutorials available on-line (https://pairs.res.ibm.com/tutorial/). 
In addition, in this subtask an improved real-time data curation monitoring system was 
developed and demonstrated. It is noted that PAIRS is a real-time system with data being 
updated and curated at a rate of 10 Terabytes and more each day. A report was written 
and submitting about the PAIRS data us coverage, curation rate and integration of multi-
ple data sources, accomplishing Milestone 5.2.2. 

7.1.3. Year 3 Milestones: Probabilistic Watt-Sun Version 3.0.  Milestone 9.1.1a ad-
dressed development of Version 3.0-Advanced Watt-Sun probabilistic solar power and 
its forecast accuracy. The success value was a targeted point forecast accuracy improve-
ment of 20% relative to the persistence baseline. The third version of the Watt-Sun fore-
cast system was mainly enhanced by leveraging more training data. Initially, training data 
from HRRR was limited to a few months, while Watt-Sun 3.0 was able to take full ad-
vantage of almost three 3 years of historical data. The goal for Watt-Sun 3.0 was to 
achieve significantly improved calibration as measured by the P-P-plot metric as com-
pared to the persistence baseline estimator, as shown in Figs. 12 and 13. We demon-
strated that out of the 24 measurement stations for at least 6 of them and for at least 28 
consecutive days across a period of 3 months, a relative improvement of 20% was 
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achieved for forecast horizons of 4 and 24 hrs (Figs. 12, 13, respectively). This met the 
Milestone 9.1.1a target.  Further, as a measure of the reliability of these improvements 
for 4-hr ahead forecasts, daily values of the P-P metric of forecast improvement were 
better by >30% for > 3 weeks straight during that period for 17 of 24 CAISO & MISE sites 
tested, as shown in Fig.12. 

The Milestone 9.1.1b re-
port documented V. 3.0-Ad-
vanced Watt-Sun probabil-
istic solar power coordina-
tion efforts with TA1 team 
for forecast validation.  Co-
ordination efforts included 
our sharing forecasts with 
the TA1 team via the 
PAIRS platform.  To ac-
commodate the validation 
efforts of the TA1 teams, 
changes to the Watt-Sun 
3.0 systems were required, 
namely increasing the num-
bers of percentiles, retrain-
ing the forecasts for differ-
ent locations, and changing 
the forecast frequencies. 
These activities were re-
ported to the DoE, meeting 
Milestone 9.1.1b. The sub-
sequent Milestone 9.1.2 
report provided guidelines 
for updating the probabilis-
tic Watt-Sun forecasting 
system based on the most 
recent data.   

The final Task 1 (solar fore-
casting) effort concerned 

coordination with ARBITER.  A real-time upload from Watt-Sun 3.0/PAIRS to the ARBI-
TER platform was developed and realized. Except for scheduled PAIRS maintenance, 
data from the Watt-Sun 3.0 forecasting system was shared with the TA1 teams in real-
time. For this we improved the reliability of the exogenous data pipeline (namely, NOAA’s 
sub-hourly HRRR data ingestion into PAIRS Geoscope). Further, the software implemen-
tation of Watt-Sun 3.0 was implemented according to the object-oriented programming 
paradigm in which the real-time forecast ingestion functionality is realized through a set 
of class methods. This allows Watt-Sun 3.0 to be dockerized and run in IBM’s cloud so-
lution (the so-called Cloud Object Storage), which improves reliability and speed of the 
forecast availability for third parties.  

 
Figs. 12,13: Forecasting performance: numbers of con-
secutive days of >20% & >30% improved P-P-plot per-
formance at 24 locations for 4 & 24 hrs, respectively. 
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7.2  Task 2 Results: Defining Reserve Needs with Probabilistic Solar Forecasts 

This task addresses development, application, and testing of data-driven methods to im-
prove estimates of FRP requirements by using probabilistic solar forecasts.  Two ap-
proaches are used: machine learning and quantile regression (Sects. 6.2.1 and 6.2.2, 
respectively).  In addition, we investigated use of those methods to improve projections 
of need for up-regulation (Sect. 6.2.3). Finally, we also investigated explicit convolution 
of net load components (gross load, wind, solar) to create requirements, but results were 
not immediately promising [15]. Note: All MW quantities here are transformed values to 
disguise the true values, consistent with non-disclosure agreements. 

7.2.1  Using Machine Learning to Incorporate Solar Uncertainty into FRP Require-
ments. We developed a variety of numerical classifiers as labels of weather conditions 
based on the predicted uncertainty, variability, and cloudiness index of solar irradiance 
and power. In addition, we adopted principal components analysis (PCA) to reduce the 
dimension of multi-dimensional classifiers, which better reflects system-level uncertain-
ties by including classifiers from multiple sites across CAISO. We applied a kNN-based 
method to identify historical days of similar weather condition, and used the realized FRP 
requirements from these days to construct predictive distributions of the FRP needs, 
which can be used to give weather-informed estimations of FRP requirements. 

Fig. 14 compares the realized net load forecast errors with the published FRP require-
ments from 2 days in August 2019 in CAISO. Because the 2 days are close in time (5 
days apart), the FRP requirements differ by less than 1% because of similar histograms 
in use, whereas the solar power profiles imply drastically different weather conditions, 
which potentially explain the greater uncertainty needs in the cloudy day than the sunny 
day. Therefore, if similar FRP amounts are procured, the system could experience a 
shortage of FRP in the cloudy day. This observation motivates the need for the latest 
probabilistic forecasts in estimating FRP requirements. 

 

Fig. 14. Comparison of realized net load forecast errors with published FRP require-
ments for the CAISO. 

The kNN-based method can be viewed as a direct extension of CAISO’s original imple-
mentation (which chooses requirements based on the 2.5th and 97.5th percentiles of a 
histogram of ramp forecast errors from the previous several weeks) since both methods 
rely on historical data.  However, in contrast to that CAISO baseline method, whose re-
quirements are not conditioned on weather-of-the-day, the kNN-based method constructs 
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weather-conditioned histograms by using probabilistic solar forecasts. Different numerical 
classifiers in total are used to feature the weather data, including solar irradiance, predic-
tive intervals, cloudiness level, and clear-sky power index. In addition, in order to correctly 
characterize the solar power uncertainty over the entire CAISO region, multi-dimensional 
classifiers based on multiple sites at different locations are considered, and principal com-
ponents analysis (PCA) is leveraged to reduce the dimension of multi-dimensional clas-
sifiers. We evaluate the FRP requirements from two perspectives: system reliability and 
market efficiency. Two metrics are investigated, including the frequency of FRP shortage 
and the amount of FRP oversupply.  

As Fig. 15 shows, all 12 classifiers present similar trends as K (numbers of days selected 
for training) increases, i.e., the FRP oversupply increases sharply when K ≤ 20, which in 
turn results in a considerable drop of the frequency of the FRP shortage. When K > 20, 
however, both metrics remain relatively constant. This phenomenon suggests that a suf-
ficient number of days (K > 20) are required to give a reliable estimation of FRP require-
ments across all classifiers. Note that in the baseline, the frequency of the FRP shortage 
increases slightly as K increases from 20 to 60, implying that 20 days could yield better 
performance than CAISO's business-as-usual (BAU) implementation, where K=30.  

Fig. 16 shows trade-offs between 
reliability and oversupply in the 
form of Pareto frontiers. The point 
at the intersection of two dashed 
lines represents CAISO's BAU im-
plementation. The two dashed 
lines divide the plane into four 
quadrants (I, II, III, and IV), where 
points in Quadrant III indicate an 
improvement in both dimensions 
relative to the baseline, points in 
Quadrant I indicate a degradation 
in both metrics, and Quadrants II 
and IV represent tradeoffs im-
provement in one objective re-
quires a degradation of the other. 
Note that a significant fraction of 
kNN points fall into Quadrant III 

and no point falls within quadrant I, suggesting that the kNN-based method can result in 
more economic and reliable solutions than the baseline. Besides, Fig. 16 shows the re-
sults when the kNN parameters are dynamically selected. A similar trade-off between 
reliability and oversupply is also observed when the size of the validation set (N) changes.  

Fig. 17 shows the optimized Pareto frontiers of all 1-site cases and the multi-site case 
using PCA-kNN from February, August, and October 2020. All optimal Pareto frontiers 
present similar trends as in Fig. 16 when N varies. Although most 1-site cases present 
better performance than the baseline, their performance varies because of geographic 
differences. The variation of performance across sites implies the challenge of using one 

Fig. 15. The frequency of FRP shortage and FRP 
oversupply as a function of K in Feb. 2020. 
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single site to characterize the weather condition of the whole CAISO region. By compari-
son, the optimized PCA-kNN frontier accounts for the weather conditions from all 5 sites, 
and results in less variation of performance. The optimized PCA-kNN frontier presents 
better performance in terms of both dimensions compared to the baseline and all 1-site 
cases in February and August. 

To compare the results from the 
kNN-based methods with other 
data-driven methods, the evalua-
tion metrics from the benchmark 
machine/deep learning (ML/DL) 
based models are calculated. 
Note that these models do not re-
quire the use of historical data to 
construct predictive distributions 
of FRP, therefore they are not af-
fected by the number of neigh-
bors K. As displayed in Fig. 
17(d)-(f), the black dots that rep-
resent the original benchmark 
methods are all concentrated in 
Quadrant IV, indicating reduced 
oversupplies yet lower reliability 

Fig. 16. Trade-offs between reliability and over-
supply in February 2020. (One site) 

 

Fig. 17. (a)--(c) Pareto frontiers of all 1-site cases and the multi-site PCA-kNN case. 
(d)--(f) Frontiers from the ML/DL-based methods. The black dots represent the original 
results from ML/DL-based benchmarks---i.e., β=1---and the gray curves represent the 

Pareto frontiers when the factor β ranges from 1 to 3. 
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levels. The significantly greater chances of FRP shortage of the benchmark methods re-
sult in an unfair comparison, therefore, to make a comparison based on a more level 
playing field, we adjust the FRP requirements from the benchmark methods by multiplying 
them by a factor β, where β =1 indicates the original results. Owing to the trade-off be-
tween the oversupply and the chance of FRP shortage, a greater β results in more con-
servative FRP requirements. As Fig. 17 shows, the profiles of the adjusted benchmark 
results resemble the previous kNN profiles. Although several curves fall into Quadrant I, 
many of the adjusted benchmark results fall into Quadrant III, indicating potential improve-
ment in both dimensions. 

7.2.2  Machine-Learning Based Definition of Up-Regulation Requirements Using 
Solar Forecasts.  In addition to FRP requirements, we also developed solar-informed 
regulation requirements determination methods. Although our attempt to improve day-
ahead regulation requirements using solar-informed methods was unsuccessful in reduc-
ing those requirements and improving reliability, we did successfully reduce regulation-
up requirements without compromising reliability using in real-time, as we now describe. 

The historical ACE* signal in May 2020 from CAISO, which originally is at 1-min resolu-
tion, has been aggregated into a 5-min resolution (i.e., choosing maximum value in each 
5 minutes) to be consistent with the OASIS solar MW production data [60] for analysis 
and the CAISO’s present procedures for assessing the need for regulation. The regulation 
procurement baseline data is also selected from the same month. All the data are trans-
formed consistent with non-disclosure agreements.  This data, together with solar fore-
cast data, is used to calibrate models that estimate ACE* two hours ahead of time, which 
can then be used to determine a real-time regulation amount that reflects information 
available at that time, with the goal of improving performance (maximize reliability and 
minimize procurement) relative to the present ISO system in which regulation require-
ments are determined day ahead based on an (unconditional) histogram of historical 
ACE* amounts over the previous weeks. 

The hypothesis is that we can utilize historical ACE* and solar forecasts to forecast the 
future ACE* on a near real-time basis, then use the forecasted ACE* signal to determine 
regulation procurement, and that this procurement will perform better than the present 
ISO day-ahead method that doesn’t explicitly consider weather.  This forecast is done on 
a rolling basis with ACE* data for several weeks prior.  We propose a simple approach of 
defining the regulation requirement as:  

MAX(Rmin, βforecast ACE*)+z(t)Rextra 

where Rmin is a lower bound to the requirement, forecast ACE* is the two-hour ahead 
forecast area control error adjusted for the amount of regulation actually dispatched [8], 
β  is a multiplier, and Rextra is an increase in procurement for t in day-time hours (6:00 to 
20:00, when z(t) =1; otherwise z(t) =0).  Rmin, β, and Rextra are tuned parameters to max-
imize performance.  Three adaptive procurement strategies are examined:  

1. Multiplying the forecast ACE* value by a factor β ranging from 1 to 3. 
2. Reducing the minimal regulation up procurement to Rmin (lower bound for procure-

ment), so the final requirement is MAX(Rmin, βforecast ACE*).  We note that the 
transformed minimal procurement for CAISO’s baseline is 491 MW in each hour) in 
less fluctuating periods (i.e., 8 p.m. to 6 a.m.). 
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3. Adding an extra regulation up procurement Rextra to the forecasted ACE* value in 
more fluctuating periods, i.e., MAX(Rmin, βforecast ACE*)+Rextra*z(t). 

Figs. 18(a-c) show the Pareto analysis of regulation-up procurement for the last 7 days in 
May 2020. The figures show tradeoffs between reliability (probability of 5‐min adjusted 
ACE* exceeding the requirement) and aggregated GWh supply over 7 days. The red di-
amond represents the CAISO baseline point based on reported OASIS regulation 
amounts, and the yellow star represents the ideal regulation procurement using perfect 
ACE* forecasts, which has 0 exceedance probability. Key insights include:  

(a) sensitivity analysis of  β (b) sensitivity analysis of  Pmin 

(c) sensitivity analysis of  Pextra  

Fig. 18. (a)--(c) Pareto frontiers of regulation up procurement on the last 7 days of May 
2020. (a) Multiplying factor β ranging from 0.5 to 3, Rmin = 0. (b) Minimal procurement Rmin 
for hours 8 p.m. to 6 a.m. (c) Extra procurement Rextra for hours 6 a.m. to 8 p.m 

1. As observed from Fig. 18(a), a similar observation of β with the FRP requirement in 
Fig. 17(d-f) is obtained (i.e., a greater β results in more conservative regulation re-
quirements), and no points fall into Quadrant I (where both reliability and GWh pro-
cured are worse). When β < 1.513, the curves fall into Quadrant IV, indicating a 
higher probability of regulation shortage than the baseline CAISO method, but less 
total GWh of procurement. A greater β results in more conservative regulation re-
quirements, and the curves when β > 2.205 fall into Quadrant II, where procurement 
is greater than the CAISO baseline and the reliability is better.  

Rmin 

Rextra 



DE-EE0008125  
The Johns Hopkins University 

 

24 
 

2. As Ref. [8] explains, the regulation shortage always occurs during the sunshine pe-
riods. To evaluate the performance of adaptive procurement in different periods, we 
divide a day based on two time points: 6 a.m. and 8 p.m., and keep the β ranging 
from 0.5 to 3. As shown in Fig. 18(b), the regulation requirement could be improved 
by reducing the procurement in the less fluctuating periods. The curve of Rmin=491 
MW refers to the transformed CAISO baseline, where the regulation requirement is 
MAX(491MW, βforecast ACE*), while the Rmin=480 MW case (i.e., requirement is 
MAX(480MW, βforecast ACE*) shows a very close proximity in Quadrants III and 
IV, indicating that slightly reduced procurement will not harm the reliability too much.  

3. The results in Fig. 18(c) also shows that adding an extra procurement to the fore-
casted value during the 6 a.m. to 8 p.m. period also helps in promoting the reliability, 
however, with a higher amount of over-supply. 

7.2.3  Quantile Regression-based Estimation of Flexible Ramp Requirements.  Be-
cause the CAISO is already using quantile regression (QR) to assess flexiramp needs as 
a function of load and variable renewables, quantile regression has the advantage of fa-
miliarity as well as simplicity relative to the methods of Sect. 7.2.1.  Therefore, we have 
also evaluated the potential of that method to improve requirement estimation (in terms 
of higher reliability and lower procurement amounts) relative to present practices.  A va-
riety of specifications were tested that included as independent variables various combi-
nations of the following: deterministic load, wind, and solar forecasts as well as indicates 
of solar uncertainty (prediction interval widths for 2 hour ahead probabilistic forecasts, 
especially the difference between the 75th and 25th percentiles).  As explained at the end 
of this section, in the course of this analysis, we developed an approach to assess and 
debias Watt-Sun forecasts in order to improve their calibration, which resulted in better 
predictions of FRP requirements for some months 

The steps involved in creating QR-based flexiramp requirements were as follows. First, 
two separate QR estimations are performed for the 50th and 90th percentiles of the fore-
cast error as a linear function of a set of independent variables related to weather and 
system conditions. (Four sets of such variables are considered here, as described in the 
Fig. 19’s caption.) Second, the value of error for the desired reliability (say the 97.5th 
percentile, which would result in a 2.5% shortage rate) is obtained by fitting a normal 
distribution to the 50th and 90th percentiles and extrapolating. Out-of-sample validation 
found that this resulted in more stable estimates of extreme percentiles rather than using 
QR directly to estimate that percentile, due to small sample issues with the number of 
observations in the tail. This is done for using 30 days of data prior to the day of interest; 
the desired percentile is then estimated for that day given the value of the independent 
variables on that day. The FRP requirement is set equal to that value. The performance 
of the method is then assessed by comparing the realized forecast error against the re-
quirement. This is repeated for each of the days in the month (March 2020 in Fig. 19), 
and four 15-minute intervals within each hour considered; this would give 30*4=120 ob-
servations to estimate the reliability and cost performance.  

In Fig. 19, we did this for four levels of a priori reliability (10%, 5%, 3%, and 1.5% shortage 
probabilities) for each of four model specifications for the noon hour in March 2020. The 
best specification was one based on two independent variables: the average (across four 
sites) of the 25th-75th percentile prediction interval for GHI; and a nonlinear (sine wave) 



DE-EE0008125  
The Johns Hopkins University 

 

25 
 

transformation of median GHI, again averaged over four sites. The transformation yields 
values of zero if GHI is at the minimum or maximum of the GHI observed over the last 30 
days at that hour of day, and attains a maximum if GHI is halfway between those ex-
tremes; this reflects the fact that if solar is zero or if there is a clear sky, there is relatively 
less uncertainty than if GHI is somewhere between the extremes. As Fig. 19 shows, there 
is one version of that model (a priori reliability of 5%) that reduces oversupply by 20% (x-
axis) and cuts the ex post frequency of FRP shortage by about half (from 7.5% to 4%, y-
axis), relative the actual amount of FRP that the ISO procured for those intervals. Alt-
hough that precise specification does not always result in improvements in each month 
and time interval we considered, it often did so, and therefore is worth considering as a 
relatively simple but effective way to make FRP requirements weather conditioned. 

 
Fig. 19. Pareto plot (reliability (FRP shortage frequency) vs cost (excess FRP)) showing 
performance of four QR specifications (for 12:00-13:00 local time, March 2020), com-
pared to performance of CAISO-procured FRP. Specifications include: linear using width 
of 25th-75th prediction interval for solar GHI (blue); linear using median solar GHI (purple); 
linear using median GHI plus CAISO wind and gross load forecast (pink); and linear with 
GHI interval and sine transformation of median GHI (light blue). Each set of solar varia-
bles is averaged across four CAISO solar sites. The points on each curve (upper to lower) 
correspond to 10%, 5%, 3%, and 1.5% a priori frequencies of FRP shortage. 
 
Preliminary analyses of calibration of Watt-Sun forecasts indicated that cloudy and sunny 
days had different quality of calibration, so we developed a method for classifying day 
types and then adjusting forecasts that, based on out-of-sample tests, improved forecasts.  
We used 𝜒ଶ (chi-squared) tests in which the expected frequencies of observations within 
each of the 6 bins (0-0.05, 0.05-0.25, 0.25-0.5, 0.5-0.75, 0.75-0.95, and 0.05-1.0) are 
compared to observed frequencies.  Fig. 20(a) shows actual GHI and Watt-Sun’s reported 
probability distributions for the fifteen-minute interval centered on 1:30 p.m. local time for 
Dec. 2019 for the Topaz, CA site. There are 28 days of data, of which 9 days have values 
falling above the 50th percentile. Whether this could happen by chance can be assessed 
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by a, e.g., 𝜒ଶ  test; if the test does not reject the hypothesis that the observations were 
drawn from the shown distribution, then it would be concluded that the model is well-
calibrated for that period.  (Such a test for a set of daily observations for one particular 
time is reasonable if it is assumed that errors from day to day are independent, which is 
admittedly a strong assumption.) Plots like Fig. 20(b) below, which is an example binning 
of the observed GHI for all daylight hours in one month, provide visual evidence of a good 
calibration.  Analyses of results of the last version of Watt-Sun indicated that the calibra-

tion differences between cloudy and sunny days 
had become less pronounced, and adjustment of forecasts was no longer required. 
 

In sum, for most intervals tested between March and Aug. 2020 (10-11 am, 12-1 pm, 2-3 
pm, 4-5 pm), QR formulations were found that improved upon the CAISO base method 
and to actually procured FRP (from OASIS). In our application of the base method, a 
histogram was created of the last 30 days of ramp forecast errors for the relevant interval; 
the 2.5th and 97.5th percentiles then defined the down and up FRP uncertainty compo-
nents, respectively, which when added to the forecast ramp yielded the requirements. 

7.3.  Results: Ramp and Solar Uncertainty Visualization for Situational Awareness 

7.3.1 Overview.  This section describes a flexible, open-source visualization tool for sit-
uational awareness related to operating a power system with high shares of variable re-
newables. The tool is named Resource Forecast and Ramp Visualization for Situational 
Awareness (RAVIS), and it is built at NREL under DOE EERE SETO funding. RAVIS is 
a research-grade tool intended to help researchers, forecast vendors, and system oper-
ators (such as utilities, ISOs, and balancing authorities) who use variable renewable fore-
casts for efficient operation of their systems. This tool provides a way to integrate ad-
vanced forecasts for variable renewable generation, including probabilistic forecasts, and 
helps operational control centers and forecasting teams at utilities to develop situational 
awareness and timely mitigation strategies. The tool is flexible enough for end users to 

 
Fig.20(a) Data for  𝜒ଶ calibration test. Dec. 2019 ac-
tual GHI and Watt-Sun probabilistic forecast quan-
tiles, 1:30 local time, Topaz site (Note, Dec. 10, 19, 

31 values missing) 

 
Fig. 20(b). One month’s expected num-
ber of expected GHI observations by 
bin (fractile ranges) versus observed 
(daylight hours only), illustrating qual-
ity of calibration 
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tailor the data integration, visualization, and alerts to their needs and use cases.  

As mentioned in Section 5.3, although control room visualizations are relatively mature, 
much development is needed to prepare for a future with high shares of variable renew-
able generation and for integrating advanced probabilistic forecasts, including ingesting 
site-specific distributed forecasts in addition to the conventional regionally aggregated 
forecasts. Additionally, RAVIS provides researchers around the world with an open-
source alternative to demonstrate their developments.  The source codes of RAVIS are 
publicly available for anyone to download and use at https://github.com/ravis-nrel/ravis. 
The link also provides guidelines and instructions to install and modify the code, including 
answers to some frequently asked questions.  

We now describe the function and architecture of RAViS in detail.  As a prototype of the 
tool and demonstrating use cases of variable renewable integration, RAVIS currently in-
tegrates site-specific solar power forecasts in the CAISO and MISO footprints from the 
IBM Watt-Sun forecasting platform, and superimposes market simulation data for the 
CAISO footprint from an in-house NREL market clearing tool (FESTIV).  

RAVIS uses a technology suite that is assembled to provide optimum visualization facility 
while maintaining a wide pool of potential deployment and client environments. The tool 
is designed to take advantage of web application technologies and open-source visuali-
zation libraries and tooling. This will enable deployment in any environment, using any 
operating system, and it is easily scalable high spatial and temporal levels of visualization. 

However, RAVIS is not a turnkey system. It is the product of a research endeavor, and it 
is not intended as a commercially viable product. To successfully deploy and operate 
RAVIS, the user must have a minimum basic understanding of web application software 
development and operations support knowledge. Some experience with NodeJS devel-
opment and a working understanding of web-based mapping, including serving vector tile 
data, are also highly recommended. 

7.3.2 Interactions with Users. The modular dashboard of RAVIS contains configurable 
panes for viewing probabilistic time-series forecasts; ramp event alerts on the look-ahead 
timeline; spatially resolved resource sites and forecasts; and system simulation and mar-
ket clearing data, such as transmission line utilization, nodal prices, and available gener-
ation flexibility. The tool has the ability to alert the viewer to significant up or down ramps 
for both individual variable renewable sites as well as regionally aggregated net load 
ramps, and alerts can also be qualified with respect to available flexible generation. 

Fig. 21 shows the RAVIS user interface. RAVIS contains four customizable panes: (1) 
site-specific and regional event alerts at various look-ahead times; (2) a regional overview 
of aggregated renewable resources; (3) a site-specific zoom-in view of distributed re-
sources along with GIS information (not shown in Fig. 21 but viewable when a user clicks 
on or selects a region); and (4) a regional and site-specific forecast time-series viewer.  

To demonstrate how users interact with RAVIS, forecast data for 10 solar PV sites each 
from the CAISO and MISO footprints were downloaded from the IBM Watt-Sun PAIRS 
Geospatial Analytics forecasting and data platform. Table 2 shows site information. 

We now describe two modes of interaction: 

1.  Dynamic metadata lookup mode: As the user moves the cursor over a node in the 
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detailed regional pane, metadata for that station pops up, with information on the size 
of the plant (or aggregated size of several renewable generation plants if cursor 
moved in the regional view), and whether a significant ramp event is detected. A mock-
up of this is shown in Fig. 21. If there is no significant ramping detected (based on the 
definition of a significant ramp set by the ramp configuration parameter), “Ramping 
nominal” will be shown. If a significant ramp is detected, the size of the ramp will be 
displayed. For instance, the site Medora, in North Dakota, and the aggregated fore-
casts in the eastern region have nominal ramping, whereas at the aggregated regional 
view, the western and central regions see significant ramping—59.85 MW and 65.84 
MW, respectively. 

 
Fig. 21. RAVIS use interface: event alerts and spatiotemporal probabilistic forecasts 

Table 2. CAISO and MISO Sites from IBM Watt-Sun Forecasting System  
CAISO MISO 

Sites Station ID Latitude Longitude Station ID Latitude Longitude 
1 CA_Topaz 35.38 -120.18 AMOA4 33.58 -91.8 
2 RSAC1 38.47 -122.71 FRMI4 40.64 -91.72 
3 RLKC1 40.25 -123.31 BNRI2 37.24 -89.37 
4 SBVC1 34.45 -119.7 SULI3 39.07 -87.35 
5 KNNC1 40.71 -123.92 NATL1 31.49 -93.19 
6 MIAC1 37.41 -119.74 BDLM4 42.62 -85.65 
7 MNCC1 34.31 -117.5 CASM5 47.37 -94.61 
8 STFC1 34.12 -117.94 CKWM6 30.52 -88.98 
9 DEMC1 35.53 -118.63 TS428 46.89 -103.37 
10 COWC1 39.12 -123.07 RHRS2 43.87 -103.44 

 
2.  Viewing forecast time series mode: When a user clicks on a particular node, either 

an individual site or the aggregated region, the time-series forecasts will be displayed 
in the right-hand pane. Fib. 16b shows the time series for the western region as well 
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as a single site in California.  

The tool is endowed 
with design flexibility 
and customization 
features useful for 
potential end users, 
including on-the-fly 
configuration and 
viewer updating fea-
tures, as shown in 
Fig. 22. These can 
be accessed in the 
tool through the 
“gear” symbol 
shown in the top 
right corner. Cur-
rently implemented 
features include:  

 Ramp definition: Ramp definitions (MW change per minute) can be done at the 
global, regional, and site levels. This is shown in Fig. 22 (left). 

 Forecast zones or plant aggregation: Custom regions with selected plants can be 
created if users want to closely monitor them. This is shown in Fig. 22 (middle). 

 Time-series pane customization: The forecast pane includes a “+/-” symbol in the 
right corner that allows viewers to adjust the y-axis to the size of the ramp event. By 
default, the y-axis shows the renewable plant size or the total regional capacity. 

 Comprehensive data assimilation: Each end user has their own needs, and so 
the data ingestion in this tool is highly flexible for integrating visualization widgets of 
interest. For example, the tool can ingest additional data layers from various forecast 
vendors, electricity generation scheduling and market clearing data, and network 
topology and transmission data for comprehensive situational awareness. This is 
shown in Fig. 22 (right), with toggles selected to add more layers of data. This report 
introduces a use case that integrates additional electricity market-related data for 
understanding the interrelationships among forecasts, ramp uncertainties, and vari-
ous system operating metrics.  

7.3.3  Use Cases.  One major use case discussed in this section includes the integra-
tion of detailed, site-specific probabilistic solar power forecasts and the detection of 
ramp events at both individual solar power plant and aggregated regional levels. Fig. 
23 illustrates visualizing ramp alerts at different time instances, based on the input fore-
cast data from the IBM Watt-Sun solar power forecasting platform, and the ramp defini-
tion parameters set in the configuration window. Fig. 23 shows several site-level solar 
power ramp alerts that are being detected in the central and eastern regions. In this 
example, note all the detected ramps in the site and at the aggregated regions are 
down-ramps and are shown in the visualization by the direction of the arrows; and the 
summary statistics in the time-series pane. This section discusses several such exam-
ples and use cases in detail. 

 
Fig.22. Configuration features in RAVIS 
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Another use case illus-
trates how the RAVIS 
tool can ingest multiple 
data layers in addition 
to variable renewable 
power forecasts for a 
comprehensive visuali-
zation capability. For 
instance, Fig. 24 
shows a use case 
where RAVIS inte-
grates 5-minute-reso-
lution solar power fore-
casts and net load 
forecasts (load minus 
wind and solar) devel-
oped by NREL for the 
CAISO system for 
March 2020 (7 a.m.–
12 p.m.). Additionally, 
RAVIS integrates mar-
ket simulation results 
available from the 
NREL in-house simu-
lation tool (FESTIV) for 
the modeled independ-
ent system operator 
system. These market 
results include: 
 Network nodes and 
transmission topolo-
gies (the black dots 
and orange lines re-
spectively in Fig. 24 
(left), where lines 
>75% utilization are 
only shown.) 
 Nodal clearing 
prices (appearing 
when the cursor is 
moved over the black 
dots.) 
 Aggregated net load 

forecasts (Fig. 24 (right) shows the time-series probabilistic net load forecast data for 
the San Diego region.) 

 Available generation flexibility in the upward and downward directions at the nodal 

 
Fig. 23. Site-specific and regional renewable power ramp 

alerts and time-series forecasts for California and U.S. 

 
Fig. 24. Comprehensive situational awareness with fore-

casts and data from the market clearing process. The mar-
ket clearing process typically consumes forecasts as one in-
put to ascertain system operation and generation dispatch 
decisions that result in anticipated nodal prices, transmis-

sion utilization, and available generation flexibility. 
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and aggregated system level (shown by the orange lines overlaid with the net load 
time-series forecasts in San Diego, thereby enabling operators to see whether there 
is sufficient generation flexibility to meet the net load uncertainties.)  

The full report on RAVIS  (Milestone 11.1.1’s report) discusses these use cases in detail 
and the types of insights a system operator could gain and use. All these additional visu-
alization features can be added by toggling the customization parameter discussed in Fig. 
24 provided such data are available and fed to RAVIS appropriately.  

7.4.  Task 4: ISO Interaction and FESTIV Simulation of Solar Forecast-Informed 
Ramp Requirements 

7.4.1  ISO Staff Interactions and Feedback.  We held a total of 26 meetings with ISO 
staff and others to request data; learn about ISO market rules, forecasting, regulation, 
and FRP requitement methods; and to present and receive feedback on project results; 
and to demonstrate and obtain feedback on the RaVIS visualization system.  The dates, 
topics, and attendees are listed below: 

Meetings with ISO staff on solar and load data, ISO forecasting and requirements meth-
ods, and project results:  
 2018: July 12 (MISO), Aug. 3 (CAISO), Aug. 13 (MISO), Aug. 31, Sept. 28, Dec. 6, 

Dec. 18 (CAISO), Dec 21 (MISO) 
 2019: Jan. 7 (CAISO), Jan. 23 (MISO), Mar. 11, Apr. 2, May 15, July 2 (CAISO), Oct 

4; Oct 8-9 (MISO), Dec. 5, Dec. 19 (CAISO) 
 2020: April 8, May 21, Sept. 4, Nov. 18 (CAISO), Dec. 12 (MISO) 
 2021: March 22 (CAISO) 
RAVIS Demonstrations: Jan. 17, 2020 (MISO, CAISO, SETO Staff), May 20, 2021 (MISO, 
CAISO, Excel Energy, SETO Staff) 

7.4.2  Overview of Simulations. We compared two methods for estimating uncertainty-
related ramping needs in terms of system performance using two approaches. In the 
first approach (theoretical comparison), we develop a framework that classifies market 
intervals into five types with different anticipated performance in terms of reliability and 
economics. We use that framework to choose a few simulation days with different pro-
files (frequency of different types of intervals) for preliminary testing of new methods. 

For the second approach (practical comparison), we focused on ramping requirements 
estimated a few hours in advance and contrasted two estimation methods: (a) a baseline 
(industry-inspired) method that considers calendar information and past errors and (b) an 
alternative (research-inspired) method that uses probabilistic solar forecasts and other 
weather information. Results on a small 118-bus system suggest that weather-informed 
estimation methods could yield different ramping requirements than existing calendar-
based methods. A 0.5M$ production cost savings from the new requirements for a three 
week period in March 2020, when extrapolated to annual savings, amounts to about 
$8M/yr. This value is one-third of the total CAISO FRP procurement costs of $25M in 
2018, and is of the same order of magnitude of FRP costs in 2019 and 2020. Moreover, 
preliminary results indicate that system conditions and ramping product design strongly 
influence the benefits. Due to space limitations, details are not provided here on the 118 
bus simulations, but are available in our quarterly reports and papers [50].   
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We then compared results for an approximation of the western US power system for a 
sample of eight days in March 2020. We found that the solar forecast-informed approach 
decreased costs of power production (fuel and non-fuel O&M) and FRP procurement. 
These results are described in detail below.  Although the small sample of days means 
that the results are not definitive, they do illustrate the potential value of using probabilistic 
solar forecasts to inform reserves procurement. Details are provided below. 

7.4.3  Theoretical Comparison of Baseline and Solar Forecast-Informed FRP Re-
quirements [61].  Day-ahead power markets or scheduling algorithms provide generator 
schedules usually with  a lead time of approximately 14–38 hours, given net load forecasts 
and the technical constraints of thermal and hydro generators with respect to capacity, 
startup, shutdown, minimum on/off- time, and energy limits. However, uncertainty and var-
iability in load and variable renewable output might lead to real-time deviations from the 
day-ahead schedules. Balancing markets, such as real-time markets in CAISO [10] and 
intraday markets in Europe [53], as  well as balancing products such as ramping products 
and regulation, aim to address deviations and prevent energy imbalances by procuring 
flexibility and enabling the system to respond at lower cost to deviations from expected 
conditions. In this context, flexibility is defined as the load-following [54] ramping capability 
during a market interval starting from the last financially binding schedule. Therefore, a 
system needs flexibility or balancing capability equal to the system-wide net imbalance. 

Sizing methods aim to estimate ramping requirements that will satisfy system flexibility 
needs within a target reliability level. Here, we compare system performance under an 
alternative set of ramping requirements (possibly provided by a weather-informed method 
using solar forecasts) to the system performance under the baseline (status quo) method. 
The “alternative” method can estimate: (a) higher, (b) lower, or (c) identical requirements 
compared to the “baseline” method for each market interval, as shown in Fig. 25. 

Requirements under case (c) (identical) will cause no differences in system performance 
between the two methods. But under cases (a) and (b), different levels of requirements 
between the two methods might lead to differences in system performance. We use 
“might” because differences in ramp requirements are necessary but not sufficient for 
differences in system performance. In particular, the market software includes constraints 
that indirectly procure flexibility greater than or equal to the ramping requirements; so 
available flexibility could exceed the requirements. Moreover, the market software allows 
for deficits, i.e., procured flexibility lower than the requirements. In sum, the level of avail-
able flexibility, which depends on both overall system conditions and the requirements, 
affects system performance. For example, a system could be overly flexible during a mar-
ket interval and its available flexibility could be higher than both sets of requirements, 
resulting in the same system performance under cases (a) and (b).   

Fig. 25 further categorizes possible outcomes of the comparison of system performance 
under the alternative (solar forecast-informed) vs. the baseline estimation method by di-
viding the market intervals (a), (b), and (c) into five categories: a1, a2, b1, b2, and c. A 
“1” (i.e., cases (a1), (b1) indicate that the realized ramping needs are more than the ramp-
ing requirements estimated by a method, and the system does not necessarily have 
enough resources ready to ramp up, meaning that system reliability might be at risk.  A 
“2” indicates that the realized ramping needs are less than the requirements of both meth-
ods  (see cases (a2) and (b2) of the framework shown in the figure, so that both methods 
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estimate adequate requirements for that market interval; hence, we do not anticipate any 
power balance violations caused by flexibility shortages and the method with the lowest 
requirements might incur lower production cost 

7.4.4  Practical Comparison: Overview of System Simulation Model.  Analysts usually 
quantify system performance through production cost simulations, which minimize aggre-
gate costs, i.e., the sum of production cost (economic) and penalties for unserved energy 
(reliability). Analysts can formulate ramping products in tools such as the Flexible Energy 
Scheduling Tool for Integrating Variable Generation (FESTIV) [55] and conduct simula-
tions with different sets of ramping requirements. FESTIV consists of a day-ahead sched-
uling algorithm run once per day and two rolling algorithms: real-time unit commitment 
(RTUC) and real-time dispatch (RTD).  Following CAISO’s conceptual design [30], we 
simulate a ramping product in FESTIV RTUC by adding constraints (1)–(6) for all time 
intervals t  {1,2,… HRTC-1}: 

costru୲ ≥ WTP ∗ frus୲
;  costrd୲ ≥ WTP ∗ frds୲

 (1a,b) 

α ∗ ∑ fru୥,୲ + frus୲୥ ≥ FRUR୲
;  α ∗ ∑ frd୥,୲ + frds୲୥ ≥ FRDR୲

 (2a,b) 

gen୥,୲ − α ∗ frd୥,୲ − rs୥,ୖୈ,୲ାଵ ≥ PMIN୥ ∗ u୥,୲ାଵ
 (3) 

gen୥,୲ + α ∗ fru୥,୲ + ∑ rs୥,୰ୣୱ,୲ାଵ୰ୣୱஷୖୈ ≤ PMAX୥,୲ାଵ ∗ u୥,୲ାଵ
 (4) 

gen୥,୲ାଵ − gen୥,୲ ≤ α ∗ fru୥,୲; gen୥,୲ − gen୥,୲ାଵ ≤ α ∗ frd୥,୲
  (5a,b) 

{αfru୥,୲ +
ஒ

ଶ
൫rs୥,ୖ୙,୲ + rs୥,ୖ୙,୲ାଵ

൯;  αfrd୥,୲ +
ஒ

ଶ
(rs୥,ୖୈ,୲ + rs୥,ୖୈ,୲ାଵ)} ≤ RR୥ ∗ Dୖ୘୙େ  (6a,b) 

In words, each constraint m (m =1,2,5,6) is divided into (ma) for upward ramping and 
(mb) for downward ramping. Eqs. 1 estimate the penalties (costru, costrd) for ramping 
product deficits (frus, frds), which are added to the objective function of the scheduling 
optimization. Eq. (2) procures ramp to meet requirements (FRUR, FRDR), whereas eqs. 
(3) and (4) guarantee that the unit’s generation (gen) and ramp will not violate its minimum 
and maximum operating limits, respectively, depending on its commitment (u). Eqs. (5) 
count expected change in generation schedule toward the ramping product. Eqs. (6) en-
sure that the ramping capability for the units is shared between ramp and reserve (rs) 
products. To ensure that flexibility produced in the real-time (short-start) unit commitment 
RTUC will be available in the real-time (5 min) dispatch RTD, we record RTUC schedules 

Fig. 25.  Theoretical framework classifying market intervals by comparing ramping 
requirements from 2 methods (baseline/alternative, shown as solid/pattern grey bars, 

respectively) and the realized ramping needs (illustrated with solid black bars).  
Green, pink, and grey boxes indicate potentially improved, deteriorated, and similar 

system performance, respectively, under the alternative ramping requirement. 
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for the second interval (t=2) and force them in the subsequent run. Thus, we model geng,t, 
rsg, res,t, ug,t as parameters at t=1 and as decision variables for t>1. 

A comparison of the aggregate cost under different uncertainty-related ramping require-
ments in absolute terms is informative; however, a comparison in relative (percentage) 
terms can be misleading because, by far, the bulk of aggregate cost is not caused by the 
uncertainty of net load or the procurement of uncertainty-related ramping products. That 
is why we propose and employ a metric called “uncertainty-induced costs.” The “uncer-
tainty-induced costs” are equal to (a) the aggregate cost of a simulation with net load 
uncertainty and ramping product minus (b) the aggregate cost of another simulation with-
out uncertainty (i.e., perfect net load forecast). By subtracting (b), this metric omits the 
portion of the aggregate cost that would be incurred if net load were known with certainty. 

We numerically illustrate the value of ramping sizing methods using a modified IEEE 118-
bus system that mimics the annual generation mix of CAISO [56] with ~10% solar pene-
tration (in terms of annual energy) in line with 2017 CAISO levels [57]. The case study 
closely follows the CAISO market structure in FESTIV [55] by simulating three markets: 
day-ahead with hourly resolution and a 24-hour horizon, RTUC with 15-min resolution and 
a 3- hour horizon, and RTD with 5-min resolution and a 1-hour horizon. Moreover, to re-
flect the balancing nature of RTUC and RTD, we include CAISO must-run rules [10]. 

ISOs have multiple balancing products to address uncertainty and variability. Here, we 
focus on a single uncertainty—forecast errors of solar generation with a lead time of 2–3 
hours—because novel methods aim to quantify uncertainty of solar irradiance [58,59]. In 
practice, ISOs account for uncertainty induced by gross load and wind forecast errors as 
well. We also estimate requirements for one operating reserve product: the flexible ramp-
ing product (FRP) in RTUC using the baseline and alternative methods. The 1–4 hr lead 
time of RTUC in our simulation (as opposed to the actual 1–5 hrs in CAISO) facilitates 
integration of weather-informed probabilistic forecasts with a lead time of a few hours. 

We assume that net load can take one of three values in each market interval t (i.e., 
lower, mean, upper). We estimate RTUC FRP requirements in the down and up directions 
that address both forecasted movement from t to t+1 and uncertainty at t+1 using (7) and 
(8) as follows. We set regulation and spinning reserves at 1% and 3% of gross load, 
respectively, and the value of lost load at $6,500/MWh, which is the administrative penalty 
for power balance violations in the scheduling runs of CAISO [10]. For simplicity, we do 
not procure flexible ramping product in the RTD market because we assume that solar 
generation is known with certainty in the CAISO RTD market (which closes at t-7.5 
minutes, as opposed to the time when RTUC is run, which is at t-52.5 minutes). 

FRDRt = max (0, NLt,mean ‐ NLt+1,lower) (7) 

FRURt = max (0, NLt+1,upper ‐ NLt,mean) (8) 

7.4.5.  Practical Simulation: System Performance for Large System: System De-
scription. The large-scale CAISO system (with 1820 buses) is simulated in FESTIV, and 
we performed a cost-benefit analysis of the improved flexible ramping product. Two over-
arching tasks were performed to work towards this milestone: 

1. Porting over FESTIV simulation to the high-performance computing (HPC) resource 
for gaining speed-up, and for running several scenarios in parallel.  
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2. Performing CAISO 1820-bus simulations for various scenarios: 1) perfect forecast 
without uncertainty, 2) with CAISO baseline FRP, and 3) with new improved FRP 
proposed by our team. Similar to the small system (IEEE 118 bus simulation analysis) 
analysis (summarized in our quarterly reports and [50]), our goal was to perform such 
an analysis using the large-scale CAISO system for ascertaining improved cost-ben-
efit metrics related to economic savings and reliability benefits.   

We simulated FESTIV for the WECC-sized power system model, summarized below.  

Table 3. Summary of WECC scale simulation model 
Number of buses 1,820 
Number of transmission lines 3,053 
Number of generators 3,787 
Non-renewable units/installed capacity [MW] 1,742/158848 
Hydro units/installed capacity [MW] 1,570/64008 
Wind units /installed capacity [MW] 85/20004 
Solar units /installed capacity [MW] 390/18540 
Number of regions captured 40 

FESTIV has been developed and used at NREL over the last 10-odd years, and this 
system represents the largest system ever simulated within FESTIV. Previous efforts 
mostly used IEEE 118 bus system, and therefore this marks ~15 fold increase in system 
size, which posed computational challenges. In order to find a tractable solution to the 
optimization of such a large system, several modeling assumptions were made.  

1. First, a detailed representation of power system is only maintained for the Califor-
nia system operator’s footprint (CAISO), and remaining regions outside the juris-
diction of the CAISO are modeled as single nodes interacting with CAISO.  

2. Second, in order to capture real-world transaction costs, a flat $/MWh hurdle rate 
is assigned to exchanges of power between regions.  

3. Third, hydro is not optimized but rather follows historical profiles as published by 
CAISO and BPA. The BPA profiles are applied to BPA hydro assets. The CAISO 
profiles are applied to all remaining hydro assets in the model.  

4. Fourth, in order to simplify the solution space of the optimizations, start-up and 
shut-down trajectories are not explicitly modeled.  

5. Fifth, flat start-up costs are used rather than dynamic start-up costs based on gen-
erator usage.  

7.4.6. Practical Simulation: Illustrative Large System Dispatch.  With these and 
the previously discussed assumptions in place, to illustrate the use of FESTIV for the 
large system and our input assumptions, we present details on the FESTIV simulation 
day-ahead market for one day, March 9th 2020 below. The overall system load is 
shown in Fig. 26. Note, the figure shows 48-hour load forecast, as the 1st 24-hour 
period is used by the day-ahead unit commitment as financially binding, and the 2nd 
24-hour period is advisory only to prevent “end effect” distortions at the close of the 
1st 24 hours.  

The system-wide peak demand is just above 100 GW and exhibits a daily evening 
peak with a smaller peak during the morning hours. The output of the renewable gen-
eration assets is shown in Fig. 27. 



DE-EE0008125  
The Johns Hopkins University 

 

36 
 

 The system shows large penetra-
tion of solar generation, topping 
~12 GW of power during the day. 
The model is able to co-optimize 
energy and ancillary service re-
quirements, and the calculated 
generation stack is presented in 
Fig. 28 below. 

The day-ahead SCUC takes about 
6-7 hours to finish the whole pro-
cess (reading data, solving, writing 
output data). Note, the simulation 
results shown above are for the 
basecase without FRP (i.e., perfect 
forecast case). We discuss our 
comparison of two other scenarios 
below, namely the baseline CAISO 
FRP and new FRP for comparison. 

7.4.7.  Practical Simulation: 
Comparisons of Large System 
Baseline and Solar-Informed 
FRP Requirements. Scenarios 
with transmission constraints in this 
CAISO system were simulated to 
ascertain the benefits from weather 
informed FRP procurements. The 
production cost results are used to 
compare the results in this section. 
Three different simulation scenar-

ios are considered and sum-
marized below in Table 4. 

Scenario 1 in that table es-
tablishes a baseline for the 
analysis with ramp uncer-
tainties covered by current 
CAISO practice. Scenario 2 
captures operational im-
pacts due to updated FRP 
requirements calculated us-
ing probabilistic forecasts, 
following our proposed en-
hanced solar forecast-condi-
tioned approach. Scenario 3 
establishes a reference cost 
of the system, without net-

Fig. 27. Aggregated wind and solar output in 
the WECC model 
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load uncertainties. Any costs incurred above this value can be attributed to provision of 
grid services to counter uncertainties experienced by the system.  

Table 4. Scenarios Simulation for Operational Impact Assessment 
Scenario 1 Business as usual using published FRP requirements from OASIS system 
Scenario 2 New FRP requirements calculated using probabilistic forecasts 
Scenario 3 Operator has perfect visibility of the system, i.e., zero netload forecast errors 

Due to HPC resource bottlenecks and data availability, the team performed a simulation 
of the CAISO system without transmission constraints for a three-week period in March, 
2020, but only performed simulations of the CAISO system with transmission constraints 
for selected 8 days during this three-week period. These days included 3/16-3/20 and 
3/23-3/25 in that year.  Simulation results with network constraints are summarized below.   

Figs. 29 and 30 show the FRP requirements using the baseline method (CAISO method) 
and proposed new FRP method (conditioned on weather, including information from the 
Watt-Sun probabilistic solar forecasts summarized in Section 9.1 above, using the BP2 
models created by UT-Dallas, described in Section 9.2). Apart from being conditioned on 
solar power forecasting, we also see that the new solar forecast-informed FRP matches 
the pattern of expected morning and evening ramps well. The FRP-down requirement 
from the new FRP method is greater during morning hours when solar power is expected 
to ramp up and net-load is expected to ramp-down, thereby requiring more FRP-down. 
On the other hand, the new method’s FRP-up is greater during evening hours, when solar 
power is expected to reduce, consequently causing net-load ramp to increase. Apart from 
these trends, other intermediate and diurnal patterns are due to changes in expected 
diurnal and hourly solar power forecasts and associated uncertainties. The proposed new 
solar-conditioned FRP method adapts itself well to the changing weather and forecasts; 
while the baseline method has highly similar FRP procurements for several contiguous 
days (due to the baseline method using historical 20-40 days as the basis for procure-
ment, without considering latest weather changes). 
 

 
Fig. 29. Flexible Down Ramp Requirement: Baseline Vs. New FRP 

 
Fig. 30. Flexible Up Ramp Requirement:  Baseline Vs. New FRP 
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The below tables and figures summarize cost impacts, including system production costs 
and uncertainty costs (i.e., the difference between experienced costs and the costs under 
the ideal circumstance of perfect forecasts). With the full network constraints considered, 
$0.43 million is saved during the 8 days simulated with the proposed FRP method.  

Table 5. Operational Impact from the Large 1820-bus CAISO system (5 day period) 
March 16th-20th 2020 (5 days) Baseline New FRP Perfect Forecast 

Production cost (M$) 66.9 66.5 52.31 
Uncertainty cost (M$) 14.59 14.19 

 

Savings (M$)  0.332 
 

Savings from prod cost (%)  0.5% 
 

Reduction in uncertainty cost (%) (Ac-
tual minus Perfect Forecast cost) 

 
2.34% 

 

 
Table 6. Operational Impact from the large 1820-bus CAISO system (3 day period) 

March 23th-25th 2020 (21 days) Baseline New FRP Perfect Forecast 
Production cost (M$) 39.74 39.65 33.94 
Uncertainty cost (M$) 5.8 5.71 

 

Savings M$)  0.097 
 

Savings from prod cost (%)  0.24% 
 

Reduction in uncertainty cost (%) (Ac-
tual minus Perfect Forecast cost) 

 1.6% 
 

 
While the reduction in production cost is more modest compared to the significant reduc-
tion we reported earlier with the smaller IEEE 118 test system (Hobbs et al. 2021), the 
reduction is in itself non-negligible in terms of magnitude and in line with expectations for 
large system simulations. There is a 0.4% reduction (~$430,000 reduction in 8 days) in 
production costs saving which stem from the slight modification of generation utilization 
throughout the day (March 16-20).  

Table 7 gives system FRP procurement costs (price paid times quantity procured). With 
the proposed FRP method, procurement is reduced over 11% in the first 5 days (March 
16-20) simulation in Table 5, and over 50% in the 3 days simulation shown in Table 6. 
The size of this cost saving depends on the FRP profile, and the system operation condi-
tions. High solar penetration and conventional generation flexibility-limited scenarios may 
further increase the benefits of using probabilistic forecast-based FRP procurements. 

Table 7. Total FRP procurement cost ($K) from the large 1820-bus CAISO system 
Time Period Baseline (Scenario 1) New FRP (Scenario 2) 

5 days: March 16-20 76.14 67.53 (11.3% savings ~$8.6K) 
3 days: March 23-25 60.38 28.9 (52.15% savings ~ $31.5K) 

 
The minor changes due to improved FRP produces about 40.1K$ savings in FRP pro-
curement costs for 8-day period. This value is about one-tenth of the production cost 
decreases noted above, likely because the marginal price of FRP does not reflect 
changes in lumpy start-up and minimum run costs associated with changes in unit com-
mitment.  Note that FRP procurement costs in CAISO in 2018 were about $25M/yr, and 
costs in 2019 and 2020 were about a third of this level according to CAISO Department 
of Market Monitoring reports. If we annualize this 40.1K$ per 8 days to an annual savings, 
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they extrapolate to about 1.9M$/year in savings, which is 7% of the 2018 actual FRP 
procurement costs, and 20% of the per year costs in 2019 and 2020. 

Thus, we have observed procurement cost savings of 11.3% (March 16-20) and 52.15% 
(March 23-25) with the large model including transmission constraints. (These results are 
consistent with more extensive 3-week simulations within March 2020 without the trans-
mission network, where we observed procurement cost savings of up to 12.7% in the 
large CAISO system without the transmission network.)  Therefore, simulation results 
on the large CAISO system meet the project’s success value of 10-25% cost savings. 

The large system (with transmission) daily production costs for the baseline CAISO and 
new FRP requirements cases are listed in Table 8.  They show considerable variation 
day-to-day, with the new requirements better on average, but actually worse (higher) in 
two of three days . The number of units in baseline CAISO requirement and new FRP 
requirements cases are shown in Fig. . The number of online units is close but not iden-
tical, with the greatest differences obvious in the last day-and-a-half, which is also when 
the new FRP requirements save the most money. More units are committed to meet the 
evening peak, and less are committed in the middle of the night. 

Table 8. Daily Generation cost in the large system simulation 
With transmission Base NewFRP New-Old %Change 

16-Mar 15357910.7 15428729 70818 0.5% 
17-Mar 12531502 12433532 -97970 -0.8% 
18-Mar 12215683.6 12291530 75846 0.6% 
19-Mar 11938095.9 11909754 -28342 -0.2% 
20-Mar 12329596.7 12073389 -256208 -2.1% 

 

 
Fig. 31. Number of units committed (with-transmission constraints cases, March 16-20 

We now examine the generation dispatch differences on the last two days (March 19-20), 
which are summarized in the Table  below. Fig. 32 shows a time series of the differences 
in generation from various sources between the new FRP and base FRP cases. From 
Table 9, it can be seen that the main generation dispatch is that the new case obtains 
more energy from steam and combined cycle units, and less from costly combustion tur-
bines and hydropower (which can have high opportunity costs).  This is the source of the 
cost savings from using the new requirements. 
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Fig. 32. Generation dispatch difference between base case and new FRP case 

Table 9. Generation dispatch difference (MWh) over March 19-20 between the new 
FRP requirements and the baseline FRP requirements case 

 Nuclear Steam CC CT Hydro Wind PV 
Sum  2276.4 12933.3 11367.9 -12294 -14587.7 -536 840 

  
8. Significant Accomplishments and Conclusions  

8.1 Task 1: Forecasting Accomplishments and Conclusions 

8.1.1. Progress towards a scalable forecasting system.  From our involvement in 
SETO’s SF-I, we learned that by utilizing multiple NWPs, one can build a model to under-
stand when, where, and how each NWP model performs, and by building a machine 
learning model to categorize different situations and treat each situation respectively, we 
can build a better solar forecast model. The key innovation of this previous research was 
that we found an effective way to enable customized modeling for each weather situation, 
which made the machine-learning model much more performant for extreme weather 
conditions. Competitive approaches would generally perform not as well and suffer from 
an overall averaging effect in extreme situations where little data was available.  

However, while it is generally believed that machine-learning (ML) and AI approaches 
hold significant promise for improved solar forecasting, it is also clear that they will only 
perform as good as the input data used for training. This is true for ML in general but 
especially for situation-dependent and probabilistic ML approaches. 

One of the main accomplishments of this research is that we have made significant pro-
gress towards building a much scalable solar forecasting system. However, scalability of 
solar forecasting will remain a huge challenge despite the progress we and others have 
accomplished here.  It will therefore warrant much more research as the amount of data 
to process is growing exponentially and becomes more complex. Watt-Sun 3.0 is the only 
solar forecasting system, which can be easily scaled to larger data sets.  

Most solar forecasting systems combine relational databases and object (or file-based) 
storage. Both approaches will not scale well for forecasting applications requiring data in 
hundreds of Terabytes. Towards that end, we have integrated a scalable backend tech-
nology, PAIRS Geoscope, which is key-value based and therefore scalable to hundreds 
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of Petabytes. It avoids slow file-based operations and enables parallel compute via frame-
works such as MapReduce or Spark. In addition, the PAIRS system deals automatically 
with different representations, reference systems, projections, spatial and temporal reso-
lutions of different inputs of weather information or weather models automatically by op-
erational industrial-scale ingestion pipelines from major content providers such as 
ECMWF, NOAA, etc.. Adding new weather information only requires activation of new 
pipelines, which will stream new data into the system as they become available. In this 
project we added numerous data sources important for solar forecasting such as HRRR 
and GOES-16. We implemented more ways by which PAIRS can support extracting “data 
frames” for subsequent ML tasks using an open-sourced SDK and Spark connectors. We 
develop techniques to deal with missing data and improved the reliability of the input data 
ingest, e.g., by developing a full monitoring and alerting tool for missing data. IBM has 
plans to open-source the PAIRS Software soon. The PAIRS SDK is already open-sourced 
and PAIRS provides OGC (Open geographic consortium) compliant web services. PAIRS 
is available for non-commercial purposes without a charge under an academic license.  

This accomplishment is also significant because it will provide not only provide a path 
forward to improve forecast skills by improved efficiency and leveraging more data, which 
are exponentially increasing. The PAIRS platform has cross-industry use cases which 
means it is more economic than single industry-focused systems. PAIRS is already the 
backbone of the IBM’s Weather Business Solutions. PAIRS has served up to 110M API 
requests per day and supports industry solutions/applications in energy, agriculture, in-
surance, and the public sector. For example, in the utility sector, PAIRS now supports 
commercial solutions including renewables forecasting, load forecasting, vegetation man-
agement, outage predictions, energy trading etc.. Towards that end, PAIRS includes 
many other non-energy related data which will become more important for decision mak-
ing tools. Examples of such data include land use, population, and critical infrastructure.    

8.1.2. Rasterized probabilistic solar irradiance forecasts.  The scalability of the PAIRS 
system has been exemplified by developing rasterized, short-term (1 hour ahead) proba-
bilistic solar forecasting data product based on GOES-16 and individual measurement 
stations. GOES-16 provides up to 3 Terabytes of new data per day, from which a signifi-
cant fraction is being ingested and curated in PAIRS in near real-time. While ingesting all 
that data is a challenge, it is equally a challenge to compute forecasts in a timely manner, 
especially considering that short-term solar forecasts. PAIRS and the described improve-
ments (e.g., batch exports for SPARK ML, etc.) enabled us to provide such a rasterized 
probabilistic short-term solar forecast which is believed to be uniquely differentiated from 
other forecasting systems. 

A key innovation in this accomplishment is a deep learning model to forecast GOES L2 
data from optical cloud depth. This model uses instead of a spatial convolution layer, a 
volumetric convolution neural network layer, which allowed conducting convolutions to 
automatically extract features that are spatial temporal correlated. Another important in-
novation is that this deep learning model was coupled to a quantile regression-based 
machine-learning model, which mapped the forecasted L2 data and the measured 
ground-level GHI. Fig. 33 shows an hour ahead GHI forecasts based on the approach for 
the 50% quantile on 02/15/2020 on 00:00 UTC for part of the Western United States.  
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Fig. 33. Example of Rasterized 1-hour probabilistic ahead forecasts 

8.1.3. Watt-Sun solar forecasting performance.  The different versions of the Watt-Sun 
forecasting systems delivered consistently improved accuracies, consistent with the mile-
stone targets.  These continual improvements are the foundation of IBM’s commercial 
offerings in this space.  

 Watt-Sun 0.0, which was an initial prototype, delivered a Brier score of 0.4 over three 
28-day periods for a single California site providing GHI forecasts at 15 minutes 
intervals with 4-hour forecast horizon and a refresh rate of every hour.  

 Watt-Sun 1.0 delivered GHI solar forecasts for 20 sites (10 sites in CAISO and 10 
sites in MISO regions). Forecasts were operational with 5 quantiles (0.05, 0.25, 0.5, 
0.75, 0.95) with a forecast horizon of 24 hours at 15 min frequency and refresh rate.  
Brier scores for each site were below 0.3 over two periods of 28 consecutive days, 
which is an improvement of 25% over Watt-Sun 0.0. Compared to an ISO standard 
ARIMA method Watt-Sun 1.0 achieved improvement of larger than 20%.   

 Watt-Sun 2.0 was evaluated for the same 20 sites. Forecasts were made for the 
same 5 quantiles with a forecast horizon of 24 hr at 15 min frequency and refresh 
rate. Forecasts were evaluated using the P-P plot score in comparison to bias-cor-
rected HRRR GHI forecasts. Watt-Sun 2.0 not only performed better than Watt-Sun 
1.0 based on Brier scores but also showed a 20% improvement in the P-P plot score 
over bias-corrected HRRR GHI forecasts. In terms of rMAPE. Watt-Sun 2.0 also 
performs better, with a 17% improvement over HRRR bias-corrected forecast.  

Finally, Watt-Sun 3.0 was evaluated based against persistence for 24 sites, but the same 
forecast horizons, frequencies, and quantiles as Watt-Sun 1.0 and 2.0. Watt-Sun 3.0 
showed that 79% of Watt-Sun 3.0 probabilistic forecasts are better calibrated than the 
(probabilistic) persistence estimator. More specifically, for the forecast horizon of 4 hours 
and for 7 stations, a consistent improvement of at least 20% of the P-P-plot metric was 
achieved by Watt-Sun 3.0 as compared to a persistence estimator. Additionally, 2 stations 
achieve a consecutive run of at least 28 days for a 30% P-P-plot metric improvement. For 
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the forecast horizon of 24 hours and for 11 stations, a consistent improvement of at least 
20% of the P-P-plot metric was achieved as compared to a persistence estimator. 

8.2 Task 2: Reserve Requirement Definition Accomplishments and Conclusions 

Contributions of this task include: 1) development of a systematic way to prepare, pro-
cess, and extract key features from probabilistic solar forecasts, which can be used by 
market operators in conjunction with data-driven methods to make weather-informed de-
cisions; 2) demonstration of the trade-offs between system reliability and market effi-
ciency as different parameters or procurement strategies are selected; and 3) modeling 
FRP and regulation as a two-objective (reliability and procurement) optimization problem. 

By applying the proposed kNN-based FRP requirements method to the CAISO 15-min 
RT market, our results from three representative months in 2020 suggest that the pro-
posed method can improve the performance compared to the baseline in terms of both 
system reliability and oversupply relative to need. Because of the performance sensitivity 
to the kNN parameters, we also proposed a selection method to dynamically identify the 
best kNN parameters per hour of the day, which allows power system operators to max-
imize the benefits of the kNN-based method. Key insights from our results include: 

1. The performance of the kNN-based method varies across classifiers and the kNN 
parameters. Generally, a greater K results in more conservative estimations, i.e., 
greater FRP requirements and increased reliability levels. 

2. Despite variations in performance, the solar/weather-informed decisions have better 
reliability and market efficiency most of the time, notably during early morning and 
late afternoon, when sunrise/sunset cause greater uncertainties.  

3. Although different classifiers from a single site explain weather uncertainty from dif-
ferent perspectives, they also present considerable correlations. In addition, a com-
parison of results using forecasts from different sites suggests that geographical 
variations can affect performance. In response, the PCA-based method effectively 
characterizes the system-level weather uncertainty by using only a reduced set of 
principal components, and results in improved performance when compared with all 
single-site cases. The proposed approach is extendable to include more sites (e.g., 
the entire CAISO region) to further improve the performance, and therefore promises 
even greater benefits in real applications. 

4. Different from the kNN-based method that is bounded by similar days, the machine 
learning-based methods learn to estimate reserves with greater variations. Moreo-
ver, the ML/DL-based methods tend to underestimate FRP requirements, which fur-
ther result in increased frequencies of FRP shortages. This is because FRP require-
ments are subject to a lower bound of 0 MW but no upper bound, and because the 
ML/DL-based methods put the same weight on the two objectives of FRP shortages 
and oversupplies, so underestimating FRP requirements result in smaller prediction 
errors. Thus, a better objective function is required in the ML/DL-based methods to 
better account for real world trade-offs between reliability and economics.  

5. Our solar forecast-conditioned requirements for FRP and regulation-up consistently 
showed better performance than the CAISO baseline methods which did not con-
sider weather or solar conditions. For FRP, although the ML/DL-based benchmarks 
can potentially reduce FRP oversupply, at the same time our methods present better 
reliability. Further, the optimized PCA-kNN results outperform the best adjusted 
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CAISO benchmark results in Aug. 2020, indicating superior and robust performance. 
In general, our optimized PCA-kNN results present better performance than CAI-
SO's baseline across all months. In addition, quadratic regression methods for esti-
mating requirements also outperformed CAISO’s baseline method in out-of-sample 
tests, although which particular specification depends on the month and time inter-
val. Meanwhile, for regulation-up, short-term (2 hr-ahead) prediction of area control 
error (adjusted for reg-up deployment) using solar forecasts and time series data 
yields real-time reg-up requirements that outperform the present day-ahead method.    

8.3 Task 3: Visualization Accomplishments and Conclusions 

We have shown how RAVIS successfully integrates forecast data from the IBM Watt-Sun 
system, in addition to in-house NREL forecasts, that can be refreshed periodically. We  
have also provided information on the innovations and unique features of this tool, the 
basic architecture and open-source libraries used, and illustrations of use cases where 
site-specific solar power forecasts have been integrated and ramp alerts are visualized 
at the site and regional levels. One use case also includes the integration of market clear-
ing data to provide a proof of concept for plug-and-play layered architecture of heteroge-
neous data integration and seamless integration of system operational data visualization 
in conjunction with forecast data. Example data includes network topology, nodal attrib-
utes (flexibility, prices), transmission congestion, and available aggregated generation 
flexibility (compared to regional aggregated net load probabilistic forecast and ramps).  

The vision is for this tool to be used by end users who can tweak it as driven by their 
particular needs. End users can expand it to include alerts to ingest more sensor data 
and weather data into this common platform, including site-level cyber anomalies and 
regional stability alerts, and they can superimpose severe weather events to forecast their 
evolution and the affected regions. Additionally, given the importance of co-simulating 
bulk transmission and distribution systems to study the role of distributed energy re-
sources (DERs) to mitigate stability issues under various IEEE 1547 standards, the visu-
alization can be expanded to include high spatial resolution of distribution networks with 
customer-sited DERs that are connected to respective transmission substation nodes. It 
is acknowledged that each end user might have their own needs for features; therefore, 
although this final report summarizes the set of standard developments related to specific 
tasks involved in the SETO-funded project, the tool is flexible for further R&D. 

8.4 Task 4: Simulation-Based Benefits Accomplishments and Conclusions 

The baseline FRP requirement (using the CAISO’s method) and the new FRP require-
ment with the proposed solar forecasting method have been compared for a large trans-
mission network (WECC, including the CAISO). The multi-timescale power system simu-
lation tool, FESTIV, has been used for this simulation. Three cases representing the base-
line FRP requirement, the new FRP requirement, and perfect forecasting are analyzed. 
We find that using the proposed solar-informed FRP requirement estimation method, sys-
tem generation cost and FRP procurement expense can be reduced in this large system. 
The technical challenge of large-scale transmission network simulation have been solved 
using NREL high performance computers, which can be leveraged for future studies. 

9.  Budget and Schedule 

See the final RPPR2 and SF-425 reports for financial details.  The federal project budget 
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has been underspent slightly (4%), which has not impaired the ability of the project team 
to accomplish the goals of the project. The budgeted cost-match goal been met. Due to 
COVID-caused obstacles to use of the high-performance computing facility at NREL, 
there were delays in completing the Task 4 system simulations to assess the benefits of 
solar uncertainty-informed ramp requirements, and the simulations were less extensive 
than initially planned.  To accommodate the adjustments and delays in the project tasks, 
a 6 month no cost extension was requested and granted. 

10.  Path Forward  
10.1  Task 1: What’s next for probabilistic solar forecasts? Algorithms to scaling 

Despite the progress the technical community has made in advancing methods and tech-
niques for solar forecasting, it is becoming increasingly evident that improved algorithms 
alone, whether physics-based, data-driven or a combination, will not bring about the re-
quired forecasting accuracies, especially for high impact situations of extreme weather 
conditions, where it matters the most. In fact, it is a perhaps painful realization of the “AI 
revolution” that such approaches and techniques are often not scalable and must lever-
age much bigger data sets to become more robust [51], to yield reliably the required ac-
curacy, and to be able to inform high-value decisions for operations as the grid becomes 
more complex and as we are moving from renewable energy forecasting to integration. 
That is, research must shift from developing algorithms to a focus on scaling the underly-
ing information architectures that support these approaches. On a practical level, this 
means that such AI-enhanced big data technologies (i) must not only be generalizable to 
make them economic. Further, (ii) they must be extendable as one seeks to manage more 
complex and larger energy systems as exponentially more data is becoming available.   

On a technical level the challenges can perhaps be best explained by the notion of data 
gravity, which results from two facts. First, the data sets required to fuel more complex 
and robust models for renewable energy generation have become very big. For example, 
take weather or climate data. Every day, hundreds of TBs of weather/climate-related in-
formation are generated (e.g., weather stations, radar or satellite observations, or model 
forecasts), which are growing >25%/y [51]. For example, 100 TBs daily takes more than 
a week to move from a storage device to the memory of processor for subsequent com-
putation (at 100 MB/s read speed of a hard disk). Second, most applications require ad-
ditional data sets (e.g., advanced metering infrastructure or electrical grid networks) that 
must be linked, for instance to enhance the fidelity of a machine-learning model.  

Data gravity describes the fact that data sets are too big to be moved and thus big data 
tends to attract more data - in the same way a bigger mass attracts a smaller mass. Data 
gravity also means that data movement must be minimized. While in other domains (i.e., 
consumer choice prediction), specific and proprietary technologies have been invented 
to overcome some of the discussed challenges, one should keep in mind that in case of 
the energy sector we are dealing not only with even more data, but the information is also 
much more complex and heterogenous, compared to the consumer market where one 
might work with a common data set such as web pages. On a technology level, data 
gravity does not only mean that next generation scalable systems and platforms must 
heavily leverage (public and/or private) cloud computing but also one must invent new 
information architectures that will (i) drastically minimize the data movement and (ii) ena-
ble indexing and linking of highly heterogenous data so that they become query-able and 
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search-able (in the same way we can search today 40B webpages in 0.5s). The core of 
a new program could include research, development, demonstration and commercializa-
tion of such a novel information architecture and system, which will enable vastly superior 
exploitation of energy relevant data for the application of renewable energy integration. 
Research questions and subtopics may include: 

• Novel forms of indexing plus distributed data and computing architectures (for pro-
cessing energy relevant data, e.g., time series, geospatial, weather, and AMI data), 

• New architectures and designs to facilitate complex “in data” computation with min-
imal data movements,  

• Hybrid computational approaches to facilitate distributed learning across multiple 
data repositories, and  

• Development of benchmarks for testing new information architectures. 

10.2  Task 2: Informing Ancillary Services Requirements 

In general, there are at least three open research questions for the development of prac-
tical weather-informed estimation methods for ramping requirements. First, methods that 
provide probabilistic forecasts of solar irradiance are yet to be thoroughly validated during 
long periods using metrics such as P-P plots, sharpness indices, and Brier scores.  Trans-
lations into solar power uncertainty also need to be validated. Second, uncertainty related 
to wind and gross load should also be considered. Third, multiple balancing products 
address uncertainty of net load. Future work will assess the potential of weather-informed 
methods for additional balancing products including ramping and regulation using the 
framework.  We now discuss these directions in more detail. 

It is estimated that CAISO's solar power uncertainty contributes at least half of overall net 
load uncertainty. Therefore, we have focused on the uncertainty component caused by 
solar power only, and we assume perfect foresight for wind and load. Future work should 
address quantification of economic and reliability benefits of using integrated solar, wind, 
and load probabilistic forecasts in system operations to inform ancillary service and flexi-
ble ramp requirements.  Those requirements should be defined taking a multi-objective 
approach, as we have shown in our Pareto methods for defining solar uncertainty-in-
formed requirements considering reliability and economics (Sect. 7.3). The appropriate 
balance of the two objectives would be user and situation dependent and would best be 
selected after studying the trade-offs embodied in the set of efficient (Pareto) alternatives.  

In the FRP estimation work, a critical caveat in our analysis is that the solar power output 
is converted from solar irradiance by using simulation tools, which may not reflect the 
actual irradiance-to-power conversion because of imperfect knowledge of technical pa-
rameters of real-world solar power plants, such as inverter capacities, PV panel capaci-
ties, and degradation rates. Future work can calibrate the simulated results by comparing 
it with real-world data or conducting sensitivity analyses to address parametric uncertain-
ties. Comparative studies can also be conducted to demonstrate the impact on the model 
and, ultimately, power system performance by using simulated PV power as classifiers. 

Incorporation of solar forecasts in requirements definitions could be extended to other 
ancillary services, as we show for regulation.  Due to limited data availability, only regu-
lation-up is examined, and preliminary results are obtained. Future work can aggregate 
the merits of the classification methodology for intra-hour short-term forecasting, and 
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adaptive procurement for regulation and other ancillary service requirement estimation in 
electricity markets.  In addition, improved forecasts will likely result from training separate 
ML/DL models for different weather classifications using more years of data.   

The algorithms and outcomes of this project could be leveraged for potential commercial-
ization through future DOE SIBR/STTR projects. In addition to utility-scale solar genera-
tion, the methods could extend probabilistic solar forecasting to behind-the-meter (BTM) 
generation, and account for BTM solar in determining needed reserve products. 

10.3 Task 3: Ramp and Uncertainty Visualization 

Advanced real-time operation and control of renewable resources.  We’ve illustrated 
how operators can be informed by visualization of ramps and solar uncertainty.  Future 
work could emphasize helping end users to obtain a much more comprehensive situa-
tional awareness, allowing them to relate resource forecasts and their ramps to power 
system operational metrics, such as generation flexibility, transmission congestion, and 
nodal prices. Any of these system metrics could be used as additional alerts, and an 
operator could take appropriate corrective actions knowing the status of the grid in real 
time. For instance, while responding to nodal inflexibilities, it would be good to anticipate 
transmission congestion to ensure that the decision to add additional reserves can be 
effectively delivered to the required location. If such delivery is challenging because of 
congestion, an operator could resort to controlling the outputs of variable renewable re-
sources in that location (again, by looking at the resource forecasts and anticipated ramps 
in those local resources) and curtail or adjust ramp rates to meet the reliability and avoid 
a ramp scarcity event and the consequent real-time price spikes. These are some ad-
vanced control room real-time operations that could be made feasible by an interactive 
and dynamic visualization platform that provides comprehensive situational awareness 
by ingesting heterogeneous data along with probabilistic solar, wind, and load forecasts.  

Component-level forecasts, ramping, and innovative solutions for additional flexi-
bility. The use cases presented in Section 8.3 illustrated the visualization of solar power 
forecasts and net load forecasts, but this tool is customizable to visualize every compo-
nent of net load individually—i.e., utility-scale solar, distributed solar power, wind power 
and load power—and their aggregated form as net load. Therefore, a system operator 
could look at the relative contributions of each component of the net load variability and 
uncertainty at the nodal or regional level and accordingly devise mitigation strategies as 
well as compensation mechanisms. One could quantify the components that aid system 
reliability and the components that deleteriously impact reliability and identify locations 
where additional flexibility in the system might be beneficial. Such analysis could also 
encourage the owners of these variable renewable power plants to develop innovative 
solutions for enhancing flexibility and reliability, including investigating options to install 
co-located or AC-/DC-integrated storage and hybrid systems. 

10.4  Task 4: Simulation-Based Benefits of Using Probabilistic Forecasts 

Preliminary results are encouraging for the development of more accurate ramping re-
quirement estimation methods (possibly weather-informed), based on simulations of a 
small test system as well as a large (Western US) system during a sample of days in 
March 2020, as described above.  However, net cost and reliability simulations for a 
longer period (e.g., a year) are needed to provide definitive benefit estimates that will be 
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most useful to operators. Considering longer periods will be useful for identifying (a) is-
sues such as nondeliverability of reserves that prevent the realization of benefits and (b) 
periods during which more accurate quantification could be most valuable. Given the im-
portance of system effects, future simulations should use realistic systems under a wide 
range of scenarios, including varying penetration levels of renewable resources. We will 
also analyze correlations of real-time power balance violations with traditional reliability 
metrics such as control performance standards [52] because violations provide infor-
mation on both economic (out-of-market corrections) and reliability performance. 

11. Inventions, Patents, Publications, and Other Results 

See RPPR2 for workshops (3), websites (2), and other conference/workshop talks (29). 
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