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3. Executive Summary
How can probabilistic solar forecasts lower costs and improve reliability for independent
system operator (ISO) markets? We tackle this question in three steps (Fig. 1). First, we
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enhance an existing solar forecasting system to provide well-calibrated hours-ahead
probabilistic forecasts. We then relate the degree of uncertainty in those forecasts to error
distributions for net load ramps for the California ISO (CAISO) using statistical and ma-
chine learning methods. Projected net load errors conditioned on solar uncertainty are
translated into flexible ramp requirements that therefore reflect real-time meteorological
and solar conditions, improving on typical ISO procedures. Finally, a multi-period look-
ahead production cost model quantifies how conditional ramp requirements can a) de-
crease operating costs by lowering requirements compared to often conservative uncon-
ditional methods, and b) reduce generation scarcity events and consequently improve
reliability by increasing flexibility requirements at times when unconditional forecast-
based requirements understate actual ramp uncertainty.

Fig. 1. Organization of analysis of the cost savings and reliability improvements result-
ing from use of probabilistic solar forecasts to define ramp product requirements

In addition to the products just described (quantification of solar uncertainty, its translation
into requirements for ramp capability product, and quantification of the benefits of more
accurate ramp requirements), this project also developed a visualization system that
alerts system operators of ramp and uncertainty conditions within the network based on
solar forecasts. The system is called Resource Forecast and Ramp Visualization for Sit-
uational Awareness (RaVIS).

These four products represent significant advances in the state-of-the-art of probabilistic
solar forecasting, development of weather-informed reserve requirements, production
costing methods for estimating the benefits of more accurate reserve requirements, and
visualization of system status, respectively. Yet the products are also practical and can
be immediately implemented, potentially enabling system operators to save millions of
dollars in ramp product procurement costs per year.
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5. Background
5.1 Task 1 Background: Solar Forecasting

The field of big data-driven probabilistic solar forecasting is evolving fast, driven by the
rapid growth in cleaner energy sources, adoption of new decision-making processes by
grid operators, and forecasting advances [1]. Solar forecasting research can be divided
into (i) improved physics in numerical weather prediction models, (ii) developing non-
physical (data-driven) forecasting approaches leveraging statistics, machine-learning and
Al, and (iii) fusing physical and data-driven approaches [2].

What models may provide the best skills is a very complex question and depends on
multiple factors including forecast horizons, forecast locations, and weather situations. In
general, physics-based models perform well between 1-10 days and often cover large
ranges, while data-driven approaches can have competitive or superior skills in short-
term and longer-term forecasts but are often limited to point locations. The fundamental
challenge with physics-driven approaches is not only that they are computationally very
intensive as they require solving the full Navier-Stokes Equations on a “grid”, but perhaps
more fundamentally that the physics is simply too complex and not fully understood, es-
pecially as it relates to turbulence, cloud formation and dissipation mechanisms. On the
other hand, the trouble with purely data-driven approaches is that they not only perform
poorly if there is not sufficient clean “training” data available but on a more fundamental
level, they often fail in extreme weather situations, where there is no prior in the training
data while at the same time good forecasting skill is most crucial.

Advances of physics-based numerical weather predictions have been described and
summarized by Bauer et al [3]. An example of improving the forecast skill for solar radi-
ation from a physics-based model is the development of WRF-Solar, a customization of
the Weather Research and Forecasting (WRF) Model for solar forecasting applications.
The customization included improved representation of aerosol-radiation feedback, the
incorporation of cloud—aerosol interactions, and improved cloud-radiation feedback [4].

There is no shortage of research on data-driven methods, which include many regression,
machine learning (ML), and Al models. Overviews can be found in [5-7]

It became evident from our review of prior work that we not only must integrate physical
and data-driven approaches but also must make data-driven approaches more robust.
Hence, more scalable approaches that leverage big data technologies are required. With
such technologies models will have more training data, enhancing their robustness. Also,
tens to hundreds of different models can be leveraged for model blending and selection.

Towards that end, the approach in this research project is unique and ahead of its time
by pioneering the limits of data-intensive solar forecasting approaches. While scaling
such approaches to larger and more complex situations remains a challenge, we have
begun to make significant contributions by applying big geospatial data technologies to
probabilistic solar energy forecasting, which for example enabled the scalable integration
of multiple models and exploitation of massive data sets such as GOES-R.

5.2 Task 2 Background: Informing Reserve Requirements with Forecasts

The increased contributions of uncertain and variable resources has prompted changes
in power market design and operator practices [8]. Operators assess solutions that help
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manage the uncertainty and variability of load and renewable generation. Among these
are reserve products, especially the novel ramp product, which is an important feature in
several U.S. power markets (MISO [9], CAISO [10], Southwest Power Pool [11]) to miti-
gate rapid net load changes caused by increased penetration of variable resources.

A key step in the market scheduling process is to define ramping product requirements.
This involves trade-offs between market efficiency and system reliability. Too low or too
high requirements can pose a risk to system reliability or system costs, respectively.

Historically, studies that define requirements for reserves and co-optimize energy and
ancillary services can be divided into two categories based on how the requirements are
determined: endogenous and exogenous [12,13]. Endogenous methods usually model
the renewable and load uncertainties explicitly using a variety of techniques, such as sto-
chastic optimization, robust optimization, and chance constraints, and simultaneously op-
timize where, how much, and when reserves are most economically provided to meet
possible realizations of net load. However, the computational burden of endogenous
methods is at least one of the reasons why no U.S. power system operators have adopted
such a method. Instead, in practice, power system operators rely on exogenous methods.
The exogenous methods estimate system-level ancillary service requirements ex ante
with lead times specific to particular markets. Traditionally, system operators use deter-
ministic methods, where certain percentages of peak load are used as reserve margins.
This method, despite its simplicity, usually fails to satisfy system reliability standards effi-
ciently owing to growing uncertainties caused by increasing renewable penetration.

Consequently, probabilistic methods [14] are sometimes adopted to estimate ancillary
service needs based on the uncertainty levels of net load. Probabilistic forecasts explicitly
account for uncertainty information, usually in the form of parametric probability distribu-
tions, or non-parametric forms such as quantiles, uncertainty intervals, and kernel density
estimates. In the last decade, the value of probabilistic forecasts became increasingly
recognized in power system applications [5]. For example, in [16], probabilistic wind and
load forecasts were used to determine operating reserve requirements based on trade-
offs between reliability and procurement costs. In a SF-II project supported by SETO, Ref.
[17] also used probabilistic forecasts as input for generation of scenarios that were later
used to determine operating reserve requirements. Refs. [18], [19] showed how to reduce
the regulation requirements by employing probabilistic net load forecasts, which were de-
rived from probability distributions of multiple net load components by convolution.

Although probabilistic forecasting is adopted in some markets, it is used primarily to im-
prove situational awareness and rarely plays any important role in the decision-making
process. Our work in this project represents a practical method that is easily implementa-
ble and extensible by any power market operators. This section features a particular
method for relating solar probabilistic forecasts to reserve requirements, the k-nearest
neighbors (kNN) method, which can also be used to define requirements for other market
products that depend on historical data, such as regulation and non-spinning reserves.

5.3 Task 3 Background: Existing Visualization Capabilities & Forecast Integration

Control centers typically host several screens for visualizing network situational aware-
ness, such as network one-line diagrams, circuit breaker/switch status, and graphs sum-
marizing available reserves. Information about impending high-impact contingencies, as
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well as their impact on transmission line overloads, and in some cases system voltage
and transient stability are displayed [20]. The idea of situational awareness in the form of
real-time visualization, updates on event alerts, and plausible control locations/parame-
ters is not new; however, enhancements are desirable because there are higher penetra-
tion levels of variable renewable generation and associated uncertainties.

With increasing uncertainty and emergent dynamic events, the awareness that is conven-
tionally reported at aggregated levels is insufficient. The following capabilities are needed:

¢ Innovative ways to integrate variable renewable forecast data—including at higher
spatial resolutions and for distributed site-level resources—apart from conventional
aggregated data. Given the role of distributed variable renewable resources to pro-
vide system flexibility in the future, individual resource’s forecasts will become key
to improved visualization and observability to the system operators.

e Probabilistic forecast data integration that quantifies uncertainties related to variable
renewables, which will be key to assessing risk associated with system dispatch.

e Timely alerts of excessive ramping events for net load and for each component of
the net load—namely, different variable renewable resources.

e Zonal-, regional-, and even nodal-level generation flexibility information, which will
ensure the timely deliverability of flexible resources in to offset unanticipated re-
source or net load ramps and to ensure reliability and resilience.

This section discusses some salient work performed in this space during the last dec-
ade—specifically, visualization capabilities that were built in response to the drastic in-
crease in wind and solar generation penetration across the world, as reported in [21,22].
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Fig. 2. BPA prototype of forecast display in the control center [21]

The simplest control center visualization tool for variable renewable forecasts is a time
series of an aggregated average forecast (typically at 5 or 60 min intervals), bounded by
upper and lower limits [21], as well as past observed generation. Fig. 2 [21, Fig. 57] shows
an example from the Bonneville Power Administration. Worst-case scenarios define
bounds in most cases, such as power loss from icing.

Some operators like to use these data to gain further information on the needed reserves,
as shown in Fig. 3 from the Organization of the Nordic Transmission System Operators
[21]. This is an example of using the variable renewable generation forecasts to estimate
the needed reserves; it displays the available reserves across various regions.
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Fig. 4 [21] presents another
prototype decision support
tool, developed by the Al-
berta Electric System Oper-
ator for their generation dis-
patch operations. This visu-
alization and decision sup-
port tool facilitated the inte-
gration of variable renewa-
ble generation forecasts
(specifically wind power in
the Alberta, Canada, region)
and system load forecasts
into system operations. The
visualization screen shows
forecasts and available re-
serves (capacity & ramp) in
the 60-minute time interval.

The illustrations shown so
far include aggregated dis-
plays of forecasts and
needed reserves. Fig. 5 [21,
Fig. 78] shows regional
(heat map) wind speed fore-
casts and expected ramp
events and alerts in the
Texas system. Fig. 6 (from
[21]) shows another exam-
ple from RTE France, where
site-level wind power fore-
casts are related to real-
time power flows on the
transmission system and re-
sulting bottlenecks.

B ——

;:

Fig. 5. Electric Reliability Council of Texas large ramp alert: (L) wind speed, (Center)
wind speed change (hourly), (R) radar reflectivity [21, Fig. 78]
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Most previous efforts
used deterministic
forecasts, and there
were facilities to in-
clude additional “what
if” scenarios and the
consequent events
and alerts. Fig. 7
shows a collaborative
effort from the Pacific
Northwest National
Laboratory ~ (PNNL)
and CAISO to inte-
grate probabilistic
forecasts specifically
to understand if there
was enough real-time

Fig. 6. RTE France main operator display for regional fore- | ramping capability in

casts and congestion [21] CAISO [23]. Fig. 7
shows the available

generation capacity (the gray area) overlaid with the probabilistic net load forecasts, indi-
cating the points in time where generation availability might not be enough to meet the
net load changes. Fig. 7 shows—apart from the available generation and probabilistic
forecast—the up/down ramping capability that is needed from the generation.

5.4 Task 4 Background: System Simulation to Assess Cost and Reliability Im-
pacts of Improved Reserve Requirements Based on Solar Forecasts

Past projects have demonstrated the ability of ramp products to manage uncertainty and
variability. Ref. [24] showed that ramping constraints can help operators meet expected
variability; however, ramping constraints might not be cost-efficient when the deployment
costs of ramping are not considered in the objective function that the market software
optimizes. Refs. [25,26] demonstrated how ramping constraints can assist system oper-
ators in managing uncertainty, but ramping constraints might be less cost-efficient than
an “ideal” stochastic unit commitment method. Ref. [27] discussed how the occurrence of
variability and uncertainty can lead to energy imbalances and undesirable outcomes,
such as power balance violations, real-time price spikes reflecting administrative penal-
ties for violating constraints, leaning on regulation or interconnection, and out-of-market
corrections. That paper concluded that a ramping constraint and product are more prac-
tical for managing uncertainty and variability than complex, time-consuming models and
market formulations that capture stochastic processes and multiple possible futures.

However, the economic efficiency of ramping products depends on effective estimates of
ramping requirements [25,28]. In practice, ISOs use samples of past forecast errors and
calendar information, such as hour and type of day, in order to estimate a parametric or
empirical probability distribution function (PDF) of net load (load minus renewable gener-
ation) [9,10]. Then, operators estimate either moments of parametric distributions [29] or
percentiles [30] that they later use to determine ramping requirements. As systems
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change, ISOs assess the impact of additional factors on the PDF of net load. In particular,
with the increase in variable energy resources (i.e., solar and wind generators), uncer-
tainty related to forecasted generation by those resources might also increase. Weather
conditions affect uncertainty related to forecasted generation by variable energy re-
sources [31]. Therefore, state-of-the-art research is investigating whether real-time
weather forecasts and measurements can be leveraged to estimate the net load PDF and
associated balancing needs with increased accuracy.
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Fig. 7. CAISO ramping feasibility visualization developed by PNNL: (a) net load ramp,
(b) load-following capacity requirements and availability, and (c) load-following ramping
requirements [23, Used with permission]

For instance, CAISO is currently exploring the impact of weather variables on historical
uncertainty of net load. Preliminary quantile regression analysis suggests that generation
forecasts for variable energy resources and potentially temperature are statistically sig-
nificant for the historical uncertainty of net load [32]. Ref. [33] used forecasts by numerical
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weather prediction models to develop probabilistic forecasts of net load and concluded
that weather- informed probabilistic forecasts of net load can yield different (on average
lower) balancing and regulation requirements than status-quo methods. Ref. [34] reached
a similar conclusion by integrating forecasts of renewables as well as weather (irradiance,
wind speed, temperature) into a dynamic reserves sizing methodology in Belgium.

The effectiveness of such new sizing methods for balancing products [33,34] has been
assessed in two ways. First, researchers record how frequently estimated requirements
exceed the actual needs during a historical period, thereby estimating the reliability level
of the proposed methods [33]. Second, researchers [33,34] compare the estimated re-
quirements to the status quo requirements. They hypothesize that higher (than the status
quo) requirements will improve system reliability, whereas lower requirements will reduce
costs; however, there are no reports in the literature of estimates of the value of alterna-
tive balancing product sizing methods in terms of quantitative reliability and economic
performance. Therefore, the validity of the hypothesis is yet to be tested.

6. Project Objectives

This project’s objective is to assess the impacts of adopting improved flexible ramp prod-
uct (FRP) requirements on power market operation from both economic and reliability
perspectives. FRP is the procurement and possible deployment of spare capacity in op-
erating markets in order to accommodate forecast or unpredicted changes, or “ramps,” in
net load (gross power demand minus wind and solar generation). This product is an in-
creasingly important tool for managing net load variability and uncertainty in day-ahead
and/or real-time markets run by three major ISOs (CAISO, MISO, and SPP). Solar gen-
eration is large and growing contributor to this variability and uncertainty, and its effective
management will be critical to economic and reliable integration of the large amounts of
solar energy that is anticipated to come on-line in coming decades. Achieving the nation’s
energy transition goals depends critically on the success of this integration.

Since net load variability and uncertainty depends strongly on weather conditions and
instantaneous amounts of wind and solar output, so too will the amount of FRP needed
to manage them. Too much FRP, and the economic efficiency of the grid will degrade
because of unnecessary procurement costs are incurred. Too little FRP, and system
reliability will be at risk or excessive costs will be incurred due to the need to quickly start
up high-cost generators. Recent developments in forecasting tools that enable operators
to characterize uncertainty in the components of net load—gross load, solar, and wind—
have the potential to help define FRP needs more accurately since uncertainty in those
components likely contribute significantly to uncertainty in net load ramps.

The objective of this project is to test this hypothesis by developing a state-of-the-art solar
probabilistic forecasting tool (Task 1); developing and testing statistical and machine
learning models that relate solar prediction width forecasts (a measure of solar uncer-
tainty) to net load uncertainty, based on ISO data (Task 2); creation of visualization tools
that communicate ramp and uncertainty forecasts to operators (Task 3); and production
simulation analyses for an ISO to quantify the reliability and operating cost benefits of
more accurate forecasts of FRP needs (Task 4). Detailed goals by task are summarized
next. These tasks have been conducted in close consultation with two ISOs (MISO and
CAISO), and have yielded practical and demonstrably beneficial tools for forecasting solar
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uncertainty and defining FRP requirements. In particular, as described later in this final
report, the tools have met the forecast improvement and cost savings targets set forth in
the project’s milestones and go/no-go decisions.

Task 1 Goal: Advanced big data-driven probabilistic solar forecasting platform.
Task 1 of this project includes subtasks to enhance the previous deterministic IBM Watt-
Sun forecasting system to provide high fidelity and accurate probabilistic forecasts for the
CAISO and MISO balancing areas. Because the Watt-Sun technology is based on ma-
chine-learned blending of multiple forecast models, it works best with a large amount of
historical data (TB per day). Towards that end, the team integrated the Watt-Sun fore-
casting system into IBM’s PAIRS big data technology, based on a Hadoop/Hbase cluster,
allowing distributed and scalable processing [35,36]. PAIRS provides a generic and
highly scalable platform to train Watt-Sun on hundreds of terabytes of big data from many
forecasting and historical sources. Based on PAIRS big data-based error characteriza-
tion, multi-expert machine learning methods were to be employed to enhance Watt-Sun’s
model blending, and to generate probabilistic solar power forecasts. This allows system-
atic and thorough characterizing of forecast errors of current models as a function of fore-
cast horizon, weather situation and locations, and to learn a blended “super” model for
many sites and regions in the respective ISOs. The resulting probabilistic forecasts have
also been shared in mutually agreed upon formats to the validation team in Topic Area 1.

There are four innovations we planned to add to the original Watt-Sun forecasting system
from Solar Forecasting I.

Innovation 1. The big data bus of the initial Watt-Sun system reached its limitation in terms
of scalability and how much data can be injected. The reason is that the data size relevant
to solar forecasting has been exploding, for example:

e Global Forecast System (GFS): 140GB/day, increasing to 1.5 TB/day
e Global Ensemble Forecast System: 302GB/day, increasing to 3 TB/day
e GOES: 80GB/day for CONUS, increasing to 900 GB/day

Thus, the Watt-Sun data management system has been replaced by PAIRS (Physical
Analytics Integrated Data Repository and Services), a scalable platform for geospatial-
temporal data. PAIRS improved speed, maturity, and data processing throughput more
than 50-fold compared to the previous system. It enables “automatic” fusing of satellite,
weather and sensor data; support tens of PB; and can inject data much faster than the
current system (eventually up to hundreds of TB/day). Crucially, PAIRS can distribute
forecast data in a scalable matter. PAIRS supports a state-of-art REST APl and SDK,
enabling project partners and others to build applications on top of the system. In addition,
PAIRS supports WMS mapping services as inputs to visualization applications.

Innovation 2. This goal was to develop a new short-term solar forecasting module, lever-
aging initial work from Solar Forecasting |, where we enhanced “convection-based” fore-
casting-based GOES satellite observations with a 2D Navier-Stokes equation. This mod-
ule needed to be more thoroughly tested and then put into operation for the continental
US. We leveraged the new GOES-R data in this task; that data has significantly better
spatial, temporal, and spectral resolution than the previous GOES (-13/-14) satellite data.

Innovation 3. A powerful innovation that resulted from the Solar Forecasting | project is
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situation categorization for the machine-learning. This allowed separate modelling of spe-
cific weather situations, thereby enhancing overall accuracy. In Solar Forecasting |, the
situations were identified using FANOVA (functional analysis of variance), which has its
limitations because in essence it only identifies categories based on “point” validation
data (such as from a single solar plant). A goal of Task 1 of this project was to extend this
work by using deep learning techniques, which can identify situations based on full im-
ages or raster observations, such as from the GOES satellite.

Innovation 4. A primary goal of Task 1 of this project was to extend Watt-Sun’s capabilities
to include probabilistic estimates for irradiance for points and regions.

Task 2 Goal: Coordinated reserves procurement in UC/ED with probabilistic fore-
casts. The goal of this task’s activities was to develop the modeling framework for usinig
the probabilistic solar power forecasts to estimate requirements for flexible ramping prod-
uct and dynamic regulation reserves in the ISO unit commitment and energy dispatch
processes. Short-term (0-6 hr) as well as day-ahead forecasts were to be used to esti-
mate reserves requirements for day-ahead and real-time markets. The amounts and reli-
ability of requirements were then to be compared with baseline ISO methods.

Task 3 Goal: Visualization of probabilistic ramp forecasts for situational aware-
ness. This task had the goal of developing visualization tools for presenting the probabil-
istic solar and net-load ramp forecasts to ISO control room operators, and update the
visualization, as new forecasts become available. This task also involved performance of
simulations to mimic real-time control center decisions to evaluate feasibility and impacts
of advanced visualization on operational decisions. The activities included working with
the ISOs, demonstrating early prototypes, identifying 1SO-tailored functionalities, tool
specifications and software requirements. In addition, it encompassed developing the
back-end probabilistic ramp forecast database for front-end visualizations.

Task 4: Co-ordination with ISO for testing probabilistic solar forecast integration.
This task began with efforts to understand the requirements and process of integrating
probabilistic solar power forecasts-based products into ISO operations and control center
visualizations. Then Level-2 integration testing was performed with ISO collaboration. The
task focused on working closely with the ISO partners’ forecasting, market operations,
and control center teams throughout the course of the project to enable effective integra-
tion of forecasting products into their development environment and assess the cost-ben-
efits. The impact of those products integration on system economics and reliability was
first assessed using IEEE test systems and later with CAISO scale system models. Test-
ing in BP2 took place on ISO-scale systems at NREL; it was also intended that BP3 test-
ing would be conducted at the CAISO using off-line ISO testing software and databases,
but COVID restrictions shifted the location of those simulations to NREL'’s high perfor-
mance computing facility. This task also assessed the barriers for market adoption and
develop mitigation or promotional strategies for market transformation.

Table 1 on the next two pages summarizes the milestones associated with each task,
and the status of each milestone. Please note that Tasks 1,5, and 9 are the activities of
Task 1 (forecasting system) occurring in BP1, BP2, and BP3, respectively. Similarly,
Tasks 2, 6, and 10 are the year-by-year activities of Task 2, and so forth.
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Table 1. Project Tasks, Milestone Completion Dates, and Milestone Status
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Table 1. Project Tasks, Milestone Completion Dates, and MillestonelStatus (Cont.)

ilestone Completion

Milestone Schedule

Dates :
— Milestone/ Target Status
Task# Milest D i dT if licabl Original Actiral
Milestones |Milestone Description and Target (if applicable) T ua
8.2 Level 1-2 integration: cost-benefit analysis in UC,ED for flexible ramping product procurement
150 system simulations and cost-benefits of forecast integration under all scenarios. Qo See separate Milestone8.2 Report.
M8.2 Identify conditions which =10-25% yearly cost savings in flexible ramping product Q8 (6/30/20) After COVID-related delay, Met as
: (9/30/20)
procurement can be ensured compared fo the baseline M12.2.0, below
8.3 Level 2 integration: 1SO development environment test (See Milestone 12.2.1)
9.1 Probabilistic Watt-Sun models for two regions

Version 3.0-Advanced Watt-Sun probabilistic solar power forecasts for 4 hr and 24 hr
Mo 1 14 |ahead for 6 points. accuracy goals met. Target: Improvement in Point forecast accuracy > Q11 Q11
20% compared to persistence baseline models as measured by P-P score (= the integral of | (3/31/21) (3/31/21)
the absolute value of the dewiation from a 45 degree line of the plot of empirical distribution
of solar GHI forecast errors versus their forecast cumulative probability)

Met, see separate Milestone Report.

Report on Version 3.0-Advanced Watt-5un probabilistic solar power coordination efforts 011 014
M9.1.1b |with TAT team for forecast validation. Coaordination efforts will include our sharing forecasts (3/31/21) (9/30/21) Met
with the TA1 team via the PAIRS platform

= = —— - s e ——
A report (=5 pp.) providing guidelines for updating probabilisic Watt-5un forecasting system Q9 (9/30/20) Q9

A based on new forecast data and updated forecasting error information (9/30/20) Met, see separale Milsstons Report
10.1 Procedures to estimate FRP, regulation requirements using probabilistic forecasts
Preparation of techmical documentation of formulation and performance of probabilistic Q11 Q11 ;
MI0.1.1| amp forecasts, including journal article(s) @3121) | (312 |Met see separate Mieslone Report
11.1 Functional & software requirements; tool development cycles
MI1.1.1 Final Version - RAVIS tool demonstration and functional specification with Version 3.0 Watt- Q12 Q12 Met, see separate Miestone Report /

Sun outputs. Demonstration will show capability of giving ramp alerts, regional ramps, and (6/30/21) (6/30/21) |RAVIS Technical Documentation
identify possible economic solar curtailment under ramp deficit conditions

121 Level 1-2 integration: impact & cost-benefit for regulation procurement in UC, ED
- s g E . y Met, see Sect. 7.2.2. Day-ahead regu-
+
o Es‘rmaa‘ehre!g‘ufa;ron ng;gts, co;f ia:;:’rog_; g;ider b?sefan?ﬂscgnanq usmgfe:_ogenous ; Q12 Q14 lation method did not improve on 1SO
.1 |approach. Identify conditions whici ) yearly cost savings in regulation procuremen (6/30/21) (12/31/21) | method: but real-time method lowered
£art be ensiired gompared o the haselne. requirements & maintained reliability
12.2 Level 1-2 integration: 150 development environment

150 integration testing of Watt-Sun probabifistic forecasts and revised FRP requirements,
Mi2.2.0|small system. For selected days from IBM’s probabilistic forecasts, performing simulations | Q8 (6/30/20)
using IEEE 118 bus test system (with CAISO generation mix), and estimating cost reduction

Q9

(or30/20) |Met

Simulation of large 1820-bus system and cost-benefit analysis for improved probabilistic

forecasts based FRP procurments. First testing for a selected number of days and different
Mi2.2 1 |times in t."'_Je .rrfonth_. and_obsen'e the ger_rerar.fon dr'spatchet_s: clearing prices and system Q10 Q12 Met, see separate Milestone Report
costs. This milestone will re-evaluate Milestone 12.2.0 using larger CAISO system. Target: | (12/31/20) (6/30/21) > g
10-25% cost savings (due to production cost and reliability) using farger CAISO system

A final report on feasibility and economic impacts (with a target of at least 12% savings in
regulation and flexible ramping product procurement costs for high penetration solar > : :
M12.2.2|systems) from testing the integration of probabilistic solar power forecasts for coordinated Q12 Q14 Met for FRP: no savings identified for
ramp product and dynamic regulation procurement under 150 development environment (6/30/21) (12/31/21) |solar-informed regulation

using CAISO scale system.

7. Project Results and Discussion

Space limitations prevent us from present full descriptions of all results. The reader is
referred to the 18 Milestone reports described in Table 1, above. The file name of each
report is in the form “8215_QQQ_Johns Hopkins_MilestoneNNN_DATE,” where QQQ is
the project quarter, NNN is the milestone number, and DATE is the date of preparation.

7.1 Task 1: Developing Probabilistic Solar Forecasting using Watt-Sun/PAIRS

7.1.1. Year 1 Milestones: Probabilistic Watt-Sun 1.0. The original IBM Watt-Sun solar
forecasting system is based on situation-dependent error analysis of multiple forecast
models and subsequent multi-expert machine learning to blend such models to obtain the
best possible forecast. This system was enhanced and integrated with a highly scalable
big data platform, the IBM PAIRS Geoscope [37,38] (Fig. 8). PAIRS provides multiple
benefits including its ability to scale, process literally unlimited data sizes and therefore
to take advantage of truly big data to build more robust forecast models. PAIRS also
allows disseminating the forecasts effectively, combining forecast data with other geo-
spatial information and providing improved integration capabilities with other decision
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support systems such as the RAVIS (Resource Forecast and Ramp Visualization for Sit-
uational Awareness) visualization system discussed below.

Subtask 1.1.1 provided,
as a first demonstra-
tion, probabilistic fore-
casts (with a mean,
95% upper confidence
interval, and 95% lower
confidence interval),
which were generated
by this enhanced fore-
casting system (Ver-
sion 0.0) for a single so-
lar site in Topez, CA. It
was shown that the
Fig. 8. The PAIRS platform-based Watt-Sun Solar Forecast | Brier Score over three
28-day periods were
below 0.4. The system provided the solar forecast at 15 minutes intervals with 4-hour
forecast horizon and a refresh rate of every hour. This met Milestone 1.1.1. Along with
the solar irradiance forecasts (i.e., Global Horizontal Irradiance (GHI), Direct Normal Irra-
diance (DNI), and Diffused Horizon Irradiance (DHI)), solar power forecasts were also
provided, using the PV Lib [39] to convert the solar insolation to solar power production.

In Milestone 1.1.2, we reported on our techniques of model blending for solar forecasting
and the data sources used for it. In this approach, the forecast errors of different numerical
weather prediction models (NWPs) are analyzed and used to characterize weather situ-
ations that will be treated differently (i.e., trained upon individually). At the training stage,
the multiple NWPs and measurement data are preprocessed to filter outliers, and the
functional analysis of variance fANOVA method [40] is used for feature selection by using
an empirical performance model (EPM). The EPM is based on random forests to analyze
how much of the performance variance in the configuration space is explained by single
parameters or combinations of few parameters. Then, forecast errors are predicted using
a Random Forecast model, which are then used in the situation categorization. In the next
step, for each situation in each category, we train a quantile regression model. For fore-
casting, first, forecast errors generated from a Random Forest model are used to catego-
rize the situations, and then for each category, the corresponding trained quantile regres-
sion model is used to forecast GHI. Fig. 9 below depicts the approach.

The basic data sources required are outputs from NWPs and measurements. We used
the PAIRS platform for these data sets and to be able to exploit very large data sets. The
training and forecasting data needed for the machine learning were realized by querying
PAIRS in a consistent and scalable manner. PAIRS takes care of the different spatial and
temporal resolutions [35,36] of the input data. PAIRS has over 1000 different NWPs data
sets and layers. For V. 1.0 we used the sub-hour High Resolution Rapid Refresh (HRRR)
model [41], the North American Mesoscale Forecast System (NAM) [42], the US Climate
Reference Network [43], and other data where noted.

A report on model blending and the data sources concluded Milestone 1.1.2.
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Milestone 1.1.3 con-

M‘F““—J cerned documenta-

tion and testing of an
ittt w enhancement of the

initial prototype of the
Use trained Random PAI RS— i nteg rated

FANOVA Paramet ter Forecast model to predict .
(feature) selection ety version Of Watt-SU n,
yielding Watt-Sun

Use trained Gaussian

enton s ot 1.0. We designed the

error (Train)

predicted forecast error to

e e e original Watt-Sun
system for determin-
istic solar forecasting
instead of probabilis-
tic. So we changed

Train gT Qe the last step of the sit-
Trin uation-dependent er-
Fig. 9: Model blending Flow chart Overview ror analysis to linear

quantile  regression
because the forecast distribution is not normally distributed and therefore will be better
captured by quantile regression. This contributed to improved probabilistic solar power
forecasts. In addition, an Autoregressive Integrated Moving Average (ARIMA)-based
smart persistence model was created for benchmark purposes. Such model is state-of-
the-art at the ISOs and therefore useful to compare the Watt-Sun forecasts against it.

This second demonstration included probabilistic solar forecasts for 20 sites (10 sites in
CAISO and 10 sites in MISO regions). Forecasts were operational with 5 quantiles (0.05,
0.25, 0.5, 0.75, 0.95), an extended forecast horizon of 24 hours at 15 min frequency and
refresh rate. We evaluated these forecasts initially over two periods of 28 consecutive
days. All Brier scores for each site were below 0.3, which is an improvement of 25% over
Watt-Sun 0.0. Compared to the ISO standard ARIMA method 25% improvements for the
10 CAISO sites and 21% for the 10 MISO sites were achieved. These performances ex-
ceeded the Milestone 1.1.3 targets. Thus, Milestone 1.1.3 was satisfied by submitting a
report on Demo #2 (Version 1.0) of Watt-Sun probabilistic forecasts (Q3), and by Version
1.0 performing at least 10% better than a standard practice persistence-based method.

To meet Milestone 1.2.1, a data management plan was developed and submitted. For all
data management the PAIRS platform was used. This platform is maintained by IBM and
has been growing by more 10 Terabytes/day since 2016. PAIRS standardizes the spatial
and temporal resolutions of the ingested data [37,38] by employing a global reference
systems of layered resolution layers, thereby linking data in space and time. The platform
has both the input data for the model blending as well as the generated forecast data.

The platform does not only enable easy integration via OGC (open geographic consor-
tium) compliant services (Web mapping services, Web processing services, Web cover-
age services, Web feature services) via an open source geoserver [44] with other appli-
cations but it also has also a very powerful, open-sourced SDK/API for querying, filtering,
or more complex computational tasks without downloading the raw data. PAIRS is avail-
able through an academic license to everyone for research purpose.
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7.1.2. Year 2 Milestones: Probabilistic Watt-Sun Version 2.0. Next, we developed ver-
sion 2.0 of Watt-Sun probabilistic forecasts systems as part of the effort towards Mile-
stone 5.1.1, which embodied several improvements. We concluded that the Brier score
was less useful for assessing quality of probabilistic forecasts compared to the P-P-plot
based metric, which we therefore used for forecast performance evaluations along with
the Mean Absolute Percentage error. Watt-Sun 2.0 leverages level 2 (L2) data from
CLAVR-x (Clouds from AVHRR (Advanced Very High-Resolution Radiometer) Extended
System) [45], which provides real-time cloud information from a Geostationary Environ-
mental Satellite (GOES-16) [46]. GOES-16 data can enable better solar forecasts for
short-term forecast. A data pipeline was developed pushing GOES-16 data into PAIRS
operationally. GOES-16 also opens the opportunity to provide gridded forecasts.

Fig. 10 shows our approach for a meas-

Sequence urement informed, gridded short-term
ol (ST solar irradiance forecasts with (i) a deep
learning model to provide gridded fore-
iveg e S casts from the GOES L2 data of cloud

Raster images of cloud optical depth 1 H H
bt s optical depth for a 1-hour horizon, (ii) a

quantile regression-based ML model to
map the forecasts to the measured

:";‘f‘,jg'i;f:;;‘:fd'gg";s‘ bt ground-level GHI and (iii). trained _ML
Point Bipmicinn e b model to forecast every grid point pixel
m—— geoinformation to train a with a 3km resolution of the defined re-
model to map the GOES L2 . .
to GHI on the ground. gion to generate the measurement-in-
formed rasterized forecast.
Use the trained ML model We experimented with networks which
Raster atarizhd toracast of CHl are similar to the ImageNet challenge
brssc e st i Eotlaliogi o winning models AlexNet [47]. However,
S instead of a spatial convolution layer,
Fig. 10: Flowchart for our short-term solar we used the volumetric convolution neu-
irradiance forecast approach ral network (VCNN) layer, which applies

a 4D convolution over a 4D input tensor
composed of several input planes (here, multiple timestamps and multiple bands from the
GOES L2 product) (see Fig. 11). By using VCNN, the extracted features have access to
multiple channels of weather information across both temporal and spatial dimensions.
Therefore, the VCNN can learn the cloud movement patterns which is important for solar
irradiance prediction.

VC  BatchNorm vC

m o
... 4

R —

ands grid_x bands

VC BatchNorm  RelU Mp tanh

grid_y
grid_y

Fig. 11. Schematic diagram of a raster forecast Deep Neural Network (VCNN)
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Milestone 5.1.1 includes development of Version 2.0-Advanced Watt-Sun probabilistic
solar power forecasts for 4-hour and 24-hour ahead for 6 points, which are planned to be
shared with Topic Area 1 validation team. The forecasts were to include an improvement
in Point forecast accuracy > 15% compared to persistence baseline models as measured
by Brier Score, especially for CAISO and MISO regions. Watt-Sun 2.0 performs better
than the previous versions with an improvement in the P-P-plot score over bias-corrected
HRRR GHI forecasts by 20%. Thus, this exceeded the target set by Milestone 5.1.1. In
terms of rIMAPE, Watt-Sun 2.0 performs better as well, with 17% improvement over HRRR
bias-corrected forecast. In Watt-Sun 2.0 we also introduced an in-depth forecast calibra-
tion index. It enables evaluating the quality of calibration that allows for exploration of how
well a probabilistic forecasting model performs over different intervals of the day, and over
different months. A report on PAIRS data used, multi-expert machine learning models,
and region-specific model blending performed, was generated and accepted by DoE,
which satisfied Milestone 5.1.2

Milestone 5.2.1 addressed documentation of data sources for PAIRS updating and web-
link documentation. There were three major enhancements to the PAIRS data. First, we
significantly enhanced the data catalog in PAIRS, which is now completely standardized
across different data sources and can be queried with elastic search. Second, in addition
to the GOES-16 data, data pipelines for weather station data from the NOAA-ISD (Inte-
grated Surface Database) [48] and RAWS [49] were developed. This data is now being
curated, ingested and is available in PAIRS. Third, additional capabilities for batch data
exports were added, especially for deep learning applications by implementing a SPARK
connector on top the PAIRS HBASE data source. This was reported along with the list of
available data in PAIRS, which was accepted by DoE. This concluded Milestone 5.2.1

Milestone 5.2.2 addressed documentation of US coverage of PAIRS, curation rate, and
integration of multiple data sources. While the PAIRS catalog provides detailed docu-
mentation of data across space and time, fast sampling techniques are also available in
the PAIRS systems to check interactively what regions, timestamps are available. This is
documented in the PAIRS tutorials available on-line (https://pairs.res.ibom.com/tutorial/).
In addition, in this subtask an improved real-time data curation monitoring system was
developed and demonstrated. It is noted that PAIRS is a real-time system with data being
updated and curated at a rate of 10 Terabytes and more each day. A report was written
and submitting about the PAIRS data us coverage, curation rate and integration of multi-
ple data sources, accomplishing Milestone 5.2.2.

7.1.3. Year 3 Milestones: Probabilistic Watt-Sun Version 3.0. Milestone 9.1.1a ad-
dressed development of Version 3.0-Advanced Watt-Sun probabilistic solar power and
its forecast accuracy. The success value was a targeted point forecast accuracy improve-
ment of 20% relative to the persistence baseline. The third version of the Watt-Sun fore-
cast system was mainly enhanced by leveraging more training data. Initially, training data
from HRRR was limited to a few months, while Watt-Sun 3.0 was able to take full ad-
vantage of almost three 3 years of historical data. The goal for Watt-Sun 3.0 was to
achieve significantly improved calibration as measured by the P-P-plot metric as com-
pared to the persistence baseline estimator, as shown in Figs. 12 and 13. We demon-
strated that out of the 24 measurement stations for at least 6 of them and for at least 28
consecutive days across a period of 3 months, a relative improvement of 20% was
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achieved for forecast horizons of 4 and 24 hrs (Figs. 12, 13, respectively). This met the
Milestone 9.1.1a target. Further, as a measure of the reliability of these improvements
for 4-hr ahead forecasts, daily values of the P-P metric of forecast improvement were
better by >30% for > 3 weeks straight during that period for 17 of 24 CAISO & MISE sites
tested, as shown in Fig.12.

s c The Milestone 9.1.1b re-
- port documented V. 3.0-Ad-
* 4 hour ahead vanced Watt-Sun probabil-

. istic solar power coordina-
tion efforts with TA1 team
for forecast validation. Co-
ordination efforts included

PAIRS platform. To ac-
commodate the validation
efforts of the TA1 teams,
changes to the Watt-Sun

’ | | | | | | our sharing forecasts with
N

the TA1 team via the

3.0 systems were required,

» 24 httr ahead namely increasi_ng the num-
bers of percentiles, retrain-
ing the forecasts for differ-
ent locations, and changing

the forecast frequencies.
These activities were re-

ported to the DoE, meeting
Milestone 9.1.1b. The sub-

Numbers of Days

sequent Milestone 9.1.2
report provided guidelines

ol__ms

e -0 - for updating the probabilis-
Stations tic Watt-Sun forecasting
Figs. 12,13: Forecasting performance: numbers of con- | system based on the most
secutive days of >20% & >30% improved P-P-plot per- | recent data.

formance at 24 locations for 4 & 24 hrs, respectively. The final Task 1 (solar fore-
casting) effort concerned
coordination with ARBITER. A real-time upload from Watt-Sun 3.0/PAIRS to the ARBI-
TER platform was developed and realized. Except for scheduled PAIRS maintenance,
data from the Watt-Sun 3.0 forecasting system was shared with the TA1 teams in real-
time. For this we improved the reliability of the exogenous data pipeline (namely, NOAA'’s
sub-hourly HRRR data ingestion into PAIRS Geoscope). Further, the software implemen-
tation of Watt-Sun 3.0 was implemented according to the object-oriented programming
paradigm in which the real-time forecast ingestion functionality is realized through a set
of class methods. This allows Watt-Sun 3.0 to be dockerized and run in IBM’s cloud so-
lution (the so-called Cloud Object Storage), which improves reliability and speed of the

forecast availability for third parties.

18



DE-EE0008125
The Johns Hopkins University

7.2 Task 2 Results: Defining Reserve Needs with Probabilistic Solar Forecasts

This task addresses development, application, and testing of data-driven methods to im-
prove estimates of FRP requirements by using probabilistic solar forecasts. Two ap-
proaches are used: machine learning and quantile regression (Sects. 6.2.1 and 6.2.2,
respectively). In addition, we investigated use of those methods to improve projections
of need for up-regulation (Sect. 6.2.3). Finally, we also investigated explicit convolution
of net load components (gross load, wind, solar) to create requirements, but results were
not immediately promising [15]. Note: All MW quantities here are transformed values to
disguise the true values, consistent with non-disclosure agreements.

7.2.1 Using Machine Learning to Incorporate Solar Uncertainty into FRP Require-
ments. We developed a variety of numerical classifiers as labels of weather conditions
based on the predicted uncertainty, variability, and cloudiness index of solar irradiance
and power. In addition, we adopted principal components analysis (PCA) to reduce the
dimension of multi-dimensional classifiers, which better reflects system-level uncertain-
ties by including classifiers from multiple sites across CAISO. We applied a kNN-based
method to identify historical days of similar weather condition, and used the realized FRP
requirements from these days to construct predictive distributions of the FRP needs,
which can be used to give weather-informed estimations of FRP requirements.

Fig. 14 compares the realized net load forecast errors with the published FRP require-
ments from 2 days in August 2019 in CAISO. Because the 2 days are close in time (5
days apart), the FRP requirements differ by less than 1% because of similar histograms
in use, whereas the solar power profiles imply drastically different weather conditions,
which potentially explain the greater uncertainty needs in the cloudy day than the sunny
day. Therefore, if similar FRP amounts are procured, the system could experience a
shortage of FRP in the cloudy day. This observation motivates the need for the latest
probabilistic forecasts in estimating FRP requirements.

— T 12 12
%00 EFEeror | ‘ 500 T 7Ef2rror
Solar power ‘ / 10 g \—— Solar power 10 g
= W 8 0 < ' ) o
o LLT‘ - & 2 P
E: 0 \ﬁkg— vl “h \ w‘ 1 \ W“ ’l"\_L % Z g
: UJU" { w L LB 7
° o
n ]
‘ 2

-500 / ‘\ 0 500t . 0

AugO?,O&OO AugO7,12ﬂO Aug 12, OOOO Aug 12,12:00  Aug 13, 00:00

2019 2019
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Fig. 14. Comparison of realized net load forecast errors with published FRP require-
ments for the CAISO.

The kNN-based method can be viewed as a direct extension of CAISO’s original imple-
mentation (which chooses requirements based on the 2.5" and 97.5" percentiles of a
histogram of ramp forecast errors from the previous several weeks) since both methods
rely on historical data. However, in contrast to that CAISO baseline method, whose re-
quirements are not conditioned on weather-of-the-day, the kNN-based method constructs
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weather-conditioned histograms by using probabilistic solar forecasts. Different numerical
classifiers in total are used to feature the weather data, including solar irradiance, predic-
tive intervals, cloudiness level, and clear-sky power index. In addition, in order to correctly
characterize the solar power uncertainty over the entire CAISO region, multi-dimensional
classifiers based on multiple sites at different locations are considered, and principal com-
ponents analysis (PCA) is leveraged to reduce the dimension of multi-dimensional clas-
sifiers. We evaluate the FRP requirements from two perspectives: system reliability and
market efficiency. Two metrics are investigated, including the frequency of FRP shortage
and the amount of FRP oversupply.

As Fig. 15 shows, all 12 classifiers present similar trends as K (numbers of days selected
for training) increases, i.e., the FRP oversupply increases sharply when K < 20, which in
turn results in a considerable drop of the frequency of the FRP shortage. When K > 20,
however, both metrics remain relatively constant. This phenomenon suggests that a suf-
ficient number of days (K > 20) are required to give a reliable estimation of FRP require-
ments across all classifiers. Note that in the baseline, the frequency of the FRP shortage
increases slightly as K increases from 20 to 60, implying that 20 days could yield better
performance than CAISO's business-as-usual (BAU) implementation, where K=30.

0.15 Fig. 16 shows trade-offs between
reliability and oversupply in the
form of Pareto frontiers. The point
at the intersection of two dashed
lines represents CAISO's BAU im-
g = plementation. The two dashed

—a—1 8- - - lines divide the plane into four
quadrants (I, Il, Ill, and IV), where
points in Quadrant Ill indicate an
improvement in both dimensions
relative to the baseline, points in
Quadrant | indicate a degradation
L , ‘ , ‘ in both metrics, and Quadrants I
0 10 20 30 40 50 60 | and IV represent tradeoffs im-
K provement in one objective re-

Fig. 15. The frequency of FRP shortage and FRP | quires a degradation of the other.
oversupplv as a function of K in Feb. 2020. Note that a significant fraction of
KNN points fall into Quadrant Ill
and no point falls within quadrant |, suggesting that the KNN-based method can result in
more economic and reliable solutions than the baseline. Besides, Fig. 16 shows the re-
sults when the kNN parameters are dynamically selected. A similar trade-off between
reliability and oversupply is also observed when the size of the validation set (N) changes.

FRP shortage

Over supply (GWh) !

Fig. 17 shows the optimized Pareto frontiers of all 1-site cases and the multi-site case
using PCA-kNN from February, August, and October 2020. All optimal Pareto frontiers
present similar trends as in Fig. 16 when N varies. Although most 1-site cases present
better performance than the baseline, their performance varies because of geographic
differences. The variation of performance across sites implies the challenge of using one
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single site to characterize the weather condition of the whole CAISO region. By compari-
son, the optimized PCA-kNN frontier accounts for the weather conditions from all 5 sites,
and results in less variation of performance. The optimized PCA-kNN frontier presents
better performance in terms of both dimensions compared to the baseline and all 1-site
cases in February and August.

To compare the results from the

360 i i () kNN-based methods with other
aq0l  N=30 a(k) data-driven methods, the evalua-
= Pa P o tion metrics from the benchmark
= 320 "ﬁ;,?w‘ b machine/deep learning (ML/DL)
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Fig. 16. Trade-offs between reliability and over- methods are all concentrated in
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Fig. 17. (a)--(c) Pareto frontiers of all 1-site cases and the multi-site PCA-kNN case.
(d)--(f) Frontiers from the ML/DL-based methods. The black dots represent the original
results from ML/DL-based benchmarks---i.e., B=1---and the gray curves represent the

Pareto frontiers when the factor B ranges from 1 to 3.
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levels. The significantly greater chances of FRP shortage of the benchmark methods re-
sult in an unfair comparison, therefore, to make a comparison based on a more level
playing field, we adjust the FRP requirements from the benchmark methods by multiplying
them by a factor 8, where 8 =1 indicates the original results. Owing to the trade-off be-
tween the oversupply and the chance of FRP shortage, a greater 8 results in more con-
servative FRP requirements. As Fig. 17 shows, the profiles of the adjusted benchmark
results resemble the previous kNN profiles. Although several curves fall into Quadrant I,
many of the adjusted benchmark results fall into Quadrant 11, indicating potential improve-
ment in both dimensions.

7.2.2 Machine-Learning Based Definition of Up-Regulation Requirements Using
Solar Forecasts. In addition to FRP requirements, we also developed solar-informed
regulation requirements determination methods. Although our attempt to improve day-
ahead regulation requirements using solar-informed methods was unsuccessful in reduc-
ing those requirements and improving reliability, we did successfully reduce regulation-
up requirements without compromising reliability using in real-time, as we now describe.

The historical ACE* signal in May 2020 from CAISO, which originally is at 1-min resolu-
tion, has been aggregated into a 5-min resolution (i.e., choosing maximum value in each
5 minutes) to be consistent with the OASIS solar MW production data [60] for analysis
and the CAISQO’s present procedures for assessing the need for regulation. The regulation
procurement baseline data is also selected from the same month. All the data are trans-
formed consistent with non-disclosure agreements. This data, together with solar fore-
cast data, is used to calibrate models that estimate ACE* two hours ahead of time, which
can then be used to determine a real-time regulation amount that reflects information
available at that time, with the goal of improving performance (maximize reliability and
minimize procurement) relative to the present ISO system in which regulation require-
ments are determined day ahead based on an (unconditional) histogram of historical
ACE* amounts over the previous weeks.

The hypothesis is that we can utilize historical ACE* and solar forecasts to forecast the
future ACE* on a near real-time basis, then use the forecasted ACE* signal to determine
regulation procurement, and that this procurement will perform better than the present
ISO day-ahead method that doesn’t explicitly consider weather. This forecast is done on
a rolling basis with ACE* data for several weeks prior. We propose a simple approach of
defining the regulation requirement as:

MAX(Rmin, Bxforecast ACE*)+z(t)xRextra

where Rmin is a lower bound to the requirement, forecast ACE* is the two-hour ahead
forecast area control error adjusted for the amount of regulation actually dispatched [8],
B is a multiplier, and Rextra is an increase in procurement for t in day-time hours (6:00 to
20:00, when z(t) =1; otherwise z(t) =0). Rmin, B, and Rextra are tuned parameters to max-
imize performance. Three adaptive procurement strategies are examined:

1. Multiplying the forecast ACE* value by a factor B ranging from 1 to 3.

2. Reducing the minimal regulation up procurement to Rmin (lower bound for procure-
ment), so the final requirement is MAX(Rmin, Bxforecast ACE*). We note that the
transformed minimal procurement for CAISO’s baseline is 491 MW in each hour) in
less fluctuating periods (i.e., 8 p.m. to 6 a.m.).
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3. Adding an extra regulation up procurement Rextra to the forecasted ACE* value in
more fluctuating periods, i.e., MAX(Rmin, Bxforecast ACE*)+Rextra*z(t).

Figs. 18(a-c) show the Pareto analysis of regulation-up procurement for the last 7 days in
May 2020. The figures show tradeoffs between reliability (probability of 5-min adjusted
ACE* exceeding the requirement) and aggregated GWh supply over 7 days. The red di-
amond represents the CAISO baseline point based on reported OASIS regulation
amounts, and the yellow star represents the ideal regulation procurement using perfect
ACE* forecasts, which has 0 exceedance probability. Key insights include:
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Fig. 18. (a)--(c) Pareto frontiers of regulation up procurement on the last 7 days of May
2020. (a) Multiplying factor 8 ranging from 0.5 to 3, Rmin = 0. (b) Minimal procurement Rpmin
for hours 8 p.m. to 6 a.m. (c) Extra procurement Rextra for hours 6 a.m. to 8 p.m

1. As observed from Fig. 18(a), a similar observation of B with the FRP requirement in
Fig. 17(d-f) is obtained (i.e., a greater B results in more conservative regulation re-
quirements), and no points fall into Quadrant | (where both reliability and GWh pro-
cured are worse). When 3 < 1.513, the curves fall into Quadrant IV, indicating a
higher probability of regulation shortage than the baseline CAISO method, but less
total GWh of procurement. A greater 3 results in more conservative regulation re-
quirements, and the curves when 3 > 2.205 fall into Quadrant Il, where procurement
is greater than the CAISO baseline and the reliability is better.
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2. As Ref. [8] explains, the regulation shortage always occurs during the sunshine pe-
riods. To evaluate the performance of adaptive procurement in different periods, we
divide a day based on two time points: 6 a.m. and 8 p.m., and keep the B ranging
from 0.5 to 3. As shown in Fig. 18(b), the regulation requirement could be improved
by reducing the procurement in the less fluctuating periods. The curve of Rmin=491
MW refers to the transformed CAISO baseline, where the regulation requirement is
MAX(491MW, Bxforecast ACE*), while the Rmin=480 MW case (i.e., requirement is
MAX(480MW, Bxforecast ACE*) shows a very close proximity in Quadrants Il and
IV, indicating that slightly reduced procurement will not harm the reliability too much.

3. The results in Fig. 18(c) also shows that adding an extra procurement to the fore-
casted value during the 6 a.m. to 8 p.m. period also helps in promoting the reliability,
however, with a higher amount of over-supply.

7.2.3 Quantile Regression-based Estimation of Flexible Ramp Requirements. Be-
cause the CAISO is already using quantile regression (QR) to assess flexiramp needs as
a function of load and variable renewables, quantile regression has the advantage of fa-
miliarity as well as simplicity relative to the methods of Sect. 7.2.1. Therefore, we have
also evaluated the potential of that method to improve requirement estimation (in terms
of higher reliability and lower procurement amounts) relative to present practices. A va-
riety of specifications were tested that included as independent variables various combi-
nations of the following: deterministic load, wind, and solar forecasts as well as indicates
of solar uncertainty (prediction interval widths for 2 hour ahead probabilistic forecasts,
especially the difference between the 75" and 25™ percentiles). As explained at the end
of this section, in the course of this analysis, we developed an approach to assess and
debias Watt-Sun forecasts in order to improve their calibration, which resulted in better
predictions of FRP requirements for some months

The steps involved in creating QR-based flexiramp requirements were as follows. First,
two separate QR estimations are performed for the 501" and 90™ percentiles of the fore-
cast error as a linear function of a set of independent variables related to weather and
system conditions. (Four sets of such variables are considered here, as described in the
Fig. 19’s caption.) Second, the value of error for the desired reliability (say the 97.5"
percentile, which would result in a 2.5% shortage rate) is obtained by fitting a normal
distribution to the 50" and 90" percentiles and extrapolating. Out-of-sample validation
found that this resulted in more stable estimates of extreme percentiles rather than using
QR directly to estimate that percentile, due to small sample issues with the number of
observations in the tail. This is done for using 30 days of data prior to the day of interest;
the desired percentile is then estimated for that day given the value of the independent
variables on that day. The FRP requirement is set equal to that value. The performance
of the method is then assessed by comparing the realized forecast error against the re-
quirement. This is repeated for each of the days in the month (March 2020 in Fig. 19),
and four 15-minute intervals within each hour considered; this would give 30*4=120 ob-
servations to estimate the reliability and cost performance.

In Fig. 19, we did this for four levels of a priori reliability (10%, 5%, 3%, and 1.5% shortage
probabilities) for each of four model specifications for the noon hour in March 2020. The
best specification was one based on two independent variables: the average (across four
sites) of the 25"-75™ percentile prediction interval for GHI; and a nonlinear (sine wave)
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transformation of median GHI, again averaged over four sites. The transformation yields
values of zero if GHI is at the minimum or maximum of the GHI observed over the last 30
days at that hour of day, and attains a maximum if GHI is halfway between those ex-
tremes; this reflects the fact that if solar is zero or if there is a clear sky, there is relatively
less uncertainty than if GHI is somewhere between the extremes. As Fig. 19 shows, there
is one version of that model (a priori reliability of 5%) that reduces oversupply by 20% (x-
axis) and cuts the ex post frequency of FRP shortage by about half (from 7.5% to 4%, y-
axis), relative the actual amount of FRP that the ISO procured for those intervals. Alt-
hough that precise specification does not always result in improvements in each month
and time interval we considered, it often did so, and therefore is worth considering as a
relatively simple but effective way to make FRP requirements weather conditioned.

o
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25%-75% Prediction Intarval

Solar GHI Median

Median Solar, Wind, Load

Trans. Median, 25%-75% Prad. Int.
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Normalized Daily Average FRP Oversupply (% of base value)

Fig. 19. Pareto plot (reliability (FRP shortage frequency) vs cost (excess FRP)) showing
performance of four QR specifications (for 12:00-13:00 local time, March 2020), com-
pared to performance of CAISO-procured FRP. Specifications include: linear using width
of 25th-75t prediction interval for solar GHI (blue); linear using median solar GHI (purple);
linear using median GHI plus CAISO wind and gross load forecast (pink); and linear with
GHI interval and sine transformation of median GHI (light blue). Each set of solar varia-
bles is averaged across four CAISO solar sites. The points on each curve (upper to lower)
correspond to 10%, 5%, 3%, and 1.5% a priori frequencies of FRP shortage.

Preliminary analyses of calibration of Watt-Sun forecasts indicated that cloudy and sunny
days had different quality of calibration, so we developed a method for classifying day
types and then adjusting forecasts that, based on out-of-sample tests, improved forecasts.
We used y? (chi-squared) tests in which the expected frequencies of observations within
each of the 6 bins (0-0.05, 0.05-0.25, 0.25-0.5, 0.5-0.75, 0.75-0.95, and 0.05-1.0) are
compared to observed frequencies. Fig. 20(a) shows actual GHI and Watt-Sun’s reported
probability distributions for the fifteen-minute interval centered on 1:30 p.m. local time for
Dec. 2019 for the Topaz, CA site. There are 28 days of data, of which 9 days have values
falling above the 50" percentile. Whether this could happen by chance can be assessed
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by a, e.g., x? test; if the test does not reject the hypothesis that the observations were
drawn from the shown distribution, then it would be concluded that the model is well-
calibrated for that period. (Such a test for a set of daily observations for one particular
time is reasonable if it is assumed that errors from day to day are independent, which is
admittedly a strong assumption.) Plots like Fig. 20(b) below, which is an example binning
of the observed GHI for all daylight hours in one month, provide visual evidence of a good
calibration. Analyses of results of the last version of Watt-Sun indicated that the calibra-
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tion differences between cloudy and sunny days
had become less pronounced, and adjustment of forecasts was no longer required.

In sum, for most intervals tested between March and Aug. 2020 (10-11 am, 12-1 pm, 2-3
pm, 4-5 pm), QR formulations were found that improved upon the CAISO base method
and to actually procured FRP (from OASIS). In our application of the base method, a
histogram was created of the last 30 days of ramp forecast errors for the relevant interval,
the 2.5" and 97.5" percentiles then defined the down and up FRP uncertainty compo-
nents, respectively, which when added to the forecast ramp yielded the requirements.

7.3. Results: Ramp and Solar Uncertainty Visualization for Situational Awareness

7.3.1 Overview. This section describes a flexible, open-source visualization tool for sit-
uational awareness related to operating a power system with high shares of variable re-
newables. The tool is named Resource Forecast and Ramp Visualization for Situational
Awareness (RAVIS), and it is built at NREL under DOE EERE SETO funding. RAVIS is
a research-grade tool intended to help researchers, forecast vendors, and system oper-
ators (such as utilities, ISOs, and balancing authorities) who use variable renewable fore-
casts for efficient operation of their systems. This tool provides a way to integrate ad-
vanced forecasts for variable renewable generation, including probabilistic forecasts, and
helps operational control centers and forecasting teams at utilities to develop situational
awareness and timely mitigation strategies. The tool is flexible enough for end users to
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tailor the data integration, visualization, and alerts to their needs and use cases.

As mentioned in Section 5.3, although control room visualizations are relatively mature,
much development is needed to prepare for a future with high shares of variable renew-
able generation and for integrating advanced probabilistic forecasts, including ingesting
site-specific distributed forecasts in addition to the conventional regionally aggregated
forecasts. Additionally, RAVIS provides researchers around the world with an open-
source alternative to demonstrate their developments. The source codes of RAVIS are
publicly available for anyone to download and use at https://github.com/ravis-nrel/ravis.
The link also provides guidelines and instructions to install and modify the code, including
answers to some frequently asked questions.

We now describe the function and architecture of RAVIS in detail. As a prototype of the
tool and demonstrating use cases of variable renewable integration, RAVIS currently in-
tegrates site-specific solar power forecasts in the CAISO and MISO footprints from the
IBM Watt-Sun forecasting platform, and superimposes market simulation data for the
CAISO footprint from an in-house NREL market clearing tool (FESTIV).

RAVIS uses a technology suite that is assembled to provide optimum visualization facility
while maintaining a wide pool of potential deployment and client environments. The tool
is designed to take advantage of web application technologies and open-source visuali-
zation libraries and tooling. This will enable deployment in any environment, using any
operating system, and it is easily scalable high spatial and temporal levels of visualization.

However, RAVIS is not a turnkey system. It is the product of a research endeavor, and it
is not intended as a commercially viable product. To successfully deploy and operate
RAVIS, the user must have a minimum basic understanding of web application software
development and operations support knowledge. Some experience with NodeJS devel-
opment and a working understanding of web-based mapping, including serving vector tile
data, are also highly recommended.

7.3.2 Interactions with Users. The modular dashboard of RAVIS contains configurable
panes for viewing probabilistic time-series forecasts; ramp event alerts on the look-ahead
timeline; spatially resolved resource sites and forecasts; and system simulation and mar-
ket clearing data, such as transmission line utilization, nodal prices, and available gener-
ation flexibility. The tool has the ability to alert the viewer to significant up or down ramps
for both individual variable renewable sites as well as regionally aggregated net load
ramps, and alerts can also be qualified with respect to available flexible generation.

Fig. 21 shows the RAVIS user interface. RAVIS contains four customizable panes: (1)
site-specific and regional event alerts at various look-ahead times; (2) a regional overview
of aggregated renewable resources; (3) a site-specific zoom-in view of distributed re-
sources along with GIS information (not shown in Fig. 21 but viewable when a user clicks
on or selects a region); and (4) a regional and site-specific forecast time-series viewer.

To demonstrate how users interact with RAVIS, forecast data for 10 solar PV sites each
from the CAISO and MISO footprints were downloaded from the IBM Watt-Sun PAIRS
Geospatial Analytics forecasting and data platform. Table 2 shows site information.

We now describe two modes of interaction:
1. Dynamic metadata lookup mode: As the user moves the cursor over a node in the
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detailed regional pane, metadata for that station pops up, with information on the size
of the plant (or aggregated size of several renewable generation plants if cursor
moved in the regional view), and whether a significant ramp event is detected. A mock-
up of this is shown in Fig. 21. If there is no significant ramping detected (based on the
definition of a significant ramp set by the ramp configuration parameter), “Ramping
nominal” will be shown. If a significant ramp is detected, the size of the ramp will be
displayed. For instance, the site Medora, in North Dakota, and the aggregated fore-
casts in the eastern region have nominal ramping, whereas at the aggregated regional
view, the western and central regions see significant ramping—59.85 MW and 65.84
MW, respectively.

Regional View

Ipper 95% Prob.: 7 mw
Lower 5% Prob.: 6 mw

IINREL

ansforming ENERGY

Fig. 21. RAVIS use interface: event alerts and spatiotemporal probabilistic forecasts

Table 2. CAISO and MISO Sites from IBM Watt-Sun Forecasting System

CAISO MISO
Sites @ StationID Latitude Longitude  StationID Latitude Longitude
1 CA Topaz 35.38 -120.18 AMOA4 33.58 -91.8
2 RSAC1 38.47 -122.71 FRMI4 40.64 -91.72
3 RLKC1 40.25 -123.31 BNRI2 37.24 -89.37
4 SBVC1 34.45 -119.7 SULI3 39.07 -87.35
5 KNNCA1 40.71 -123.92 NATLA 31.49 -93.19
6 MIAC1 37.41 -119.74 BDLM4 42.62 -85.65
7 MNCC1 34.31 -117.5 CASM5 47.37 -94.61
8 STFC1 34.12 -117.94 CKWM6 30.52 -88.98
9 DEMCH1 35.53 -118.63 TS428 46.89 -103.37
10 cowc1 39.12 -123.07 RHRS2 43.87 -103.44

2. Viewing forecast time series mode: \When a user clicks on a particular node, either
an individual site or the aggregated region, the time-series forecasts will be displayed
in the right-hand pane. Fib. 16b shows the time series for the western region as well
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as a single site in California.

RAVIS The tool is endowed
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= potential end users,
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IS configuration  and

viewer updating fea-
tures, as shown in
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shown in the top

" 3 right corner. Cur-
Fig.22. Configuration features in RAVIS rently implemented

features include:

1. Ramp definition: Ramp definitions (MW change per minute) can be done at the
global, regional, and site levels. This is shown in Fig. 22 (left).

2. Forecast zones or plant aggregation: Custom regions with selected plants can be
created if users want to closely monitor them. This is shown in Fig. 22 (middle).

3. Time-series pane customization: The forecast pane includes a “+/-” symbol in the
right corner that allows viewers to adjust the y-axis to the size of the ramp event. By
default, the y-axis shows the renewable plant size or the total regional capacity.

4. Comprehensive data assimilation: Each end user has their own needs, and so
the data ingestion in this tool is highly flexible for integrating visualization widgets of
interest. For example, the tool can ingest additional data layers from various forecast
vendors, electricity generation scheduling and market clearing data, and network
topology and transmission data for comprehensive situational awareness. This is
shown in Fig. 22 (right), with toggles selected to add more layers of data. This report
introduces a use case that integrates additional electricity market-related data for
understanding the interrelationships among forecasts, ramp uncertainties, and vari-
ous system operating metrics.

7.3.3 Use Cases. One major use case discussed in this section includes the integra-
tion of detailed, site-specific probabilistic solar power forecasts and the detection of
ramp events at both individual solar power plant and aggregated regional levels. Fig.
23 illustrates visualizing ramp alerts at different time instances, based on the input fore-
cast data from the IBM Watt-Sun solar power forecasting platform, and the ramp defini-
tion parameters set in the configuration window. Fig. 23 shows several site-level solar
power ramp alerts that are being detected in the central and eastern regions. In this
example, note all the detected ramps in the site and at the aggregated regions are
down-ramps and are shown in the visualization by the direction of the arrows; and the
summary statistics in the time-series pane. This section discusses several such exam-
ples and use cases in detail.
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Another use case illus-
trates how the RAVIS
tool can ingest multiple
data layers in addition
to variable renewable
power forecasts for a
comprehensive visuali-
zation capability. For
instance, Fig. 24
shows a use case
where RAVIS inte-
grates 5-minute-reso-
lution solar power fore-
casts and net load
forecasts (load minus
wind and solar) devel-
oped by NREL for the
CAISO system for
March 2020 (7 a.m.—
12 p.m.). Additionally,
RAVIS integrates mar-
ket simulation results
available from the
NREL in-house simu-
lation tool (FESTIV) for
the modeled independ-
ent system operator
system. These market
results include:

e Network nodes and
transmission  topolo-
gies (the black dots
and orange lines re-
spectively in Fig. 24
(left), where lines
>75% utilization are

; only shown.)
casts and data from the market clearing process. The mar- e Nodal clearing
ket clearing process typically consumes forecasts as one in- prices (appearing

put to ascertain system operation and generation dispatch
decisions that result in anticipated nodal prices, transmis-
sion utilization, and available generation flexibility.

when the cursor is
moved over the black
dots.)

e Aggregated net load

forecasts (Fig. 24 (right) shows the time-series probabilistic net load forecast data for
the San Diego region.)
e Available generation flexibility in the upward and downward directions at the nodal
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and aggregated system level (shown by the orange lines overlaid with the net load
time-series forecasts in San Diego, thereby enabling operators to see whether there
is sufficient generation flexibility to meet the net load uncertainties.)

The full report on RAVIS (Milestone 11.1.1’s report) discusses these use cases in detail
and the types of insights a system operator could gain and use. All these additional visu-
alization features can be added by toggling the customization parameter discussed in Fig.
24 provided such data are available and fed to RAVIS appropriately.

7.4. Task 4: ISO Interaction and FESTIV Simulation of Solar Forecast-Informed
Ramp Requirements

7.4.1 ISO Staff Interactions and Feedback. \We held a total of 26 meetings with ISO
staff and others to request data; learn about ISO market rules, forecasting, regulation,
and FRP requitement methods; and to present and receive feedback on project results;
and to demonstrate and obtain feedback on the RaVIS visualization system. The dates,
topics, and attendees are listed below:

Meetings with ISO staff on solar and load data, ISO forecasting and requirements meth-

ods, and project results:

e 2018: July 12 (MISO), Aug. 3 (CAISO), Aug. 13 (MISO), Aug. 31, Sept. 28, Dec. 6,
Dec. 18 (CAISO), Dec 21 (MISO)

e 2019: Jan. 7 (CAISO), Jan. 23 (MISO), Mar. 11, Apr. 2, May 15, July 2 (CAISO), Oct
4; Oct 8-9 (MISO), Dec. 5, Dec. 19 (CAISO)

e 2020: April 8, May 21, Sept. 4, Nov. 18 (CAISO), Dec. 12 (MISO)

e 2021: March 22 (CAISO)

RAVIS Demonstrations: Jan. 17, 2020 (MISO, CAISO, SETO Staff), May 20, 2021 (MISO,

CAISO, Excel Energy, SETO Staff)

7.4.2 Overview of Simulations. We compared two methods for estimating uncertainty-
related ramping needs in terms of system performance using two approaches. In the
first approach (theoretical comparison), we develop a framework that classifies market
intervals into five types with different anticipated performance in terms of reliability and
economics. We use that framework to choose a few simulation days with different pro-
files (frequency of different types of intervals) for preliminary testing of new methods.

For the second approach (practical comparison), we focused on ramping requirements
estimated a few hours in advance and contrasted two estimation methods: (a) a baseline
(industry-inspired) method that considers calendar information and past errors and (b) an
alternative (research-inspired) method that uses probabilistic solar forecasts and other
weather information. Results on a small 118-bus system suggest that weather-informed
estimation methods could yield different ramping requirements than existing calendar-
based methods. A 0.5M$ production cost savings from the new requirements for a three
week period in March 2020, when extrapolated to annual savings, amounts to about
$8M/yr. This value is one-third of the total CAISO FRP procurement costs of $25M in
2018, and is of the same order of magnitude of FRP costs in 2019 and 2020. Moreover,
preliminary results indicate that system conditions and ramping product design strongly
influence the benefits. Due to space limitations, details are not provided here on the 118
bus simulations, but are available in our quarterly reports and papers [50].
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We then compared results for an approximation of the western US power system for a
sample of eight days in March 2020. We found that the solar forecast-informed approach
decreased costs of power production (fuel and non-fuel O&M) and FRP procurement.
These results are described in detail below. Although the small sample of days means
that the results are not definitive, they do illustrate the potential value of using probabilistic
solar forecasts to inform reserves procurement. Details are provided below.

7.4.3 Theoretical Comparison of Baseline and Solar Forecast-Informed FRP Re-
quirements [61]. Day-ahead power markets or scheduling algorithms provide generator
schedules usually with a lead time of approximately 14—38 hours, given net load forecasts
and the technical constraints of thermal and hydro generators with respect to capacity,
startup, shutdown, minimum on/off-time, and energy limits. However, uncertainty and var-
iability in load and variable renewable output might lead to real-time deviations from the
day-ahead schedules. Balancing markets, such as real-time markets in CAISO [10] and
intraday markets in Europe [53], as well as balancing products such as ramping products
andregulation, aim to address deviations and prevent energy imbalances by procuring
flexibility and enabling the system to respond at lower cost to deviations from expected
conditions. In this context, flexibility is defined as the load-following [54] ramping capability
during a market interval starting from thelast financially binding schedule. Therefore, a
system needs flexibility or balancing capability equal to the system-wide net imbalance.

Sizing methods aim to estimate ramping requirements that will satisfy system flexibility
needs within a target reliability level. Here, we compare system performance under an
alternative set of ramping requirements (possibly provided by a weather-informed method
using solar forecasts) to the system performance under the baseline (status quo) method.
The “alternative” method can estimate: (a) higher, (b) lower, or (c) identical requirements
compared to the “baseline” method for each market interval, as shown in Fig. 25.

Requirements under case (c) (identical) will cause nodifferences in system performance
between the two methods. But under cases (a) and (b), different levels of requirements
between the two methods might lead to differences in system performance. We use
“‘might” because differences in ramp requirements are necessary but not sufficient for
differences in system performance. In particular, the market software includes constraints
that indirectly procure flexibility greater than or equal to the ramping requirements; so
available flexibility could exceed the requirements. Moreover, the market software allows
for deficits, i.e., procured flexibility lower than the requirements.In sum, the level of avail-
able flexibility, which depends on both overall system conditions and the requirements,
affects system performance. For example, a system could be overly flexible during a mar-
ket interval and its available flexibility could be higher than both sets of requirements,
resulting in the same system performance under cases (a) and (b).

Fig. 25 further categorizes possible outcomes of the comparison of system performance
under the alternative (solar forecast-informed) vs. the baseline estimation method by di-
viding the market intervals (a), (b), and (c) into five categories: a1, a2, b1, b2, and c. A
“1” (i.e., cases (a1), (b1) indicate that the realized ramping needs are more than the ramp-
ing requirements estimated by a method, and the system does not necessarily have
enough resources ready to ramp up, meaning that system reliability might be at risk. A
“2” indicates that the realized ramping needs are less than the requirements of both meth-
ods (see cases (a2) and (b2) of the framework shown in the figure, so that both methods
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estimate adequate requirements for that market interval; hence,we do not anticipate any
power balance violations caused by flexibility shortages and the method with the lowest
requirements might incur lower production cost

Which method estimates lower requirements?

(a) Baseline (b) Alternative (c) Same

IReliabiIity might improve I Reliability might deteriorate

under alternative method under alternative method Similar cost &
reliability under
Cost might increase under Cost might decrease under both methods

m2iternative method — alternative method

requirements (answer
(2) No (1)Yes

Was the realized need
higher than the lowest
to 1%t question) ?

Fig. 25. Theoretical framework classifying market intervals by comparing ramping
requirements from 2 methods (baseline/alternative, shown as solid/pattern grey bars,
respectively) and the realized ramping needs (illustrated with solid black bars).
Green, pink, and grey boxes indicate potentially improved, deteriorated, and similar
system performance, respectively, under the alternative ramping requirement.

7.4.4 Practical Comparison: Overview of System Simulation Model. Analysts usually
quantify system performance through production cost simulations, which minimize aggre-
gate costs, i.e., the sum of production cost (economic) and penalties for unserved energy
(reliability). Analysts can formulate ramping products in tools such as the Flexible Energy
Scheduling Tool for Integrating Variable Generation (FESTIV) [55] and conduct simula-
tions with different sets of rampingrequirements. FESTIV consists of a day-ahead sched-
ulingalgorithm run once per day and two rolling algorithms: real-time unit commitment
(RTUC) and real-time dispatch (RTD). Following CAISO’s conceptual design [30], we
simulate a ramping product in FESTIV RTUC by adding constraints (1)—(6) for all time
intervals t € {1,2,... HRTC-1}:

costru; = WTP x frus;; costrd; = WTP x frds; (1a,b)
o x X frug + frus, = FRURy @ * X frdg, + frds, = FRDR, (2a,b)
gengy — & frdg ¢ — rSgrp 41 = PMINg * Ug ¢, 1 (3)
gengy + o frug ¢ + XresorD ISgrestsr = PMAXgi,1 * Ugtyq (4)
geng i g — geNgy < A * frugy; gengy — gengeyq < O+ frdg, (5a,b)

(6a,b)

_ B B
{afrug, + (rsg,RU,t + rsg_RU_t+1)' afrdge + 2 (rsgrp + I'Sgrpt11)} < RRg * Drryc

In words, each constraint m (m =1,2,5,6) is divided into (ma) for upward ramping and
(mb) for downward ramping. Egs. 1 estimate the penalties (costru, costrd) for ramping
product deficits (frus, frds), which are added to the objective function of the scheduling
optimization. Eq. (2) procures ramp to meet requirements (FRUR, FRDR), whereas eqgs.
(3) and (4) guarantee that the unit’s generation (gen) and ramp will not violate its minimum
and maximum operating limits, respectively, depending on its commitment (u). Egs. (5)
count expected change in generation schedule toward the ramping product. Egs. (6) en-
sure that the ramping capability for the units is shared between ramp and reserve (rs)
products. To ensure that flexibility produced in the real-time (short-start) unit commitment
RTUC will be available in the real-time (5 min) dispatch RTD, we record RTUC schedules
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for the second interval (t=2) and force them in the subsequent run. Thus, we model gengt,
rsg, res,t, Ug,t as parameters at t=1 and as decision variables for t>1.

A comparison of the aggregate cost under different uncertainty-related ramping require-
ments in absolute terms is informative; however, a comparison in relative (percentage)
terms can be misleading because, by far, the bulk of aggregate cost is not caused by the
uncertainty of net load or the procurement of uncertainty-related ramping products. That
is why we proposeand employ a metric called “uncertainty-induced costs.” The “uncer-
tainty-induced costs” are equal to (a) the aggregate costof a simulation with net load
uncertainty and ramping product minus (b) the aggregate cost of another simulation with-
out uncertainty (i.e., perfect net load forecast). By subtracting (b), this metric omits the
portion of the aggregate cost that would be incurred if net load were known with certainty.

We numerically illustrate the value of ramping sizing methods using a modified IEEE 118-
bus system that mimics the annual generation mix of CAISO [56] with ~10% solar pene-
tration (in terms of annual energy) in line with 2017 CAISO levels [57]. The case study
closely follows the CAISO market structure in FESTIV [55] by simulating three markets:
day-ahead with hourly resolution and a 24-hour horizon, RTUC with 15-min resolution and
a 3-hour horizon, and RTD with 5-min resolution and a 1-hour horizon. Moreover, to re-
flect the balancing nature of RTUC and RTD, we include CAISO must-run rules [10].

ISOs have multiple balancing products to address uncertainty and variability. Here, we
focus on a single uncertainty—forecast errors of solar generation with a lead time of 2-3
hours—because novel methods aim to quantify uncertainty of solar irradiance [58,59]. In
practice, ISOs account for uncertainty induced by gross load and wind forecast errors as
well. We also estimate requirements for one operating reserve product: the flexible ramp-
ing product (FRP) in RTUC using the baseline and alternative methods. The 1—4 hr lead
time of RTUC in our simulation (as opposed to the actual 1-5 hrs in CAISO) facilitates
integration of weather-informed probabilistic forecasts with a lead time of a few hours.

We assume that net load can take one of three values in each market interval t (i.e.,
lower, mean, upper). We estimate RTUC FRP requirements in the down and up directions
that address both forecasted movement from t to t+1 and uncertainty at t+1 using (7) and
(8) as follows. We set regulation and spinning reserves at 1% and 3% of gross load,
respectively, and the value of lost load at $6,500/MWh, which is the administrative penalty
for power balance violations in the scheduling runs of CAISO [10]. For simplicity, we do
not procure flexible ramping product in the RTD market because we assume that solar
generation is known with certainty in the CAISO RTD market (which closes at t-7.5
minutes, as opposed to the time when RTUC is run, which is at t-52.5 minutes).

FRDR: = max (O, NLtmean - NLt+1,10wer) (7)
FRURt = max (O, NLt+1,upper - NLt,mean) (8)

7.4.5. Practical Simulation: System Performance for Large System: System De-
scription. The large-scale CAISO system (with 1820 buses) is simulated in FESTIV, and
we performed a cost-benefit analysis of the improved flexible ramping product. Two over-
arching tasks were performed to work towards this milestone:

1. Porting over FESTIV simulation to the high-performance computing (HPC) resource
for gaining speed-up, and for running several scenarios in parallel.
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2. Performing CAISO 1820-bus simulations for various scenarios: 1) perfect forecast
without uncertainty, 2) with CAISO baseline FRP, and 3) with new improved FRP
proposed by our team. Similar to the small system (IEEE 118 bus simulation analysis)
analysis (summarized in our quarterly reports and [50]), our goal was to perform such
an analysis using the large-scale CAISO system for ascertaining improved cost-ben-
efit metrics related to economic savings and reliability benefits.

We simulated FESTIV for the WECC-sized power system model, summarized below.
Table 3. Summary of WECC scale simulation model

Number of buses 1,820
Number of transmission lines 3,053
Number of generators 3,787
Non-renewable units/installed capacity [MW] 1,742/158848
Hydro units/installed capacity [MW] 1,570/64008
Wind units /installed capacity [MW] 85/20004
Solar units /installed capacity [MW] 390/18540
Number of regions captured 40

FESTIV has been developed and used at NREL over the last 10-odd years, and this
system represents the largest system ever simulated within FESTIV. Previous efforts
mostly used IEEE 118 bus system, and therefore this marks ~15 fold increase in system
size, which posed computational challenges. In order to find a tractable solution to the
optimization of such a large system, several modeling assumptions were made.

1. First, a detailed representation of power system is only maintained for the Califor-
nia system operator’s footprint (CAISO), and remaining regions outside the juris-
diction of the CAISO are modeled as single nodes interacting with CAISO.

2. Second, in order to capture real-world transaction costs, a flat $/MWh hurdle rate
is assigned to exchanges of power between regions.

3. Third, hydro is not optimized but rather follows historical profiles as published by
CAISO and BPA. The BPA profiles are applied to BPA hydro assets. The CAISO
profiles are applied to all remaining hydro assets in the model.

4. Fourth, in order to simplify the solution space of the optimizations, start-up and
shut-down trajectories are not explicitly modeled.

5. Fifth, flat start-up costs are used rather than dynamic start-up costs based on gen-
erator usage.

7.4.6. Practical Simulation: lllustrative Large System Dispatch. With these and
the previously discussed assumptions in place, to illustrate the use of FESTIV for the
large system and our input assumptions, we present details on the FESTIV simulation
day-ahead market for one day, March 9" 2020 below. The overall system load is
shown in Fig. 26. Note, the figure shows 48-hour load forecast, as the 1St 24-hour
period is used by the day-ahead unit commitment as financially binding, and the 2"
24-hour period is advisory only to prevent “end effect” distortions at the close of the
1t 24 hours.

The system-wide peak demand is just above 100 GW and exhibits a daily evening
peak with a smaller peak during the morning hours. The output of the renewable gen-
eration assets is shown in Fig. 27.

35



m WAU\
WACN
mTPWR
mTEPC
mSCL
A W PSEI
mPSCO
HPNM
mPGE
HPAWY
PAUT
PAID
NWM
IPTV
IPMV
IPFE
mGCPD

120000
100000
80000 -
60000

40000

Load [MW]

20000

0

11 16 21 26 31 36 41 46
Time [hr]

Fig. 26. System load in for regions in WECC

14000
E; 12000
10000
— 8000
5 6000
4000
2000
0

1 6 11 16 21 26 31 36 41 46

Time [hr]
Fig. 27. Aggregated wind and solar output in
the WECC model

Outp

DE-EE0008125
The Johns Hopkins University

The system shows large penetra-
tion of solar generation, topping
~12 GW of power during the day.
The model is able to co-optimize
energy and ancillary service re-
quirements, and the calculated
generation stack is presented in
Fig. 28 below.

The day-ahead SCUC takes about
6-7 hours to finish the whole pro-
cess (reading data, solving, writing
output data). Note, the simulation
results shown above are for the
basecase without FRP (i.e., perfect
forecast case). We discuss our
comparison of two other scenarios
below, namely the baseline CAISO
FRP and new FRP for comparison.

7.4.7. Practical Simulation:
Comparisons of Large System
Baseline and Solar-Informed
FRP Requirements. Scenarios
with transmission constraints in this
CAISO system were simulated to
ascertain the benefits from weather
informed FRP procurements. The
production cost results are used to
compare the results in this section.
Three different simulation scenar-
ios are considered and sum-

Generation by Technology

marized below in Table 4.

b T T T T T T T T

100000 |~

Output [MW]
g g
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T

Scenario 1 in that table es-
tablishes a baseline for the
analysis with ramp uncer-
tainties covered by current
CAISO practice. Scenario 2
captures operational im-
pacts due to updated FRP
requirements calculated us-
ing probabilistic forecasts,
following our proposed en-
hanced solar forecast-condi-

2
Time [hr]

Fig. 28. FESTIV dispatch of generation by technology

tioned approach. Scenario 3
establishes a reference cost
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load uncertainties. Any costs incurred above this value can be attributed to provision of
grid services to counter uncertainties experienced by the system.

Table 4. Scenarios Simulation for Operational Impact Assessment
Scenario 1 |Business as usual using published FRP requirements from OASIS system
Scenario 2 |New FRP requirements calculated using probabilistic forecasts
Scenario 3 |Operator has perfect visibility of the system, i.e., zero netload forecast errors

Due to HPC resource bottlenecks and data availability, the team performed a simulation
of the CAISO system without transmission constraints for a three-week period in March,
2020, but only performed simulations of the CAISO system with transmission constraints
for selected 8 days during this three-week period. These days included 3/16-3/20 and
3/23-3/25 in that year. Simulation results with network constraints are summarized below.

Figs. 29 and 30 show the FRP requirements using the baseline method (CAISO method)
and proposed new FRP method (conditioned on weather, including information from the
Watt-Sun probabilistic solar forecasts summarized in Section 9.1 above, using the BP2
models created by UT-Dallas, described in Section 9.2). Apart from being conditioned on
solar power forecasting, we also see that the new solar forecast-informed FRP matches
the pattern of expected morning and evening ramps well. The FRP-down requirement
from the new FRP method is greater during morning hours when solar power is expected
to ramp up and net-load is expected to ramp-down, thereby requiring more FRP-down.
On the other hand, the new method’s FRP-up is greater during evening hours, when solar
power is expected to reduce, consequently causing net-load ramp to increase. Apart from
these trends, other intermediate and diurnal patterns are due to changes in expected
diurnal and hourly solar power forecasts and associated uncertainties. The proposed new
solar-conditioned FRP method adapts itself well to the changing weather and forecasts;
while the baseline method has highly similar FRP procurements for several contiguous
days (due to the baseline method using historical 20-40 days as the basis for procure-
ment, without considering latest weather changes).
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Requirement [MW]

1

Fig. 29. Flexible Down Ramp Requirement: Baseline Vs. New FRP

Requirement [MW]

—

Fig. 30. Flexible Up Ramp Requirement: Baseline Vs. New FRP
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The below tables and figures summarize cost impacts, including system production costs
and uncertainty costs (i.e., the difference between experienced costs and the costs under
the ideal circumstance of perfect forecasts). With the full network constraints considered,
$0.43 million is saved during the 8 days simulated with the proposed FRP method.

Table 5. Operational Impact from the Large 1820-bus CAISO system (5 day period)

March 16%"-20'" 2020 (5 days) Baseline New FRP  Perfect Forecast
Production cost (M$) 66.9 66.5 52.31
Uncertainty cost (M$) 14.59 14.19

Savings (M$) 0.332

Savings from prod cost (%) 0.5%

Reduction in uncertainty cost (%) (Ac- 2.34%

tual minus Perfect Forecast cost)

Table 6. Operational Impact from the large 1820-bus CAISO system (3 day period)

March 23"-25% 2020 (21 days) Baseline New FRP  Perfect Forecast
Production cost (M$) 39.74 39.65 33.94
Uncertainty cost (M$) 5.8 5.71

Savings M$) 0.097
Savings from prod cost (%) 0.24%
Reduction in uncertainty cost (%) (Ac- 1.6%

tual minus Perfect Forecast cost)

While the reduction in production cost is more modest compared to the significant reduc-
tion we reported earlier with the smaller IEEE 118 test system (Hobbs et al. 2021), the
reduction is in itself non-negligible in terms of magnitude and in line with expectations for
large system simulations. There is a 0.4% reduction (~$430,000 reduction in 8 days) in
production costs saving which stem from the slight modification of generation utilization
throughout the day (March 16-20).

Table 7 gives system FRP procurement costs (price paid times quantity procured). With
the proposed FRP method, procurement is reduced over 11% in the first 5 days (March
16-20) simulation in Table 5, and over 50% in the 3 days simulation shown in Table 6.
The size of this cost saving depends on the FRP profile, and the system operation condi-
tions. High solar penetration and conventional generation flexibility-limited scenarios may
further increase the benefits of using probabilistic forecast-based FRP procurements.

Table 7. Total FRP procurement cost ($K) from the large 1820-bus CAISO system

Time Period Baseline (Scenario 1) New FRP (Scenario 2)
5 days: March 16-20 76.14 67.53 (11.3% savings ~$8.6K)
3 days: March 23-25 60.38 28.9 (52.15% savings ~ $31.5K)

The minor changes due to improved FRP produces about 40.1K$ savings in FRP pro-
curement costs for 8-day period. This value is about one-tenth of the production cost
decreases noted above, likely because the marginal price of FRP does not reflect
changes in lumpy start-up and minimum run costs associated with changes in unit com-
mitment. Note that FRP procurement costs in CAISO in 2018 were about $25M/yr, and
costs in 2019 and 2020 were about a third of this level according to CAISO Department
of Market Monitoring reports. If we annualize this 40.1K$ per 8 days to an annual savings,
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they extrapolate to about 1.9M$/year in savings, which is 7% of the 2018 actual FRP
procurement costs, and 20% of the per year costs in 2019 and 2020.

Thus, we have observed procurement cost savings of 11.3% (March 16-20) and 52.15%
(March 23-25) with the large model including transmission constraints. (These results are
consistent with more extensive 3-week simulations within March 2020 without the trans-
mission network, where we observed procurement cost savings of up to 12.7% in the
large CAISO system without the transmission network.) Therefore, simulation results
on the large CAISO system meet the project’s success value of 10-25% cost savings.

The large system (with transmission) daily production costs for the baseline CAISO and
new FRP requirements cases are listed in Table 8. They show considerable variation
day-to-day, with the new requirements better on average, but actually worse (higher) in
two of three days . The number of units in baseline CAISO requirement and new FRP
requirements cases are shown in Fig. . The number of online units is close but not iden-
tical, with the greatest differences obvious in the last day-and-a-half, which is also when
the new FRP requirements save the most money. More units are committed to meet the
evening peak, and less are committed in the middle of the night.

Table 8. Daily Generation cost in the large system simulation

With transmission Base NewFRP New-Old |%Change
16-Mar 15357910.7 15428729 70818 0.5%
17-Mar 12531502 12433532 -97970 -0.8%
18-Mar 12215683.6 12291530 75846 0.6%
19-Mar 11938095.9 11909754 -28342 -0.2%
20-Mar 12329596.7 12073389 -256208 | -2.1%
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Fig. 31. Number of units committed (with-transmission constraints cases, March 16-20

We now examine the generation dispatch differences on the last two days (March 19-20),
which are summarized in the Table below. Fig. 32 shows a time series of the differences
in generation from various sources between the new FRP and base FRP cases. From
Table 9, it can be seen that the main generation dispatch is that the new case obtains
more energy from steam and combined cycle units, and less from costly combustion tur-
bines and hydropower (which can have high opportunity costs). This is the source of the
cost savings from using the new requirements.
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Fig. 32. Generation dispatch difference between base case and new FRP case

Table 9. Generation dispatch difference (MWh) over March 19-20 between the new
FRP requirements and the baseline FRP requirements case

Nuclear Steam CC CT Hydro Wind PV

Sum 2276.4 12933.3 11367.9 -12294 -14587.7 -536 840

8. Significant Accomplishments and Conclusions
8.1Task 1: Forecasting Accomplishments and Conclusions

8.1.1. Progress towards a scalable forecasting system. From our involvement in
SETO’s SF-I, we learned that by utilizing multiple NWPs, one can build a model to under-
stand when, where, and how each NWP model performs, and by building a machine
learning model to categorize different situations and treat each situation respectively, we
can build a better solar forecast model. The key innovation of this previous research was
that we found an effective way to enable customized modeling for each weather situation,
which made the machine-learning model much more performant for extreme weather
conditions. Competitive approaches would generally perform not as well and suffer from
an overall averaging effect in extreme situations where little data was available.

However, while it is generally believed that machine-learning (ML) and Al approaches
hold significant promise for improved solar forecasting, it is also clear that they will only
perform as good as the input data used for training. This is true for ML in general but
especially for situation-dependent and probabilistic ML approaches.

One of the main accomplishments of this research is that we have made significant pro-
gress towards building a much scalable solar forecasting system. However, scalability of
solar forecasting will remain a huge challenge despite the progress we and others have
accomplished here. It will therefore warrant much more research as the amount of data
to process is growing exponentially and becomes more complex. Watt-Sun 3.0 is the only
solar forecasting system, which can be easily scaled to larger data sets.

Most solar forecasting systems combine relational databases and object (or file-based)
storage. Both approaches will not scale well for forecasting applications requiring data in
hundreds of Terabytes. Towards that end, we have integrated a scalable backend tech-
nology, PAIRS Geoscope, which is key-value based and therefore scalable to hundreds
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of Petabytes. It avoids slow file-based operations and enables parallel compute via frame-
works such as MapReduce or Spark. In addition, the PAIRS system deals automatically
with different representations, reference systems, projections, spatial and temporal reso-
lutions of different inputs of weather information or weather models automatically by op-
erational industrial-scale ingestion pipelines from major content providers such as
ECMWEF, NOAA, etc.. Adding new weather information only requires activation of new
pipelines, which will stream new data into the system as they become available. In this
project we added numerous data sources important for solar forecasting such as HRRR
and GOES-16. We implemented more ways by which PAIRS can support extracting “data
frames” for subsequent ML tasks using an open-sourced SDK and Spark connectors. We
develop techniques to deal with missing data and improved the reliability of the input data
ingest, e.g., by developing a full monitoring and alerting tool for missing data. IBM has
plans to open-source the PAIRS Software soon. The PAIRS SDK is already open-sourced
and PAIRS provides OGC (Open geographic consortium) compliant web services. PAIRS
is available for non-commercial purposes without a charge under an academic license.

This accomplishment is also significant because it will provide not only provide a path
forward to improve forecast skills by improved efficiency and leveraging more data, which
are exponentially increasing. The PAIRS platform has cross-industry use cases which
means it is more economic than single industry-focused systems. PAIRS is already the
backbone of the IBM’s Weather Business Solutions. PAIRS has served up to 110M API
requests per day and supports industry solutions/applications in energy, agriculture, in-
surance, and the public sector. For example, in the utility sector, PAIRS now supports
commercial solutions including renewables forecasting, load forecasting, vegetation man-
agement, outage predictions, energy trading etc.. Towards that end, PAIRS includes
many other non-energy related data which will become more important for decision mak-
ing tools. Examples of such data include land use, population, and critical infrastructure.

8.1.2. Rasterized probabilistic solar irradiance forecasts. The scalability of the PAIRS
system has been exemplified by developing rasterized, short-term (1 hour ahead) proba-
bilistic solar forecasting data product based on GOES-16 and individual measurement
stations. GOES-16 provides up to 3 Terabytes of new data per day, from which a signifi-
cant fraction is being ingested and curated in PAIRS in near real-time. While ingesting all
that data is a challenge, it is equally a challenge to compute forecasts in a timely manner,
especially considering that short-term solar forecasts. PAIRS and the described improve-
ments (e.g., batch exports for SPARK ML, etc.) enabled us to provide such a rasterized
probabilistic short-term solar forecast which is believed to be uniquely differentiated from
other forecasting systems.

A key innovation in this accomplishment is a deep learning model to forecast GOES L2
data from optical cloud depth. This model uses instead of a spatial convolution layer, a
volumetric convolution neural network layer, which allowed conducting convolutions to
automatically extract features that are spatial temporal correlated. Another important in-
novation is that this deep learning model was coupled to a quantile regression-based
machine-learning model, which mapped the forecasted L2 data and the measured
ground-level GHI. Fig. 33 shows an hour ahead GHI forecasts based on the approach for
the 50% quantile on 02/15/2020 on 00:00 UTC for part of the Western United States.
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Fig. 33. Example of Rasterized 1-hour probabilistic ahead forecasts

8.1.3. Watt-Sun solar forecasting performance. The different versions of the Watt-Sun
forecasting systems delivered consistently improved accuracies, consistent with the mile-
stone targets. These continual improvements are the foundation of IBM’'s commercial
offerings in this space.

e Watt-Sun 0.0, which was an initial prototype, delivered a Brier score of 0.4 over three
28-day periods for a single California site providing GHI forecasts at 15 minutes
intervals with 4-hour forecast horizon and a refresh rate of every hour.

e Watt-Sun 1.0 delivered GHI solar forecasts for 20 sites (10 sites in CAISO and 10
sites in MISO regions). Forecasts were operational with 5 quantiles (0.05, 0.25, 0.5,
0.75, 0.95) with a forecast horizon of 24 hours at 15 min frequency and refresh rate.
Brier scores for each site were below 0.3 over two periods of 28 consecutive days,
which is an improvement of 25% over Watt-Sun 0.0. Compared to an ISO standard
ARIMA method Watt-Sun 1.0 achieved improvement of larger than 20%.

e Watt-Sun 2.0 was evaluated for the same 20 sites. Forecasts were made for the
same 5 quantiles with a forecast horizon of 24 hr at 15 min frequency and refresh
rate. Forecasts were evaluated using the P-P plot score in comparison to bias-cor-
rected HRRR GHI forecasts. Watt-Sun 2.0 not only performed better than Watt-Sun
1.0 based on Brier scores but also showed a 20% improvement in the P-P plot score
over bias-corrected HRRR GHI forecasts. In terms of rMAPE. Watt-Sun 2.0 also
performs better, with a 17% improvement over HRRR bias-corrected forecast.

Finally, Watt-Sun 3.0 was evaluated based against persistence for 24 sites, but the same
forecast horizons, frequencies, and quantiles as Watt-Sun 1.0 and 2.0. Watt-Sun 3.0
showed that 79% of Watt-Sun 3.0 probabilistic forecasts are better calibrated than the
(probabilistic) persistence estimator. More specifically, for the forecast horizon of 4 hours
and for 7 stations, a consistent improvement of at least 20% of the P-P-plot metric was
achieved by Watt-Sun 3.0 as compared to a persistence estimator. Additionally, 2 stations
achieve a consecutive run of at least 28 days for a 30% P-P-plot metric improvement. For
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the forecast horizon of 24 hours and for 11 stations, a consistent improvement of at least
20% of the P-P-plot metric was achieved as compared to a persistence estimator.

8.2 Task 2: Reserve Requirement Definition Accomplishments and Conclusions

Contributions of this task include: 1) development of a systematic way to prepare, pro-
cess, and extract key features from probabilistic solar forecasts, which can be used by
market operators in conjunction with data-driven methods to make weather-informed de-
cisions; 2) demonstration of the trade-offs between system reliability and market effi-
ciency as different parameters or procurement strategies are selected; and 3) modeling
FRP and regulation as a two-objective (reliability and procurement) optimization problem.

By applying the proposed kNN-based FRP requirements method to the CAISO 15-min
RT market, our results from three representative months in 2020 suggest that the pro-
posed method can improve the performance compared to the baseline in terms of both
system reliability and oversupply relative to need. Because of the performance sensitivity
to the kNN parameters, we also proposed a selection method to dynamically identify the
best kNN parameters per hour of the day, which allows power system operators to max-
imize the benefits of the kNN-based method. Key insights from our results include:

1. The performance of the KNN-based method varies across classifiers and the kNN
parameters. Generally, a greater K results in more conservative estimations, i.e.,
greater FRP requirements and increased reliability levels.

2. Despite variations in performance, the solar/weather-informed decisions have better
reliability and market efficiency most of the time, notably during early morning and
late afternoon, when sunrise/sunset cause greater uncertainties.

3. Although different classifiers from a single site explain weather uncertainty from dif-
ferent perspectives, they also present considerable correlations. In addition, a com-
parison of results using forecasts from different sites suggests that geographical
variations can affect performance. In response, the PCA-based method effectively
characterizes the system-level weather uncertainty by using only a reduced set of
principal components, and results in improved performance when compared with all
single-site cases. The proposed approach is extendable to include more sites (e.g.,
the entire CAISO region) to further improve the performance, and therefore promises
even greater benefits in real applications.

4. Different from the kNN-based method that is bounded by similar days, the machine
learning-based methods learn to estimate reserves with greater variations. Moreo-
ver, the ML/DL-based methods tend to underestimate FRP requirements, which fur-
ther result in increased frequencies of FRP shortages. This is because FRP require-
ments are subject to a lower bound of 0 MW but no upper bound, and because the
ML/DL-based methods put the same weight on the two objectives of FRP shortages
and oversupplies, so underestimating FRP requirements result in smaller prediction
errors. Thus, a better objective function is required in the ML/DL-based methods to
better account for real world trade-offs between reliability and economics.

5. Our solar forecast-conditioned requirements for FRP and regulation-up consistently
showed better performance than the CAISO baseline methods which did not con-
sider weather or solar conditions. For FRP, although the ML/DL-based benchmarks
can potentially reduce FRP oversupply, at the same time our methods present better
reliability. Further, the optimized PCA-kKNN results outperform the best adjusted
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CAISO benchmark results in Aug. 2020, indicating superior and robust performance.
In general, our optimized PCA-kNN results present better performance than CAI-
SO's baseline across all months. In addition, quadratic regression methods for esti-
mating requirements also outperformed CAISO’s baseline method in out-of-sample
tests, although which particular specification depends on the month and time inter-
val. Meanwhile, for regulation-up, short-term (2 hr-ahead) prediction of area control
error (adjusted for reg-up deployment) using solar forecasts and time series data
yields real-time reg-up requirements that outperform the present day-ahead method.

8.3 Task 3: Visualization Accomplishments and Conclusions

We have shown how RAVIS successfully integrates forecast data from the IBM Watt-Sun
system, in addition to in-house NREL forecasts, that can be refreshed periodically. We
have also provided information on the innovations and unique features of this tool, the
basic architecture and open-source libraries used, and illustrations of use cases where
site-specific solar power forecasts have been integrated and ramp alerts are visualized
at the site and regional levels. One use case also includes the integration of market clear-
ing data to provide a proof of concept for plug-and-play layered architecture of heteroge-
neous data integration and seamless integration of system operational data visualization
in conjunction with forecast data. Example data includes network topology, nodal attrib-
utes (flexibility, prices), transmission congestion, and available aggregated generation
flexibility (compared to regional aggregated net load probabilistic forecast and ramps).

The vision is for this tool to be used by end users who can tweak it as driven by their
particular needs. End users can expand it to include alerts to ingest more sensor data
and weather data into this common platform, including site-level cyber anomalies and
regional stability alerts, and they can superimpose severe weather events to forecast their
evolution and the affected regions. Additionally, given the importance of co-simulating
bulk transmission and distribution systems to study the role of distributed energy re-
sources (DERSs) to mitigate stability issues under various IEEE 1547 standards, the visu-
alization can be expanded to include high spatial resolution of distribution networks with
customer-sited DERSs that are connected to respective transmission substation nodes. It
is acknowledged that each end user might have their own needs for features; therefore,
although this final report summarizes the set of standard developments related to specific
tasks involved in the SETO-funded project, the tool is flexible for further R&D.

8.4 Task 4: Simulation-Based Benefits Accomplishments and Conclusions

The baseline FRP requirement (using the CAISO’s method) and the new FRP require-
ment with the proposed solar forecasting method have been compared for a large trans-
mission network (WECC, including the CAISO). The multi-timescale power system simu-
lation tool, FESTIV, has been used for this simulation. Three cases representing the base-
line FRP requirement, the new FRP requirement, and perfect forecasting are analyzed.
We find that using the proposed solar-informed FRP requirement estimation method, sys-
tem generation cost and FRP procurement expense can be reduced in this large system.
The technical challenge of large-scale transmission network simulation have been solved
using NREL high performance computers, which can be leveraged for future studies.

9. Budget and Schedule
See the final RPPR2 and SF-425 reports for financial details. The federal project budget
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has been underspent slightly (4%), which has not impaired the ability of the project team
to accomplish the goals of the project. The budgeted cost-match goal been met. Due to
COVID-caused obstacles to use of the high-performance computing facility at NREL,
there were delays in completing the Task 4 system simulations to assess the benefits of
solar uncertainty-informed ramp requirements, and the simulations were less extensive
than initially planned. To accommodate the adjustments and delays in the project tasks,
a 6 month no cost extension was requested and granted.

10. Path Forward
10.1 Task 1: What’s next for probabilistic solar forecasts? Algorithms to scaling

Despite the progress the technical community has made in advancing methods and tech-
niques for solar forecasting, it is becoming increasingly evident that improved algorithms
alone, whether physics-based, data-driven or a combination, will not bring about the re-
quired forecasting accuracies, especially for high impact situations of extreme weather
conditions, where it matters the most. In fact, it is a perhaps painful realization of the “Al
revolution” that such approaches and techniques are often not scalable and must lever-
age much bigger data sets to become more robust [51], to yield reliably the required ac-
curacy, and to be able to inform high-value decisions for operations as the grid becomes
more complex and as we are moving from renewable energy forecasting to integration.
That is, research must shift from developing algorithms to a focus on scaling the underly-
ing information architectures that support these approaches. On a practical level, this
means that such Al-enhanced big data technologies (i) must not only be generalizable to
make them economic. Further, (ii) they must be extendable as one seeks to manage more
complex and larger energy systems as exponentially more data is becoming available.

On a technical level the challenges can perhaps be best explained by the notion of data
gravity, which results from two facts. First, the data sets required to fuel more complex
and robust models for renewable energy generation have become very big. For example,
take weather or climate data. Every day, hundreds of TBs of weather/climate-related in-
formation are generated (e.g., weather stations, radar or satellite observations, or model
forecasts), which are growing >25%/y [51]. For example, 100 TBs daily takes more than
a week to move from a storage device to the memory of processor for subsequent com-
putation (at 100 MB/s read speed of a hard disk). Second, most applications require ad-
ditional data sets (e.g., advanced metering infrastructure or electrical grid networks) that
must be linked, for instance to enhance the fidelity of a machine-learning model.

Data gravity describes the fact that data sets are too big to be moved and thus big data
tends to attract more data - in the same way a bigger mass attracts a smaller mass. Data
gravity also means that data movement must be minimized. While in other domains (i.e.,
consumer choice prediction), specific and proprietary technologies have been invented
to overcome some of the discussed challenges, one should keep in mind that in case of
the energy sector we are dealing not only with even more data, but the information is also
much more complex and heterogenous, compared to the consumer market where one
might work with a common data set such as web pages. On a technology level, data
gravity does not only mean that next generation scalable systems and platforms must
heavily leverage (public and/or private) cloud computing but also one must invent new
information architectures that will (i) drastically minimize the data movement and (ii) ena-
ble indexing and linking of highly heterogenous data so that they become query-able and
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search-able (in the same way we can search today 40B webpages in 0.5s). The core of
a new program could include research, development, demonstration and commercializa-
tion of such a novel information architecture and system, which will enable vastly superior
exploitation of energy relevant data for the application of renewable energy integration.
Research questions and subtopics may include:
¢ Novel forms of indexing plus distributed data and computing architectures (for pro-
cessing energy relevant data, e.g., time series, geospatial, weather, and AMI data),
¢ New architectures and designs to facilitate complex “in data” computation with min-
imal data movements,
e Hybrid computational approaches to facilitate distributed learning across multiple
data repositories, and
e Development of benchmarks for testing new information architectures.

10.2 Task 2: Informing Ancillary Services Requirements

In general, there are at least three open research questions for the development of prac-
tical weather-informed estimation methods for ramping requirements. First, methods that
provide probabilistic forecasts of solar irradiance are yet to be thoroughly validated during
long periods using metrics such as P-P plots, sharpness indices, and Brier scores. Trans-
lations into solar power uncertainty also need to be validated. Second, uncertainty related
to wind and gross load should also be considered. Third, multiple balancing products
address uncertainty of net load. Future work will assess the potential of weather-informed
methods for additional balancing products including ramping and regulation using the
framework. We now discuss these directions in more detail.

It is estimated that CAISO's solar power uncertainty contributes at least half of overall net
load uncertainty. Therefore, we have focused on the uncertainty component caused by
solar power only, and we assume perfect foresight for wind and load. Future work should
address quantification of economic and reliability benefits of using integrated solar, wind,
and load probabilistic forecasts in system operations to inform ancillary service and flexi-
ble ramp requirements. Those requirements should be defined taking a multi-objective
approach, as we have shown in our Pareto methods for defining solar uncertainty-in-
formed requirements considering reliability and economics (Sect. 7.3). The appropriate
balance of the two objectives would be user and situation dependent and would best be
selected after studying the trade-offs embodied in the set of efficient (Pareto) alternatives.

In the FRP estimation work, a critical caveat in our analysis is that the solar power output
is converted from solar irradiance by using simulation tools, which may not reflect the
actual irradiance-to-power conversion because of imperfect knowledge of technical pa-
rameters of real-world solar power plants, such as inverter capacities, PV panel capaci-
ties, and degradation rates. Future work can calibrate the simulated results by comparing
it with real-world data or conducting sensitivity analyses to address parametric uncertain-
ties. Comparative studies can also be conducted to demonstrate the impact on the model
and, ultimately, power system performance by using simulated PV power as classifiers.

Incorporation of solar forecasts in requirements definitions could be extended to other
ancillary services, as we show for regulation. Due to limited data availability, only regu-
lation-up is examined, and preliminary results are obtained. Future work can aggregate
the merits of the classification methodology for intra-hour short-term forecasting, and
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adaptive procurement for regulation and other ancillary service requirement estimation in
electricity markets. In addition, improved forecasts will likely result from training separate
ML/DL models for different weather classifications using more years of data.

The algorithms and outcomes of this project could be leveraged for potential commercial-
ization through future DOE SIBR/STTR projects. In addition to utility-scale solar genera-
tion, the methods could extend probabilistic solar forecasting to behind-the-meter (BTM)
generation, and account for BTM solar in determining needed reserve products.

10.3 Task 3: Ramp and Uncertainty Visualization

Advanced real-time operation and control of renewable resources. \We've illustrated
how operators can be informed by visualization of ramps and solar uncertainty. Future
work could emphasize helping end users to obtain a much more comprehensive situa-
tional awareness, allowing them to relate resource forecasts and their ramps to power
system operational metrics, such as generation flexibility, transmission congestion, and
nodal prices. Any of these system metrics could be used as additional alerts, and an
operator could take appropriate corrective actions knowing the status of the grid in real
time. For instance, while responding to nodal inflexibilities, it would be good to anticipate
transmission congestion to ensure that the decision to add additional reserves can be
effectively delivered to the required location. If such delivery is challenging because of
congestion, an operator could resort to controlling the outputs of variable renewable re-
sources in that location (again, by looking at the resource forecasts and anticipated ramps
in those local resources) and curtail or adjust ramp rates to meet the reliability and avoid
a ramp scarcity event and the consequent real-time price spikes. These are some ad-
vanced control room real-time operations that could be made feasible by an interactive
and dynamic visualization platform that provides comprehensive situational awareness
by ingesting heterogeneous data along with probabilistic solar, wind, and load forecasts.

Component-level forecasts, ramping, and innovative solutions for additional flexi-
bility. The use cases presented in Section 8.3 illustrated the visualization of solar power
forecasts and net load forecasts, but this tool is customizable to visualize every compo-
nent of net load individually—i.e., utility-scale solar, distributed solar power, wind power
and load power—and their aggregated form as net load. Therefore, a system operator
could look at the relative contributions of each component of the net load variability and
uncertainty at the nodal or regional level and accordingly devise mitigation strategies as
well as compensation mechanisms. One could quantify the components that aid system
reliability and the components that deleteriously impact reliability and identify locations
where additional flexibility in the system might be beneficial. Such analysis could also
encourage the owners of these variable renewable power plants to develop innovative
solutions for enhancing flexibility and reliability, including investigating options to install
co-located or AC-/DC-integrated storage and hybrid systems.

10.4 Task 4: Simulation-Based Benefits of Using Probabilistic Forecasts

Preliminary results are encouraging for the development of more accurate ramping re-
quirement estimation methods (possibly weather-informed), based on simulations of a
small test system as well as a large (Western US) system during a sample of days in
March 2020, as described above. However, net cost and reliability simulations for a
longer period (e.g., a year) are needed to provide definitive benefit estimates that will be
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most useful to operators. Considering longer periods will be useful for identifying (a) is-
sues such as nondeliverability of reserves that prevent the realization of benefits and (b)
periods during which more accurate quantification could be most valuable. Given the im-
portance of system effects, future simulations should use realistic systems under a wide
range of scenarios, including varying penetration levels of renewable resources. We will
also analyze correlations of real-time power balance violations with traditional reliability
metrics such as control performance standards [52] because violations provide infor-
mation on both economic (out-of-market corrections) and reliability performance.

11.

Inventions, Patents, Publications, and Other Results

See RPPR2 for workshops (3), websites (2), and other conference/workshop talks (29).
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