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Motivation: Bayesian inversion for continental scale ice
sheet models
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Observed surface flow velocity from InSAR
(Rignot et. al, 2011)

Antarctic ice sheet inversion
for the basal friction parameter field

from InSAR surface velocities

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with application
to flow of the Antarctic ice sheet, Journal of Computational Physics, 296, 348-368 (2015).
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Ice sheet dynamics

Balance of mass and linear momentum

−∇ · [η(u) ε̇− Ip] = ρ g, [ε̇ = 1
2 (∇u+∇u>)]

∇ · u = 0

Mathematical challenges:

highly ill-conditioned linear systems

complex, high aspect ratio geometry

strong nonlinearities

multiphysics couplings

uncertain basal boundary conditions,
topography, heat flux

observational data: InSAR, laser
altimetry, GRACE satellite, ice cores,
radar

Inference of basal bdry. cond.

critical for climate simulations

inference of effective sliding/friction
coefficient β(x) in Robin boundary
condition

T(σn+ exp (β)u) = 0

(T is tangential component) from
surface velocity observations

Tucker Hartland (UCM) HODLR for Bayesian Inverse Ice Sheet Problems June 24, 2021 3 / 18



Bayesian approach to inverse problems

Inverse problem: given (possibly noisy) data d and (a possibly uncertain) model
f , infer parameters β that characterize the model, i.e.,

f(β) + e = d

Interpret β, d as random variables; solution of inverse problem is the “posterior”
probability density function πpost(β) for β:

πpost(β)

Remarks:
Bayesian framework quantifies uncertainty in the inverse solution, given
uncertainty in the prior, the data, and the model.

Prior incorporates known information and in infinite dimensions chosen to act
as a regularization.

Bayesian solution is probability density in as many dimensions as the number
of parameters.
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Exploring the posterior

If the prior is Gaussian with mean mpr and covariance Γprior, and the measurement
noise is additive and described by a Gaussian distribution, i.e., e ∼ N (0,Γnoise),
then we obtain for the posterior pdf:

πpost(β) ∝ exp
(
− 1

2 ‖ f(β)− d ‖
2
Γ−1

noise

− 1
2 ‖ β − βpr ‖2Γ−1

prior

)
The “maximum a posteriori” (MAP) point is

βMAP

def
= arg max

β
πpost(β)

= arg min
β

1

2
‖f(β)− d‖2Γ−1

noise
+

1

2

∥∥β − βpr

∥∥2
Γ−1

prior

⇒ deterministic inverse problem with appropriate weighted norms!

Details in: J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, (2005).
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Scalability of an ice sheet inverse solver
Inexact Newton-CG

#sdof #pdof #N #CG avgCG #Stokes
95,796 10,371 42 2718 65 7031

233,834 25,295 39 2342 60 6440
848,850 91,787 39 2577 66 6856

3,372,707 364,649 39 2211 57 6193
22,570,303 1,456,225 40 1923 48 5376

#sdof: number of degrees of freedom for the state variables;

#pdof: number of degrees of freedom for the inversion parameter field;

#N: number of Newton iterations;

#CG, avgCG: total and average (per Newton iteration) number of CG iterations;

#Stokes: total number of linear(ized) Stokes solves (from forward, adjoint, and
incremental forward and adjoint problems)

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with
application to flow of the Antarctic ice sheet, Journal of Computational Physics, 296, 348-368 (2015).
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MCMC sampling: stochastic Newton
Performance results / Convergence diagnostics

MPSRF IAT ESS MSJ ARR #Stokes time (s)
SN 1.348 600 875 64 2 8400 420

MPSRF: multivariate potential
scale reduction factor

IAT: integrated autocorrelation
time

ESS: effecitive sample size

MSJ: mean squared jump distance

ARR: average rejection rate

#Stokes: # of Stokes solves per
independent sample

time: time per independent
sample

Statistics: 21 parallel chains (each 25k); # samples: 525k; dof: 139; rank
Hessian: 15

Proposal density:
detH1/2

(2π)n/2
exp

(
−1

2

(
y − βk +H−1g

)>
H
(
y − βk +H−1g

))
Details in: N. Petra, J. Martin, G. Stadler, O. Ghattas. A computational framework for
infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to
ice sheet inverse problems, SIAM Journal on Scientific Computing, 2014.
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The Hessian (of the negative log posterior) plays a critical
role in inverse problems

Its spectral properties characterize the degree of ill-posedness.

The Hessian drives Newton-type optimization algorithms for solving the
inverse problem.

The inverse of the Hessian locally characterizes the uncertainty in the
solution of the inverse problem (under the Gaussian assumption, it is precisely
the posterior covariance matrix).

Goal: rapidly perform linear algebraic operations, i.e., manipulation of the
Hessian (and its square root and inverse) actions needed by sampling or CG
solvers, hence seek approaches to approximate the Hessian(-applies).

These approximations can then be used as pre-conditioners, and to build
MCMC proposals based on local Gaussian approximations.
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Exploiting problem structure
Low-rank properties of the data-misfit Hessian

Invoke low-rank (LR) approximation given by the inverse of the Hessian:

Γpost =H
−1 =

(
F>Γ−1noiseF + Γ−1prior

)−1
≈ Γ1/2

prior (V rΛrV
>
r + I)−1Γ1/2

prior

where V r and Λr are the eigenvectors/values of F>Γ−1noiseFvi = λiΓ
−1

prior vi
Spectrum of the prior-preconditioned likelihood Hessian for the Arolla glacier
(139 parameters, left) and Antarctica (1.19M parameters, right)
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409,545 parameters

1,190,403 parameters

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with application
to flow of the Antarctic ice sheet, Journal of Computational Physics, 296, 348-368 (2015).
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Exploiting problem structure
Localized sensitivities of the parameter-to-observable mapping

sensitivity, ∂u
∂β

sensitivity, ∂β
∂u

measurements, d

parameter, β(x)

? Observation: a variation of β at xj will impact u in a neighborhood of xj .

? Hypothesis: the Hessian has numerically low-rank off-diagonal blocks.

? Computational strategy: generate Hessian approximants by compressing to
HODLR format.
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H-matrices
Hierarchical off-diagonal low-rank (HODLR) matrices

HHODLR =

[
A

(1)
1 B

(1)
1

B
(1)
2 A

(1)
2

]
• Low-rank

=

   
A

(2)
1 B
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1
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2
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1
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   

=


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
Details in: J. Ballani, D. Kressner. Matrices with Hierarchical Low-Rank Structures, Exploiting Hidden
Structure in Matrix Computations: Algorithms and Applications, (2016).
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Fast linear algebraic manipulation of HODLR matrices

HODLR approximation generation of matrix-free operators by selective
random sampling;

P. Martinsson. Compressing Rank-Structured Matrices via Randomized Sampling, SIAM Journal
on Scientific Computing, (2016).

Absolute and relative tolerance stopping criteria;
Y. Xi, J. Xia, R. Chan. A Fast Randomized Eigensolver with Structured LDL Factorization
Update, SIAM Journal on Matrix Analysis and Applications, (2014).

O(N log2N) direct solves;
S. Ambikasaran, E. Darve. An O(N logN) Fast Direct Solver for Partial Hierarchically
Semi-Separable Matrices, Springer Journal of Scientific Computing, (2013).

O(N log2N) symmetric factorization;
S. Ambikasaran, M. O’Neil, KR Singh. Fast Symmetric Factorization of Hierarchical Matrices
with Applications, arXiv, (2014).

O(N logN) HODLR mat-vec action;
P. Martinsson. Compressing Rank-Structured Matrices via Randomized Sampling, SIAM Journal
on Scientific Computing, (2016).
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Application to the Greenland ice sheet
Utilizing the Albany multiphysics code∗

Exploit the localized sensitivity
structure of the Greenland ice sheet
flow;

Preliminary results suggest
off-diagonal low-rank structure∗∗;

Details in:
∗I.K. Tezaur, M. Perego, et al. Albany/FELIX:
a parallel, scalable and robust, finite element,
first-order Stokes approximation ice sheet solver
built for advanced analysis, Geoscientific Model
Development 2015
∗∗T. Hartland, G. Stadler, N. Petra, M. Perego
and K. Liégeois. Hierarchical Off-Diagonal
Approximation of Hessians in Inverse Problems,
In preparation.

Basal friction field∗
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Humboldt glacier
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Humboldt glacier problem setup

three-dimensional
first-order Stokes model

# of discretized
state variables: 255 376

# of discretized
parameter variables: 11 608

# of processors: 64

Albany

Hessian action obtained by
automatic differentiation (SACADO)

Nonlinear forward solves (NOX)

Multigrid preconditioners (MueLu)

. . .
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Rank-structure of the Hessian misfit
Singular values of off-diagonal (OD) blocks decay rapidly
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Rank-structured approximation costs
Comparison of the HODLR and low-rank (LR) formats
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Summary

Hessians in inverse problems governed by partial differential equations are
essential for efficient, dimension-independent methods for both

Newton solution of deterministic inverse problems (i.e., for computing the
MAP point);

Markov chain Monte Carlo sampling to characterize the posterior.

To overcome the computational challenges of exploring the posterior in a
Bayesian inference context, it is imperative to further exploit problem
structure, e.g., local sensitivity of the data with respect to parameters, local
translation invariance and approximate local support.

Details in: N. Alger, T. Hartland, N. Petra and O. Ghattas. Fast Matrix-Free Approximation of
Smoothly Varying Blur Operators, with Application to Hessians in PDE-Constrained Inverse
Problems with Highly Informative Data, in preparation.

Hierarchical matrix representations provide an efficient means of generating
Hessian approximants.
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