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Motivation: Bayesian inversion for continental scale ice

sheet models
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. Antarctic ice sheet inversion
Observed surface flow velocity from InSAR for the basal friction parameter field

(Rignot et. al, 2011) from InSAR surface velocities

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with application
to flow of the Antarctic ice sheet, Journal of Computational Physics, 296, 348-368 (2015).
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Ice sheet dynamics

Balance of mass and linear mo um

—V - [p(u)é —Ip] = pg, [€=3(Vu+Vu')
V-u=0

Mathematical challenges:

. . . . Inference of basal bdry. cond.
highly ill-conditioned linear systems
. . @ critical for climate simulations
complex, high aspect ratio geometry
@ inference of effective sliding/friction

coefficient S(x) in Robin boundary
multiphysics couplings condition

uncertain basal boundary conditions,

topography, heat flux T(on +exp(f)u) =0

strong nonlinearities

observational data: InSAR, laser (T is tangential component) from
altimetry, GRACE satellite, ice cores, surface velocity observations
radar
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Bayesian approach to inverse problems

Inverse problem: given (possibly noisy) data d and (a possibly uncertain) model
f, infer parameters 3 that characterize the model, i.e.,

f(8) +e=d

Interpret 3, d as random variables; solution of inverse problem is the “posterior”
probability density function =,...(3) for 3:

Tlpost (13 )

Remarks:

@ Bayesian framework quantifies uncertainty in the inverse solution, given
uncertainty in the prior, the data, and the model.

@ Prior incorporates known information and in infinite dimensions chosen to act
as a regularization.

@ Bayesian solution is probability density in as many dimensions as the number
of parameters.
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Exploring the posterior

If the prior is Gaussian with mean m,, and covariance I,,, and the measurement
noise is additive and described by a Gaussian distribution, i.e., e ~ N (0,T,,..),
then we obtain for the posterior pdf:

2 1)

1—‘prior

Tn(B) < exp (=3 | F(B) —d |2 ~1 | B- B,

The “maximum a posteriori” (MAP) point is

def
IBMAP = arg mg‘x 7"-post(ﬁ)

1 1 2
= arg min 5 [ £(8) ~ dlzr + 5 (18 =Bl

prior

= deterministic inverse problem with appropriate weighted norms!

Details in: J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, (2005).
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Scalability of an ice sheet inverse solver

Inexact Newton-CG

#sdof #pdof | #N | #CG | avgCG | #Stokes
95,796 10,371 42 | 2718 65 7031
233,834 25,295 39 | 2342 60 6440
848,850 91,787 39 | 2577 66 6856
3,372,707 364,649 39 | 2211 57 6193
22,570,303 | 1,456,225 40 | 1923 48 5376

##sdof: number of degrees of freedom for the state variables;

#pdof: number of degrees of freedom for the inversion parameter field;

#N: number of Newton iterations;

#CG, avgCG: total and average (per Newton iteration) number of CG iterations;

#£Stokes: total number of linear(ized) Stokes solves (from forward, adjoint, and
incremental forward and adjoint problems)

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with

application to flow of the Antarctic ice sheet, Journal of Computational Physics, 296, 348-368 (2015).
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MCMC sampling: stochastic Newton

Performance results / Convergence diagnostics

MPSRF | IAT | ESS | MSJ | ARR | #Stokes | time (s)
SN 1.348 600 | 875 64 2 8400 420

@ MPSRF: multivariate potential

scale reduction factor @ ARR: average rejection rate

@ #Stokes: # of Stokes solves per

@ |IAT: integrated autocorrelation ]
independent sample

time
@ time: time per independent

@ ESS: effecitive sample size
sample

@ MSJ: mean squared jump distance

@ Statistics: 21 parallel chains (each 25k); # samples: 525k; dof: 139; rank
Hessian: 15

. det H'/? 1 - _
Proposal density: Wexp (—5 (y-B,+H 1g)T H(y-p8,+H 1g)>

Details in: N. Petra, J. Martin, G. Stadler, O. Ghattas. A computational framework for
infinite-dimensional Bayesian inverse problems: Part Il. Stochastic Newton MCMC with application to
ice sheet inverse problems, SIAM Journal on Scientific Computing, 2014.
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The Hessian (of the negative log posterior) plays a critical

role in inverse problems

@ lts spectral properties characterize the degree of ill-posedness.

@ The Hessian drives Newton-type optimization algorithms for solving the
inverse problem.

@ The inverse of the Hessian locally characterizes the uncertainty in the
solution of the inverse problem (under the Gaussian assumption, it is precisely
the posterior covariance matrix).

@ Goal: rapidly perform linear algebraic operations, i.e., manipulation of the
Hessian (and its square root and inverse) actions needed by sampling or CG
solvers, hence seek approaches to approximate the Hessian(-applies).

@ These approximations can then be used as pre-conditioners, and to build
MCMC proposals based on local Gaussian approximations.
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Exploiting problem structure

Low-rank properties of the data-misfit Hessian

@ Invoke low-rank (LR) approximation given by the inverse of the Hessian:

—1
L.—H'=(FTIF+T.}) ~L(V,AV]+ 17T

noise prior prior prior

where V. and A,. are the eigenvectors/values of F'T'_! Fv; = )\iI‘onrlvi

@ Spectrum of the prior-preconditioned likelihood Hessian for the Arolla glacier
(139 parameters, left) and Antarctica (1.19M parameters, right)
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Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with application
to flow of the Antarctic ice sheet, Journal of Computational Physics, 296, 348-368 (2015).

Tucker Hartland (UCM) HODLR for Bayesian Inverse Ice Sheet Problems June 24, 2021



Exploiting problem structure

Localized sensitivities of the parameter-to-observable mapping

e . au
sensitivity, 5z measurements, d

sensitivity, % parameter, 3(x)

+ Observation: a variation of 3 at x; will impact w in a neighborhood of ;.
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Exploiting problem structure

Localized sensitivities of the parameter-to-observable mapping

e . au
sensitivity, 5z measurements, d

sensitivity, % parameter, 3(x)

+ Observation: a variation of 3 at x; will impact w in a neighborhood of ;.
* Hypothesis: the Hessian has numerically low-rank off-diagonal blocks.
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Exploiting problem structure

Localized sensitivities of the parameter-to-observable mapping

e . au
sensitivity, 5z measurements, d

sensitivity, % parameter, 3(x)

+ Observation: a variation of 3 at x; will impact w in a neighborhood of ;.
* Hypothesis: the Hessian has numerically low-rank off-diagonal blocks.

* Computational strategy: generate Hessian approximants by compressing to
HODLR format.
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H-matrices

Hierarchical off-diagonal low-rank (HODLR) matrices

[ A (1 1
AP B

e Low-rank
B(21) Agl)

HHODLR =

1o (1)
By AP | B
= |ttt A ©) Ry ) R
o AP B
: . By AP
AP B @ : 1
By AP | o 3 (1)
””””””””” ) Ry R B,
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Details in: J. Ballani, D. Kressner. Matrices with Hierarchical Low-Rank Structures, Exploiting Hidden
Structure in Matrix Computations: Algorithms and Applications, (2016).
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Fast linear algebraic manipulation of HODLR matrices

HODLR approximation generation of matrix-free operators by selective
random sampling;
P. Martinsson. Compressing Rank-Structured Matrices via Randomized Sampling, SIAM Journal
on Scientific Computing, (2016).
@ Absolute and relative tolerance stopping criteria;
Y. Xi, J. Xia, R. Chan. A Fast Randomized Eigensolver with Structured LDL Factorization
Update, SIAM Journal on Matrix Analysis and Applications, (2014).
O(N log® N) direct solves;
S. Ambikasaran, E. Darve. An O(N log N) Fast Direct Solver for Partial Hierarchically
Semi-Separable Matrices, Springer Journal of Scientific Computing, (2013).
O(N log* N) symmetric factorization;

S. Ambikasaran, M. O’Neil, KR Singh. Fast Symmetric Factorization of Hierarchical Matrices
with Applications, arXiv, (2014).

O(N log N) HODLR mat-vec action;

P. Martinsson. Compressing Rank-Structured Matrices via Randomized Sampling, SIAM Journal
on Scientific Computing, (2016).
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Application to the Greenland ice sheet

Utilizing the Albany multiphysics code™

4.4e-03

@ Exploit the localized sensitivity
structure of the Greenland ice sheet
flow;

@ Preliminary results suggest
off-diagonal low-rank structure™*;

Details in:

*1.K. Tezaur, M. Perego, et al. Albany/FELIX:
a parallel, scalable and robust, finite element,
first-order Stokes approximation ice sheet solver
built for advanced analysis, Geoscientific Model
Development 2015

**T. Hartland, G. Stadler, N. Petra, M. Perego
and K. Liégeois. Hierarchical Off-Diagonal
Approximation of Hessians in Inverse Problems,
In preparation.

basal friction (kPa yr/m)
01 1 10

2.3e+02

Basal friction field™
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Application to the Greenland ice sheet

Utilizing the Albany multiphysics code™

4.4e-03

@ Exploit the localized sensitivity
structure of the Greenland ice sheet
flow;

@ Preliminary results suggest
off-diagonal low-rank structure™*;

Details in:

*|.K. Tezaur, M. Perego, et al. Albany/FELIX:
a parallel, scalable and robust, finite element,
first-order Stokes approximation ice sheet solver
built for advanced analysis, Geoscientific Model
Development 2015

**T. Hartland, G. Stadler, N. Petra, M. Perego
and K. Liégeois. Hierarchical Off-Diagonal
Approximation of Hessians in Inverse Problems,
In preparation.

Humboldt glacier

basal friction (kPa yr/m)
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2.3e+02
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Humboldt glacier problem setup

log basal friction surface velocity data magnitude
29e+00 -1 0 1 2 3 42e+00 58e-02 100 200 300 400 5.80+02

| | | | _ i | ! |

A

@ three-dimensional
first-order Stokes model

Albany

@ Hessian action obtained by
automatic differentiation (SACADO)

@ Nonlinear forward solves (NOX)

@ # of discretized
state variables: 255 376

@ # of discretized

parameter variables: 11 608 e Multigrid preconditioners (MueLu)

@ # of processors: 64 ° ...
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Rank-structure of the Hessian misfit

Singular values of off-diagonal (OD) blocks decay rapidly

Block spectra of the Hessian
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Rank-structured approximation costs

Comparison of the HODLR and low-rank (LR) formats

Computational cost (Hessian applies)
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Summary

@ Hessians in inverse problems governed by partial differential equations are
essential for efficient, dimension-independent methods for both

o Newton solution of deterministic inverse problems (i.e., for computing the
MAP point);

e Markov chain Monte Carlo sampling to characterize the posterior.

@ To overcome the computational challenges of exploring the posterior in a
Bayesian inference context, it is imperative to further exploit problem
structure, e.g., local sensitivity of the data with respect to parameters, local
translation invariance and approximate local support.

Details in: N. Alger, T. Hartland, N. Petra and O. Ghattas. Fast Matrix-Free Approximation of

Smoothly Varying Blur Operators, with Application to Hessians in PDE-Constrained Inverse
Problems with Highly Informative Data, in preparation.

@ Hierarchical matrix representations provide an efficient means of generating
Hessian approximants.
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