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Abstract—Smoke from wildfires results in air pollution that can1

impact the performance of solar photovoltaic plants. Production2

is impacted by factors including the proximity of the fire to3

a site of interest, the extent of the wildfire, wind direction, and4

ambient weather conditions. We construct a model that quantifies5

the relationships among weather, wildfire-induced pollution, and6

PV production for utility-scale and distributed generation sites7

located in the western United States. The regression model iden-8

tified a 9.4%-37.8% reduction in solar PV production on smokey9

days. This model can be used to determine expected production10

losses at impacted sites. We also present an analysis of factors that11

contribute to solar photovoltaic energy production impacts from12

wildfires. This work will inform anticipated production changes13

for more accurate grid planning and operational considerations.14

15

Index Terms—air quality, wildfires, particulate matter, PM2.5,16

solar PV generation17

I. INTRODUCTION18

Wildfire incidents are increasing in both frequency and19

size throughout much of the western United States [1]. A20

consequence of these incidents is the reduction in air quality21

due to increases in dust and other aerosols [2] as well as fine22

particulate matter concentrations [3] [4], even when account-23

ing for seasonal fluctuations [5]. This is concerning not only24

for the livelihood of those impacted, but also when it comes25

to considerations of power grid planning and operations.26

The fast-growing solar industry in the western United States27

(U.S.) plays a large role in electricity production, making wild-28

fire impacts particularly concerning. California, for example,29

produced 14.2% of in-state electricity with solar photovoltaics30

(PV) and solar thermal plants in 2019 [6], and at least 50% of31

its energy is expected to be generated from solar sources in32

the coming decades [7]. For the period 2013-2017, California33

annually averaged 8,143 fires and 897,146 burned acres [8].34

Therefore, it is crucial that grid operators can plan for these35

production impacts to better manage resources during what are36

already some of the most vulnerable times for the electricity37

sector.38

Solar energy production is particularly vulnerable to the39

wide-reaching second-order effects of wildfires. Smoke from40

large fires can travel a considerable distance, bringing with41

it pollution in the form of small particulate matter that ob-42

structs solar radiation and thus PV energy production [9].43

This work was funded by the U.S. Department of Energy’s Advanced Grid
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Prior work linking air quality to PV performance has been 44

broadly focused on ambient aerosols and is either based on 45

experimental field data [10], laboratory tested modules [11], 46

or global computational models [12]. Ambient aerosols have 47

been estimated to reduce utility-scale PV generation in Korea 48

by 15-24% [13]. Experimental testing of module performance 49

during a wildfire event in Spain resulted in average reduction 50

of 34% [14]. Small PM2.5 particles (fine particulate matter of 51

2.5 microns or less in diameter) are the primary pollutant in 52

wildfire smoke [15]. Our work presented here seeks to build 53

on these prior efforts by analyzing the impact of PM2.5 due to 54

wildfires on utility-scale and distributed PV energy generation 55

in field-collected data. By understanding the factors that im- 56

pact production and the degree to which energy production is 57

reduced from wildfires, we can provide better predictive tools 58

for grid planning, thus minimizing costs for grid operators 59

during and after wildfire events. In addition, site owners and 60

operators will be better able to quantify expected losses for 61

improved site management. 62

Here, we present an analysis with the goal to quantitatively 63

understand the relationships among weather, wildfire-induced 64

pollution, and PV production. To do so, we analyze historical 65

production data from a series of PV plants located in the 66

western U.S. as well as daily particulate matter and weather 67

data. The available production data for many sites overlap with 68

two major wildfire events from 2018: the Mendocino Com- 69

plex fire during July-September; and the Camp Fire during 70

November. The Mendocino Complex Fire was comprised of 71

the Ranch and River fires and resulted in the combined burning 72

of 459,123 acres [16], [17]. Similarly, the Camp Fire burned 73

153,336 acres [18]. These fires were near the average annual 74

number of burned acres for the previous five years. While 75

these fires originated in California, they affected much of the 76

western United States. Below, we describe our data fusion 77

process, statistical approach, and resulting predicted solar PV 78

energy production model to understand impacts from wildfire- 79

related PM2.5. 80

II. METHODS 81

The evaluation of wildfire-related PM2.5 in this analysis is 82

driven by production, weather, and particulate matter for solar 83

PV sites located in the western United States. Details regarding 84

the datasets used, data processing, and data analysis activities 85

are provided in the following subsections. 86
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A. Data87

We combine historical solar PV energy production data with88

weather and pollution data with the goal of understanding the89

impact that nearby wildfires have on site production. This work90

relies on using diverse datasets, which results in a mismatch91

in resolutions. Here, we described the datasets used in more92

detail.93

1) Production Data: The utility-scale production data used94

in the study is provided by Sandia’s PV Reliability, Operations95

& Maintenance (PVROM) database [19]. This repository con-96

tains production, operations, and maintenance data from 800+97

sites located in the United States. Production data includes98

time series data for the power and energy generated. Site-level99

meteorological variables such as plane-of-array irradiance,100

ambient temperature, module temperature, and wind speed are101

also available. For this project, we subset PVROM to sites in102

Arizona, California, Idaho, Oregon, and Utah, and limit the103

data to April 2018 - July 2019 period. Additional eligibility104

was based on the availability of historical production that105

overlapped with the Mendocino Complex and Camp Fires as106

well as proximity to PM2.5 monitoring stations. These criteria107

resulted in 68 eligible sites for analysis: 52 utility-scale sites;108

and 16 distributed sites (see Figure 1 for distribution of site109

sizes in terms of DC kW). These sites contained over 20,000110

days of production data.111

Fig. 1. Histograms of site size in DC kW for utility-scale (left) and distributed
(right) sites used in this study.

2) Particulate Matter Data: Fine particulate matter, or112

PM2.5, is the main source of pollution from wildfires113

[20]. This particle count data is closely tracked at many114

sites throughout the U.S. and is openly accessible on the115

Airnow.gov website [15]. Airnow serves as a central repository116

for viewing and accessing U.S. Air Quality Index (AQI) data117

provided in partnership with several government agencies.118

There are many monitoring stations throughout the country119

that gather AQI data and report it to the Airnow website.120

Monitoring stations included in this analysis were identified121

based on their distance to the nearest solar PV site. If the122

distance between the solar PV site and closest PM2.5 mon-123

itoring station was greater than 30 miles, the solar PV site124

was removed from the analysis. Based on the locations of the125

selected solar PV sites, 16 PM2.5 monitoring stations were126

identified and used in this analysis. The mismatch between the127

number of solar PV sites and PM2.5 monitoring stations is due 128

a single monitoring station being proximal to multiple solar 129

PV sites. A sample of PM2.5 concentrations in the western 130

U.S. on November 14, 2018 during the Camp Fire wildfire 131

provide a glimpse of the spatial extent and heterogeneity in 132

PM2.5 that can occur during these events (see Figure 2). The 133

black triangle on the plot shows the fire’s location. PM2.5 134

monitoring stations are colored in correspondence with their 135

average daily particle count, which is a function proximity to 136

the fire. At least one monitoring station was found in each 137

state containing a solar PV site. 138

Fig. 2. Average daily PM2.5 concentration at monitoring stations during the
Camp Fire Event on Nov. 14, 2018. Each location represents a PM2.5 station
used in this study.

We obtain historical hourly PM2.5 data for the period 139

April 2018 - July 2019 in units of µg/m3 (micrograms per 140

cubic meter of air) from each identified monitoring station to 141

measure the impact of smoke. We assume that the PM2.5 data 142

at the monitoring station is equivalent to the concentration at 143

the PV solar site. A representative time series of PM2.5 at a 144

solar PV site shows minimal increases in PM2.5 during the 145

Mendocino Complex Fire but elevated concentrations during 146

the Camp Fire (see Figure 3). 147

3) Historical Weather Data: The NASA Prediction of 148

Worldwide Energy Resource (POWER) Project is a repository 149

of global solar and meteorological data that is of general 150

interest to the energy community [21]. For this project, we 151

collected daily historical mean temperature at 2 meters (T), 152

wind at 10 and 50 meters (W10M, W50M), precipitation (P), 153

and insolation clearness index (CI) data at the solar PV site 154



Fig. 3. Time series of PM2.5 for a solar PV site near the San Francisco Bay
area in California.

for the time period of interest. We include these additional155

explanatory variables to help improve both predictive model156

fit as well as isolate the effects of the PM2.5 variable, which157

is of primary interest.158

B. Data Processing159

The data processing took place in two parts. First, all data160

was coerced into a consistent time scale. Then, the energy161

generation data was normalized to provide a common scale162

across all solar PV sites. The three datasets (i.e., solar PV163

energy generation, PM2.5 data, and weather data) were fused164

together to form a cohesive data panel. Additional details165

regarding the data processing are below.166

1) Time scale consistency: The unprocessed production,167

weather, and PM2.5 data was available in two levels of tempo-168

ral precision. The PV site energy production and PM2.5 data169

were recorded hourly, whereas the NASA POWER weather170

data was available at the daily time scale. We chose the daily171

time scale to achieve temporal consistency across all three172

datasets.173

For production data, daily values were obtained for each site174

through two steps. First, any negative hourly values were175

removed. The remaining hourly observations were then limited176

to only hours occurring between sunrise and sunset. The daily177

total energy production for the site was obtained by summing178

across all remaining hours for the day. Days where there was179

measured irradiance but no production for at least one hour180

during the middle of the day were removed from analysis.181

Additionally, there were four sites that consistently had ab-182

normally small production values even after aggregation; they183

were excluded from the study.184

For the PM2.5 data, daily data was calculated as a weighted185

average. The weights were based on the theoretical clear sky186

direct normalized irradiance at each site. The hourly clear sky187

irradiance for each day is calculated for the exact location188

of the site using the pvlib python package [22]. Next, the189

hour is given a weight that is the percentage of the daily190

irradiance that occurs during the given hour. These weights191

are then used to calculate a daily weighted average of PM2.5192

for the site. This weighting scheme results in a daily average193

PM2.5 with each hour of PM2.5 data having an impact194

on the daily average proportional to that hour’s irradiance. 195

Smoke that occurs during hours of no measured irradiance 196

(e.g., nighttime) have no impact on daily average PM2.5 197

calculations. Similarly, smoke that occurs during times of high 198

irradiance (e.g., midday) have the largest impact on PM2.5 199

daily averages. A sample time series of hourly irradiance and 200

weighted PM2.5 shows periods of low and high irradiance and 201

fluctuating levels of PM2.5 (see Figure 4). In this example the 202

unweighted average PM2.5 measurement for that day is 51.83. 203

However, the weighted irradiance average is 47.99. Days that 204

have higher contrasts of smoke during the night and day will 205

have larger differences in this calculation. 206

Fig. 4. Sample time series of hourly irradiance (top) and PM2.5 (bottom)
data used to calculate the daily weighted average PM2.5 calculations.

The weighting process is applied to all days and sites used 207

in this study. There is significant variability in the average 208

daily PM2.5 for the region during the study period (see 209

Figure 5). The two prominent fire events during this period 210

result in elevated PM2.5 concentrations for the region. While 211

the Mendocino Complex Fire had a longer duration than the 212

Camp Fire, it has lower average PM2.5 concentrations. 213

Fig. 5. Average daily PM2.5 concentration across all monitoring stations used
in this study.

2) Energy Production Normalization: A normalization of 214

the energy production data is needed due to the differing 215

sizes of sites used in this study (see Figure 1). The daily 216

IEC clear sky production is calculated for every site and 217

day using the pvOps python package [23]. Each site’s daily 218

production is normalized by dividing the observed production 219

by the IEC clear sky production. A sample hourly time series 220

demonstrates the difference between the observed and IEC 221



clear sky energy production (see Figure 6). The normalization222

procedure results in all sites, regardless of size, having a223

production value on the same scale for analysis.224

Fig. 6. Sample time series of observed & IEC clear sky energy production.

The normalization process resulted in some days being225

problematic. All days which had a normalized production226

greater than 1.2 (i.e., 120% of IEC clear sky) were removed227

from analysis. This threshold was based on discussions with228

industry and resulted in the removal of four sites that con-229

sistently had abnormally large normalized production values.230

There are additional abnormal production values in the data.231

However, we did not remove additional problematic data to232

minimize assumptions.233

C. Data analysis234

Regression models were the primary data analysis method235

used is this study. In particular, we focus on modeling the236

relationship between smoke (i.e., PM2.5) and solar PV pro-237

duction. All available data, across all sites, was included in the238

model analysis to have the largest data set possible to measure239

key relationships. Two quantitative methods were employed to240

assess model performance: R2, and the root mean square error241

(RMSE). An iterative process was used to consider different242

combinations of explanatory variables while attempting to243

maximize R2, minimize RMSE, and retain variables that244

were statistically significant (95% confidence interval).245

III. ANALYSIS & RESULTS246

A. Regression Model Selection247

The initial regression model was based on regressing PM2.5,248

temperature at 2 meters, wind speed at 10 and 50 meters, pre-249

cipitation, and insolation clearness index. There is a seasonal250

component to solar PV production. The temperature variable251

was used to account for this as it tracked this variability252

closely. Some possible variable interactions were investigated.253

These interactions were excluded as they were found to be254

statistically insignificant.255

There was still a large amount of variability in the data.256

A site-specific variable (i.e., a site adjustment factor) was257

introduced to improve model fit. This variable was significant258

and improved model fit. However, it resulted in the model 259

no longer capturing any temperature effects. As a result, 260

temperature was therefore removed from the model in favor 261

of the site adjustment variables. The significance of the site 262

adjustment variable indicates that there are some inherent 263

differences in production across sites, even after normalizing 264

the production data. 265

The final selected model achieved R2 = .6732, indicating 266

that the model explains 67.32% of the variability in the daily 267

production at the solar PV sites. In addition to the site adjust 268

variables, PM2.5, insolation, precipitation, and wind speed 269

were found to be statistically significant (see Table I for a 270

summary of the final model). We only present a few site 271

adjustment variables for illustrative purposes. 272

TABLE I
REGRESSION MODEL PARAMETER SUMMARY. ONLY THREE SITE
ADJUSTMENT PARAMETERS ARE INCLUDED FOR COMPARATIVE

PURPOSES.

Parameter Estimate Std. Error t value P value
Intercept 0.0659 0.0073 9.0490 <2e-16
PM2.5 -0.0019 0.0001 -19.5190 < 2e-16

Insolation CI 0.8614 0.0066 131.3980 < 2e-16
Precipitation -0.0030 0.0002 -12.3460 < 2e-16

Wind Speed 10M 0.1025 0.0026 39.6450 < 2e-16
Wind Speed 50M -0.0710 0.0019 -36.6450 < 2e-16

Site C2S101 0.0393 0.0075 5.2110 < 2e-7
Site C2S106 0.0007 0.0076 0.0960 0.9235
Site C2S107 -0.0751 0.0076 -9.9380 < 2e-16

Separate parallel regression lines for every site have been 273

incorporated. This site variable is specific to these sites, but 274

it is not requirement to use the model for prediction. Two 275

approaches can be taken. With no site information, a site effect 276

of zero can be assumed. Alternatively, access to some site 277

production information enables the site effect to be measured. 278

Model assumptions are satisfied based on residual analyses 279

(see Figure 7). Studentized residuals are residuals where the 280

model is fitted to all data except for that observation. The 281

distance between the observed and the model’s predicted value 282

is calculated. This aids in preventing anomalous observations 283

from pulling the model towards them and therefore reducing 284

their residual value. The fitted versus residual plot should 285

display no apparent trend (i.e., appear to be a random cloud 286

of points) if the model fits the data well. Most points behave 287

in this manner, but there appears to be a diagonal line 288

cutting off the points on the left side of the plot. This line 289

is associated with the zero cut-off for observed production 290

and not a problematic trend. The Q-Q plot should roughly 291

display as a straight line, and these results suggest that the 292

normality assumption of the residuals has been satisfied. Thus, 293

no transformations or additional variables are required to have 294

confidence in model results. 295

The primary goal of this analysis was to measure the 296

impact of smoke on solar PV energy production. Maximizing 297

R2 increases confidence in a model’s ability to predict this 298

relationship. The overall model (R2 = .6732) is a good result 299

as the weather predictors were not obtained at the site but 300



Fig. 7. Residual analysis plots.

rather come from satellite measurements. Additionally, the301

final selected model has RMSE = 0.099. This indicates302

that there will be, on average, an approximate difference of303

0.099 normalized kWh (∼ 10% of daily site production)304

between the estimated and true daily energy generation for305

predicted observations. RMSE appears to be significantly306

better than the R2. This is likely caused by a small portion of307

the data being significantly different than the model (outlier308

candidates). These outliers result in increased data variability309

not explained by the model, which more adversely effects the310

R2 metric than the RMSE metric.311

B. Model Analysis312

The PM2.5 variables regression parameter estimate is313

−0.0019. Thus, as daily average PM2.5 increases by one314

µg/m3, the normalized production is expected to decrease315

by approximately 0.0019. On days when PM2.5 reaches316

50−200µg/m3 ,the model predicts a 9.4% to 37.8% reduction317

in normalized production, respectively. Similarly, normalized318

production is anticipated to decline as precipitation and wind319

speed at 50m increase by 0.0030 and 0.0710, respectively.320

Conversely, normalized production is predicted to increase by321

0.8614 and 0.1025 due to a one unit increase in insolation and322

wind speed at 10m, respectively.323

The site variables (only 3 of 68 displayed; see Table I))324

indicate an adjustment factor for the linear model, and no325

change in the PM2.5 and weather parameter values. For ex-326

ample, site C2S101 (arbitrary ID), has an adjustment estimate327

of 0.0393, which indicates that normalized production for this328

site is expected to be 0.0393 higher than other sites. It should329

be noted that not every site correction is significant. In these330

cases, there is effectively no correction (zero effect).331

A visual comparison between the observed normalized and332

predicted production data shows both clustering around a 1:1333

fitted line as well as significant numbers of outliers (see334

Figure 8). There is a clear linear trend between predicted and335

observed values, but some additional trends are also present.336

There are a significant number of points in the lower right337

quadrant of the graph with high predicted values and low338

observed values. Some of these could be anomalies where339

some production was not observed or some site operations 340

resulted in reduced production. There are some days during 341

which the model predicts negative production when production 342

is observed to be near zero. Negative production is infeasible. 343

These days are likely the result of rare events where several 344

weather variables that all negatively impact production are 345

observed simultaneously. In these instances, the model would 346

round normalized energy production to zero. 347

Fig. 8. Predicted versus observed normalized production across all sites used
in this analysis.

A time series for the study domain provides a comparison 348

between the observed normalized and predicted production 349

data for sample site (see Figure 9). Additionally, this graphic 350

displays both fire events in red. Overall, the predicted produc- 351

tion follows the observed production well. There is one notable 352

exception in late June where the observed production is quite 353

lower than expected. There is a clear reduction in production 354

during both of the fire events present in both the observed and 355

predicted normalized production. The first fire event appears 356

to have a more pronounced reduction in production in late 357

August. This corresponds with the site’s observed peak PM2.5. 358

There is also a significant reduction in production during the 359

Camp Fire event in November present in this graphic, this is 360

in correspondence with the very high rates of PM2.5 during 361

the month of November in 3. The high rates of variability in 362

the normalized production after the Camp Fire event is due 363

in large part to clouds and precipitation. There is a possible 364

interaction between lower rates of precipitation leading up to 365

and during fire events that could have some impact on solar 366

production during this time which is not explored here. 367

IV. DISCUSSION 368

A statistical model can capture the basic relationship be- 369

tween air quality, which serves as a proxy for wildfire im- 370

pacts, and the energy production of a nearby solar PV site. 371

Additionally, while we find that PM2.5 plays a large role, 372

other variables also factor in when it comes to capturing 373

performance impacts during non-wildfire time periods, and our 374

model can account for these changes. For example, the model 375

is still able to capture the daily production fluctuations in the 376



Fig. 9. Predicted versus observed normalized production for a solar PV site
near the San Francisco Bay area in California.

days following the end of the fire event when PM2.5 levels377

have largely returned to normal.378

There are several limitations to this analysis and possible379

next steps. In the data, there is no way to distinguish between380

either the impacts of smoke on production due to the blocking381

of solar irradiance or ash soiling on PV panels. This includes382

no ability to measure or determine the possible lingering383

effects of ash soiling after smoke has cleared, either on panels384

or other site instruments. Most of the smoke impact observed385

in this analysis is believed to come from smoke blocking386

solar irradiance. Several sites were removed from analysis for387

problematic data. Future work could refine the process for388

defining normal and abnormal behavior alike to remove only389

specific days as opposed to a site’s full time series. Additional390

weather data or site-specific geographical features could be391

considered to further refine the model, both improving its392

predictive power and refining smoke impact quantification.393

Further testing of model performance could be done using394

site production validation data that was not used in fitting the395

model.396

V. CONCLUSION397

Wildfires are becoming increasingly common and increas-398

ingly severe, requiring better planning for all levels of potential399

impact. One growing consideration is the impact of wildfire-400

induced pollution on solar PV production. We show here that401

high levels of PM2.5 in the atmosphere play a large role in402

disrupting energy production at affected PV sites, and we have403

developed a statistical model to better understand the strength404

of this relationship, as well as the degree to which other405

weather parameters factor affect PV energy generation. The406

regression model identifies a reduction in solar PV production407

between 9.4% to 37.8% on smokey days. This model can408

be used in conjunction with historical smoke data or smoke409

spread models to predict solar PV losses associated with410

wildfires for PV sites. Predicting loses can help with both411

long term prediction as well as short term emergency response412

planning. For advanced planning and operational support, this413

type of model can be combined with mature products that414

forecast smoke movement and air quality impacts to determine415

which set of PV sites will be impacted by wildfire smoke and 416

to what degree. 417
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