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Abstract—Smoke from wildfires results in air pollution that can
impact the performance of solar photovoltaic plants. Production
is impacted by factors including the proximity of the fire to
a site of interest, the extent of the wildfire, wind direction, and
ambient weather conditions. We construct a model that quantifies
the relationships among weather, wildfire-induced pollution, and
PV production for utility-scale and distributed generation sites
located in the western United States. The regression model iden-
tified a 9.4%-37.8% reduction in solar PV production on smokey
days. This model can be used to determine expected production
losses at impacted sites. We also present an analysis of factors that
contribute to solar photovoltaic energy production impacts from
wildfires. This work will inform anticipated production changes
for more accurate grid planning and operational considerations.

Index Terms—air quality, wildfires, particulate matter, PM2.5,
solar PV generation

I. INTRODUCTION

Wildfire incidents are increasing in both frequency and
size throughout much of the western United States [1]. A
consequence of these incidents is the reduction in air quality
due to increases in dust and other aerosols [2]] as well as fine
particulate matter concentrations [3] [4]], even when account-
ing for seasonal fluctuations [5]]. This is concerning not only
for the livelihood of those impacted, but also when it comes
to considerations of power grid planning and operations.

The fast-growing solar industry in the western United States
(U.S.) plays a large role in electricity production, making wild-
fire impacts particularly concerning. California, for example,
produced 14.2% of in-state electricity with solar photovoltaics
(PV) and solar thermal plants in 2019 [6], and at least 50% of
its energy is expected to be generated from solar sources in
the coming decades [7]]. For the period 2013-2017, California
annually averaged 8,143 fires and 897,146 burned acres [S].
Therefore, it is crucial that grid operators can plan for these
production impacts to better manage resources during what are
already some of the most vulnerable times for the electricity
sector.

Solar energy production is particularly vulnerable to the
wide-reaching second-order effects of wildfires. Smoke from
large fires can travel a considerable distance, bringing with
it pollution in the form of small particulate matter that ob-
structs solar radiation and thus PV energy production [9].

This work was funded by the U.S. Department of Energy’s Advanced Grid
Modeling Research Program.

Prior work linking air quality to PV performance has been
broadly focused on ambient aerosols and is either based on
experimental field data [[10], laboratory tested modules [11]],
or global computational models [12]. Ambient aerosols have
been estimated to reduce utility-scale PV generation in Korea
by 15-24% [13|]. Experimental testing of module performance
during a wildfire event in Spain resulted in average reduction
of 34% [14]. Small PM2.5 particles (fine particulate matter of
2.5 microns or less in diameter) are the primary pollutant in
wildfire smoke [15]. Our work presented here seeks to build
on these prior efforts by analyzing the impact of PM2.5 due to
wildfires on utility-scale and distributed PV energy generation
in field-collected data. By understanding the factors that im-
pact production and the degree to which energy production is
reduced from wildfires, we can provide better predictive tools
for grid planning, thus minimizing costs for grid operators
during and after wildfire events. In addition, site owners and
operators will be better able to quantify expected losses for
improved site management.

Here, we present an analysis with the goal to quantitatively
understand the relationships among weather, wildfire-induced
pollution, and PV production. To do so, we analyze historical
production data from a series of PV plants located in the
western U.S. as well as daily particulate matter and weather
data. The available production data for many sites overlap with
two major wildfire events from 2018: the Mendocino Com-
plex fire during July-September; and the Camp Fire during
November. The Mendocino Complex Fire was comprised of
the Ranch and River fires and resulted in the combined burning
of 459,123 acres [16], [[17]. Similarly, the Camp Fire burned
153,336 acres [[18]]. These fires were near the average annual
number of burned acres for the previous five years. While
these fires originated in California, they affected much of the
western United States. Below, we describe our data fusion
process, statistical approach, and resulting predicted solar PV
energy production model to understand impacts from wildfire-
related PM2.5.

II. METHODS

The evaluation of wildfire-related PM2.5 in this analysis is
driven by production, weather, and particulate matter for solar
PV sites located in the western United States. Details regarding
the datasets used, data processing, and data analysis activities
are provided in the following subsections.

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
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A. Data

We combine historical solar PV energy production data with
weather and pollution data with the goal of understanding the
impact that nearby wildfires have on site production. This work
relies on using diverse datasets, which results in a mismatch
in resolutions. Here, we described the datasets used in more
detail.

1) Production Data: The utility-scale production data used
in the study is provided by Sandia’s PV Reliability, Operations
& Maintenance (PVROM) database [19]]. This repository con-
tains production, operations, and maintenance data from 800+
sites located in the United States. Production data includes
time series data for the power and energy generated. Site-level
meteorological variables such as plane-of-array irradiance,
ambient temperature, module temperature, and wind speed are
also available. For this project, we subset PVROM to sites in
Arizona, California, Idaho, Oregon, and Utah, and limit the
data to April 2018 - July 2019 period. Additional eligibility
was based on the availability of historical production that
overlapped with the Mendocino Complex and Camp Fires as
well as proximity to PM2.5 monitoring stations. These criteria
resulted in 68 eligible sites for analysis: 52 utility-scale sites;
and 16 distributed sites (see Figure (1| for distribution of site
sizes in terms of DC kW). These sites contained over 20,000
days of production data.

count
count

0 30000 60000 90000 100 200 300
Utility Scale Site DC kW Size Distributed Site DC kW Size

Fig. 1. Histograms of site size in DC kW for utility-scale (left) and distributed
(right) sites used in this study.

2) Particulate Matter Data: Fine particulate matter, or
PM2.5, is the main source of pollution from wildfires
[20]. This particle count data is closely tracked at many
sites throughout the U.S. and is openly accessible on the
Airnow.gov website [[15]. Airnow serves as a central repository
for viewing and accessing U.S. Air Quality Index (AQI) data
provided in partnership with several government agencies.
There are many monitoring stations throughout the country
that gather AQI data and report it to the Airnow website.
Monitoring stations included in this analysis were identified
based on their distance to the nearest solar PV site. If the
distance between the solar PV site and closest PM2.5 mon-
itoring station was greater than 30 miles, the solar PV site
was removed from the analysis. Based on the locations of the
selected solar PV sites, 16 PM2.5 monitoring stations were
identified and used in this analysis. The mismatch between the

number of solar PV sites and PM2.5 monitoring stations is due
a single monitoring station being proximal to multiple solar
PV sites. A sample of PM2.5 concentrations in the western
U.S. on November 14, 2018 during the Camp Fire wildfire
provide a glimpse of the spatial extent and heterogeneity in
PM2.5 that can occur during these events (see Figure [2). The
black triangle on the plot shows the fire’s location. PM2.5
monitoring stations are colored in correspondence with their
average daily particle count, which is a function proximity to
the fire. At least one monitoring station was found in each
state containing a solar PV site.

Camp Fire
A

Fig. 2. Average daily PM2.5 concentration at monitoring stations during the
Camp Fire Event on Nov. 14, 2018. Each location represents a PM2.5 station
used in this study.
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We obtain historical hourly PM2.5 data for the period
April 2018 - July 2019 in units of pg/m?3 (micrograms per
cubic meter of air) from each identified monitoring station to
measure the impact of smoke. We assume that the PM2.5 data
at the monitoring station is equivalent to the concentration at
the PV solar site. A representative time series of PM2.5 at a
solar PV site shows minimal increases in PM2.5 during the
Mendocino Complex Fire but elevated concentrations during
the Camp Fire (see Figure [3).

3) Historical Weather Data: The NASA Prediction of
Worldwide Energy Resource (POWER) Project is a repository
of global solar and meteorological data that is of general
interest to the energy community [21]. For this project, we
collected daily historical mean temperature at 2 meters (T),
wind at 10 and 50 meters (W10M, W50M), precipitation (P),
and insolation clearness index (CI) data at the solar PV site

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154



155

156

157

159

160

161

162

163

164

165

166

167

168

169

170

il

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

200
.

¢ Monitored Fire Event Days
¢ non-Fire Days

150
.

Daily Avg. PM2.5 (ug/m3)
100
|

50

S st e, .
R R AL PO P )

T T
Jan Mar

Date

Fig. 3. Time series of PM2.5 for a solar PV site near the San Francisco Bay
area in California.

for the time period of interest. We include these additional
explanatory variables to help improve both predictive model
fit as well as isolate the effects of the PM2.5 variable, which
is of primary interest.

B. Data Processing

The data processing took place in two parts. First, all data
was coerced into a consistent time scale. Then, the energy
generation data was normalized to provide a common scale
across all solar PV sites. The three datasets (i.e., solar PV
energy generation, PM2.5 data, and weather data) were fused
together to form a cohesive data panel. Additional details
regarding the data processing are below.

1) Time scale consistency: The unprocessed production,

weather, and PM2.5 data was available in two levels of tempo-
ral precision. The PV site energy production and PM2.5 data
were recorded hourly, whereas the NASA POWER weather
data was available at the daily time scale. We chose the daily
time scale to achieve temporal consistency across all three
datasets.
For production data, daily values were obtained for each site
through two steps. First, any negative hourly values were
removed. The remaining hourly observations were then limited
to only hours occurring between sunrise and sunset. The daily
total energy production for the site was obtained by summing
across all remaining hours for the day. Days where there was
measured irradiance but no production for at least one hour
during the middle of the day were removed from analysis.
Additionally, there were four sites that consistently had ab-
normally small production values even after aggregation; they
were excluded from the study.

For the PM2.5 data, daily data was calculated as a weighted
average. The weights were based on the theoretical clear sky
direct normalized irradiance at each site. The hourly clear sky
irradiance for each day is calculated for the exact location
of the site using the puvlib python package [22]]. Next, the
hour is given a weight that is the percentage of the daily
irradiance that occurs during the given hour. These weights
are then used to calculate a daily weighted average of PM2.5
for the site. This weighting scheme results in a daily average
PM2.5 with each hour of PM2.5 data having an impact

on the daily average proportional to that hour’s irradiance.
Smoke that occurs during hours of no measured irradiance
(e.g., nighttime) have no impact on daily average PM2.5
calculations. Similarly, smoke that occurs during times of high
irradiance (e.g., midday) have the largest impact on PM2.5
daily averages. A sample time series of hourly irradiance and
weighted PM2.5 shows periods of low and high irradiance and
fluctuating levels of PM2.5 (see Figure ). In this example the
unweighted average PM2.5 measurement for that day is 51.83.
However, the weighted irradiance average is 47.99. Days that
have higher contrasts of smoke during the night and day will
have larger differences in this calculation.

Hourly Irradiance

o
z 3
a°4
o
Q - T T T T
© 5 10 15 20
Hour
Hourly PM2.5
o
= .
9 1
S 83
9]
o ] .
N T T T
5 10 15 20

Hour

Fig. 4. Sample time series of hourly irradiance (top) and PM2.5 (bottom)
data used to calculate the daily weighted average PM2.5 calculations.

The weighting process is applied to all days and sites used
in this study. There is significant variability in the average
daily PM2.5 for the region during the study period (see
Figure [5). The two prominent fire events during this period
result in elevated PM2.5 concentrations for the region. While
the Mendocino Complex Fire had a longer duration than the
Camp Fire, it has lower average PM2.5 concentrations.

200

* Monitored Fire Event Days
* non-Fire Days
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Daily Avg. PM2.5 (ug/m3)
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Fig. 5. Average daily PM2.5 concentration across all monitoring stations used
in this study.

2) Energy Production Normalization: A normalization of
the energy production data is needed due to the differing
sizes of sites used in this study (see Figure [I). The daily
IEC clear sky production is calculated for every site and
day using the pvOps python package [23]]. Each site’s daily
production is normalized by dividing the observed production
by the IEC clear sky production. A sample hourly time series
demonstrates the difference between the observed and IEC
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clear sky energy production (see Figure [6). The normalization
procedure results in all sites, regardless of size, having a
production value on the same scale for analysis.
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Fig. 6. Sample time series of observed & IEC clear sky energy production.

The normalization process resulted in some days being
problematic. All days which had a normalized production
greater than 1.2 (i.e., 120% of IEC clear sky) were removed
from analysis. This threshold was based on discussions with
industry and resulted in the removal of four sites that con-
sistently had abnormally large normalized production values.
There are additional abnormal production values in the data.
However, we did not remove additional problematic data to
minimize assumptions.

C. Data analysis

Regression models were the primary data analysis method
used is this study. In particular, we focus on modeling the
relationship between smoke (i.e., PM2.5) and solar PV pro-
duction. All available data, across all sites, was included in the
model analysis to have the largest data set possible to measure
key relationships. Two quantitative methods were employed to
assess model performance: 12, and the root mean square error
(RMSE). An iterative process was used to consider different
combinations of explanatory variables while attempting to
maximize R2, minimize RMSE, and retain variables that
were statistically significant (95% confidence interval).

III. ANALYSIS & RESULTS
A. Regression Model Selection

The initial regression model was based on regressing PM2.5,
temperature at 2 meters, wind speed at 10 and 50 meters, pre-
cipitation, and insolation clearness index. There is a seasonal
component to solar PV production. The temperature variable
was used to account for this as it tracked this variability
closely. Some possible variable interactions were investigated.
These interactions were excluded as they were found to be
statistically insignificant.

There was still a large amount of variability in the data.
A site-specific variable (i.e., a site adjustment factor) was
introduced to improve model fit. This variable was significant

and improved model fit. However, it resulted in the model
no longer capturing any temperature effects. As a result,
temperature was therefore removed from the model in favor
of the site adjustment variables. The significance of the site
adjustment variable indicates that there are some inherent
differences in production across sites, even after normalizing
the production data.

The final selected model achieved R? = .6732, indicating
that the model explains 67.32% of the variability in the daily
production at the solar PV sites. In addition to the site adjust
variables, PM2.5, insolation, precipitation, and wind speed
were found to be statistically significant (see Table [I] for a
summary of the final model). We only present a few site
adjustment variables for illustrative purposes.

TABLE I
REGRESSION MODEL PARAMETER SUMMARY. ONLY THREE SITE
ADJUSTMENT PARAMETERS ARE INCLUDED FOR COMPARATIVE

PURPOSES.

Parameter Estimate | Std. Error t value P value
Intercept 0.0659 0.0073 9.0490 <2e-16
PM2.5 -0.0019 0.0001 -19.5190 | < 2e-16
Insolation CI 0.8614 0.0066 131.3980 | < 2e-16
Precipitation -0.0030 0.0002 -12.3460 | < 2e-16
Wind Speed 10M 0.1025 0.0026 39.6450 < 2e-16
Wind Speed 50M -0.0710 0.0019 -36.6450 | < 2e-16
Site C2S101 0.0393 0.0075 5.2110 < 2e-7
Site C2S106 0.0007 0.0076 0.0960 0.9235
Site C2S107 -0.0751 0.0076 -9.9380 < 2e-16

Separate parallel regression lines for every site have been
incorporated. This site variable is specific to these sites, but
it is not requirement to use the model for prediction. Two
approaches can be taken. With no site information, a site effect
of zero can be assumed. Alternatively, access to some site
production information enables the site effect to be measured.

Model assumptions are satisfied based on residual analyses
(see Figure [7). Studentized residuals are residuals where the
model is fitted to all data except for that observation. The
distance between the observed and the model’s predicted value
is calculated. This aids in preventing anomalous observations
from pulling the model towards them and therefore reducing
their residual value. The fitted versus residual plot should
display no apparent trend (i.e., appear to be a random cloud
of points) if the model fits the data well. Most points behave
in this manner, but there appears to be a diagonal line
cutting off the points on the left side of the plot. This line
is associated with the zero cut-off for observed production
and not a problematic trend. The Q-Q plot should roughly
display as a straight line, and these results suggest that the
normality assumption of the residuals has been satisfied. Thus,
no transformations or additional variables are required to have
confidence in model results.

The primary goal of this analysis was to measure the
impact of smoke on solar PV energy production. Maximizing
R? increases confidence in a model’s ability to predict this
relationship. The overall model (R? = .6732) is a good result
as the weather predictors were not obtained at the site but
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Fig. 7. Residual analysis plots.

rather come from satellite measurements. Additionally, the
final selected model has RMSE = 0.099. This indicates
that there will be, on average, an approximate difference of
0.099 normalized kWh (~ 10% of daily site production)
between the estimated and true daily energy generation for
predicted observations. RMSE appears to be significantly
better than the R2. This is likely caused by a small portion of
the data being significantly different than the model (outlier
candidates). These outliers result in increased data variability
not explained by the model, which more adversely effects the
R? metric than the RM SFE metric.

B. Model Analysis

The PM2.5 variables regression parameter estimate is
—0.0019. Thus, as daily average PM2.5 increases by one
wg/m?3, the normalized production is expected to decrease
by approximately 0.0019. On days when PMZ2.5 reaches
50—2004g/m? ,the model predicts a 9.4% to 37.8% reduction
in normalized production, respectively. Similarly, normalized
production is anticipated to decline as precipitation and wind
speed at 50m increase by 0.0030 and 0.0710, respectively.
Conversely, normalized production is predicted to increase by
0.8614 and 0.1025 due to a one unit increase in insolation and
wind speed at 10m, respectively.

The site variables (only 3 of 68 displayed; see Table [[))
indicate an adjustment factor for the linear model, and no
change in the PM2.5 and weather parameter values. For ex-
ample, site C2S101 (arbitrary ID), has an adjustment estimate
of 0.0393, which indicates that normalized production for this
site is expected to be 0.0393 higher than other sites. It should
be noted that not every site correction is significant. In these
cases, there is effectively no correction (zero effect).

A visual comparison between the observed normalized and
predicted production data shows both clustering around a 1:1
fitted line as well as significant numbers of outliers (see
Figure [§). There is a clear linear trend between predicted and
observed values, but some additional trends are also present.
There are a significant number of points in the lower right
quadrant of the graph with high predicted values and low
observed values. Some of these could be anomalies where

some production was not observed or some site operations
resulted in reduced production. There are some days during
which the model predicts negative production when production
is observed to be near zero. Negative production is infeasible.
These days are likely the result of rare events where several
weather variables that all negatively impact production are
observed simultaneously. In these instances, the model would
round normalized energy production to zero.

1.0

= = 1:1Fitted Line

0.6 0.8
| |

Observed Normalized Production
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T
-0.2 0.0 0.2 04 0.6 0.8
Model Predicted Production

Fig. 8. Predicted versus observed normalized production across all sites used
in this analysis.

A time series for the study domain provides a comparison
between the observed normalized and predicted production
data for sample site (see Figure [9). Additionally, this graphic
displays both fire events in red. Overall, the predicted produc-
tion follows the observed production well. There is one notable
exception in late June where the observed production is quite
lower than expected. There is a clear reduction in production
during both of the fire events present in both the observed and
predicted normalized production. The first fire event appears
to have a more pronounced reduction in production in late
August. This corresponds with the site’s observed peak PM2.5.
There is also a significant reduction in production during the
Camp Fire event in November present in this graphic, this is
in correspondence with the very high rates of PM2.5 during
the month of November in [3] The high rates of variability in
the normalized production after the Camp Fire event is due
in large part to clouds and precipitation. There is a possible
interaction between lower rates of precipitation leading up to
and during fire events that could have some impact on solar
production during this time which is not explored here.

IV. DISCUSSION

A statistical model can capture the basic relationship be-
tween air quality, which serves as a proxy for wildfire im-
pacts, and the energy production of a nearby solar PV site.
Additionally, while we find that PM2.5 plays a large role,
other variables also factor in when it comes to capturing
performance impacts during non-wildfire time periods, and our
model can account for these changes. For example, the model
is still able to capture the daily production fluctuations in the

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376



377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

0.6

Normalized Daily Generation
0.4
|

Observed Prod.
--== Predicted Prod.
1 Fire Days

T T — \' - T L T T
May Jul Sep Nov Jan Mar
Date in 2018
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near the San Francisco Bay area in California.

days following the end of the fire event when PM2.5 levels
have largely returned to normal.

There are several limitations to this analysis and possible
next steps. In the data, there is no way to distinguish between
either the impacts of smoke on production due to the blocking
of solar irradiance or ash soiling on PV panels. This includes
no ability to measure or determine the possible lingering
effects of ash soiling after smoke has cleared, either on panels
or other site instruments. Most of the smoke impact observed
in this analysis is believed to come from smoke blocking
solar irradiance. Several sites were removed from analysis for
problematic data. Future work could refine the process for
defining normal and abnormal behavior alike to remove only
specific days as opposed to a site’s full time series. Additional
weather data or site-specific geographical features could be
considered to further refine the model, both improving its
predictive power and refining smoke impact quantification.
Further testing of model performance could be done using
site production validation data that was not used in fitting the
model.

V. CONCLUSION

Wildfires are becoming increasingly common and increas-
ingly severe, requiring better planning for all levels of potential
impact. One growing consideration is the impact of wildfire-
induced pollution on solar PV production. We show here that
high levels of PM2.5 in the atmosphere play a large role in
disrupting energy production at affected PV sites, and we have
developed a statistical model to better understand the strength
of this relationship, as well as the degree to which other
weather parameters factor affect PV energy generation. The
regression model identifies a reduction in solar PV production
between 9.4% to 37.8% on smokey days. This model can
be used in conjunction with historical smoke data or smoke
spread models to predict solar PV losses associated with
wildfires for PV sites. Predicting loses can help with both
long term prediction as well as short term emergency response
planning. For advanced planning and operational support, this
type of model can be combined with mature products that
forecast smoke movement and air quality impacts to determine

which set of PV sites will be impacted by wildfire smoke and
to what degree.
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