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> | Traditional Manufacturing Process
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Capital Intensive and Time Consuming



s | Advance Manufacturing (AdM)

« AdM brings design and testing closer.
 Accelerates the development and deployment of new materials.
* Reduces design cycle for novel components.
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* Machine Learning (ML) is the perfect tool for enabling AdM because it: |
* |s computationally efficient
» Enables the usage of previously performed results to predict in new/unseen scenarios.

« ML enables us to link each part of the process with accurate yet computationally efficient I

surrogate models. Mﬁh I




Unique Capability to Establish ML-based Surrogate Models
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Material Characterization and High-Performance Computing High-Fidelity Multiphysics Codes Interdisciplinary Workforce
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5 ‘ We are National Lab of “Firsts”

: 2. Dimensionality
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High-fidelity phase-field trajectory
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[Montes de Oca et al., npj compu mat, 2021]

First to establish an
accelerated phase-field
framework capable of
predicting microstructure
evolution 40,000 times
faster than traditional
simulation software with
minimal loss in accuracy.

Materials Science Research Foundation I



First to establish a computationally efficient protocol to synthetically
generate microstructures that are statistically equivalent to
experimentally observed microstructures.

PORE VOLUME

ORIGIN OF DATA FRACTION (%) TIME

Experiment 2.12

I
6 ‘ We are National Lab of “Firsts” m

Full-field SPPARKS-DAKOTA 295 6 DAYS on 3 nodes with
optimization ’ 36 processors

84 SECONDS on an
ML-based optimization 2.28 8 processor MacBook

«  Experiments performed s i ey ‘j_f-' o= > STATISTICALLY ' «  Microstructures were

on thermal spray lab in o g S T EQUIVALENT - = synthetically generated using
1834 b - - 3 N SPPARKS (1864 Dr. Theron
Rodgers) I

mh|

[M ontes de Oca et al., MRS 2021 Spl’lng Meeting] Materials Science Research Foundation



 First to establish a computationally efficient model that links the crystallographic texture of
7 metals to their corresponding anisotropy constants.

Crystallographic textures Variational Bayesian Inference

Neural Network Model

Palycrystalline Texture Crystallographic orientation
-~ in Euler space

Texture quantification

= e f(g)=Zﬁ““T,”“(g}
54,880 textures represented by ot
generalized spherical harmonics (GSH) T (g) = T/ (@q, @, p3) = eMP1P/ () eiMme: 54,880 training data
20,000 validation data
Anisotropy Constants

Crystal plasticity simulations

54,880 crystal plasticity simulations
performed by Dr. Hojun Lim in 1864 to
investigate anisotropic yield behavior and to fit
Hill's anisotropic yield model

f = F(oyy ~022)" + G(0zz ~0)? + H(0 —0yy)" + 2(Laf, + Mok + No) error on the training and testing set

350 y * Exp.
. | = Sim. (slress i)
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The mean error = 0.63%
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* DOE funded program to foster and
develop viable market pathways for
national laboratory-developed
technologies.

* Intensive two-month training where
the researchers define technology
value propositions, conduct customer
discovery interviews, and develop
viable market pathways for their

‘ " T‘ ii \ | __ technologies.
‘ I\ lh' ‘ | * |dentify via 75+ customer discovery

|
| Lifting as we climb m

interviews the most viable path to
E N E R GY commercialize our computationally |
' e efficient model that links the I
A I-CO R ps NA a.@- crystallographic texture of metals to
“.‘L‘ National Nuclear Security Administration the|r correspondmg anlsotro py
AAAA US Department Of Energy
constants. I
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s | Conclusion
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Questions?




12 | Obtaining a Robust Descriptor of the Microstructure

Digital Representation 2-point statistics
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13 ‘ Why 2-point Statistics ? [Em

.021
300 0.979 .02 * Circles Microstructure 1
-@ - Circles Microstructure 2
=200
(0.974
=100
0 = 0.969
100
0.963
200
300 (0.95%
=300 =200 -100 0 100 200 300 —
7]
=300 0.979
=200
(0.974
-100
0 = 0.969
100
0.963
200 I
300 0.958
=300 =200 =100 0 100 200 300 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420

Radius r

mﬁhi

Materials Science Research Foundation



Current Optimization Process for Obtaining a
14 Statistically Equivalent Microstructure

Each evaluation requires 90 minutes and 3
nodes with 36 processors.
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ML-based Optimization Process for Obtaining a
15 Statistically Equivalent Microstructure

Each evaluation takes seconds and
minimal computational resources

Update|Parameters
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16 | Comparisons with Experiments & High fidelity simulations

Parameterizing Hill's quadratic anisotropic yield model:

Al6061-T6 F N
Experiments 0.6097 3-6 months
Crystal plasticity-FE 0.5268 1.4788 1.7604 ~10 h in HPC
Neural Network 0.5298 1.5296 1.6548 <1 sec.
predictions +0.0013 +0.0013 +0.0015
Z = 1.5
‘ — CP-FEM 14« Normalized yield stress
—cP
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n-plane yield surfaces of Al6061

Meural network predictions
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Variation Bayesian Inference Neural Network (VBI-NN) model of Hill's anisotropy model saves computational
cost by more than 4 orders of magnitude compared to crystal plasticity finite element simulations.
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f =F(oy, —622)2 + G (0, —0yx)* + H(0xx —J},},)Z +2(LaZ, + Ma2 + No?2,)



