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Abstract

The potential of electricity-intensive chemical plants to
engage in demand response (DR) initiatives in support
of power grid operations has been the subject of many
conceptual studies. In this work, using an industrially-
relevant model of an air separation unit, we undertake
an extensive simulation study of moving horizon (MH)
rescheduling approaches, where we “close the schedul-
ing loop” based on updated information regarding dis-
turbances such as changes in electricity prices, ambient
conditions and chemical product demand. Owur study
produces several unexpected findings regarding the non-
periodic nature of rescheduling solutions, the impact of
the accuracy of disturbance forecasts on the economics
of DR scheduling, and on the interplay of simultaneously
dealing with fluctuations on both the supply side (i.e.,
electricity prices) and the product demand side of the
plant. We posit that the latter fluctuations pose signif-
icant limitations to the potential of a chemical plant to
engage in DR.

keywords: Closed-loop scheduling; moving horizon;
rescheduling; air separation unit

1 Introduction

The growing contribution of renewable-based electricity
generation presents significant environmental benefits,
but has led to an increased supply-side variability and
uncertainty for the power grid [1, 2]. Coupled with ex-
isting time-of-day and seasonal variability of electricity
demand, this phenomenon makes it increasingly challeng-
ing to balance electricity supply and demand in grid op-
erations. An attractive approach for mitigating this im-
balance is demand-side management, a set of initiatives
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that focus on reshaping electricity use patterns rather
than controlling power generation. Price-based demand-
side management, or demand response (DR), relies on
time-of-use electricity pricing to influence user-level load
shifting decisions. Industrial, commercial, and, to a lower
extent, residential users can choose (or are mandated
to use) time-varying electricity prices that reflect power
demand fluctuations. Broadly speaking, daily electric-
ity prices evolve in “antiphase” with grid demand levels,
reaching their lowest values during the low demand hours
early in the morning, and peaking during peak demand
times late in the afternoon.

Industrial users are particularly appealing DR par-
ticipants, accounting for over 30% of annual electricity
consumption in the US [3]. While this figure is lower
than the value posted by residential buildings [3], man-
ufacturing plants offer distinct DR benefits: they are
large, localized loads that can be coordinated by a single
decision-maker (the operator of the facility), and typi-
cally exhibit a lower endogenous fluctuation in electric-
ity use. In contrast, residential users are a heterogeneous
group of small loads that experience significant electricity
consumption fluctuations dictated by endogenous factors
such as occupancy and variations in human preferences
(e.g., temperature setpoints of heating, ventilation and
air conditioning (HVAC) equipment).

Chemical production and petroleum refining make up
a significant portion of industrial electricity use (46% in
2018 [4]), suggesting that they are natural candidates
for DR. Demand-side management participation of in-
dustrial plants includes, e.g., consideration of bidding al-
gorithms for load reduction [5], increasing plant agility
[6], and optimal scheduling [7, 8, 9]. In the latter case,
which we consider here, DR participation involves a pro-
duction scheduling strategy comprising two complemen-
tary events. Production rates are increased during off-
peak electricity demand periods. This means using more
electricity but at cheaper rates, resulting in overproduc-
tion of chemical products. Products made in excess of
demand are stored and used to supply customers during
heavy grid load periods, when the production rate (and



thereby electricity demand) of the chemical plant is de-
creased. Thus, DR engagement, as described above, can
be regarded as a way to store electricity in the form of
chemical products. In order to participate in DR pro-
grams, a chemical plant must be able to operate above
its nominal product demand level and store any excess
product safely and without significant quality degrada-
tion. More importantly, engaging in DR programs re-
quires that a plant have the dynamic agility to change
its production rate on a time scale comparable to that
of the frequency of electricity price changes (hourly or
less) established by electricity markets. Given that in
many practical situations, the dominant plant dynamics
evolve over the same (or longer) time scales as electricity
prices, DR scheduling calculations must account for pro-
cess dynamics. It is also beneficial for scheduling calcula-
tions to account for relatively long (in comparison with
the process time constant) time horizons. In practice,
this amounts to scheduling production over a few days.
This can be problematic for several reasons: electricity
prices are not known accurately for time spans exceeding
24 hours, product demand can fluctuate, and plants are
naturally subjected to uncertainty regarding operating
conditions (changes in ambient temperature are a good
example). Forecasts of these disturbance variables are
typically used. Predictions can be quite good for time
instants in the near future relative to the time when the
forecast is made, but their accuracy declines as longer
horizons (typically, more than 24 hours) are considered.

There are two broad classes of mechanisms for ac-
counting for such uncertainty. The first is schedule op-
timization under uncertainty, which requires that some
quantitative description of the uncertainty be available,
and, depending on the approach taken, can provide a
scheduling solution with a known degree of conservative-
ness. The second is implementing feedback (in the sense
of updating the scheduling solution as new information
becomes available), which represents a natural way of
dealing with exogenous factors whose values cannot be
predicted easily for future time instants, but can be mea-
sured accurately at the current time instant. The latter
approach naturally leads to moving horizon scheduling
formulations, which rely on periodically recomputing the
scheduling solution as new information concerning the
uncertain variables becomes available. The time horizon
for the scheduling calculation remains constant, and is
“shifted” forward at each rescheduling point.

Several works have utilized moving horizon structures
to mitigate uncertainty (both endogenous and exogenous)
that arises in scheduling problems. Gupta and Mar-
avelias [10] addressed closed-loop task scheduling using
moving horizon scheduling formulations subject to en-
dogenous uncertainty. Shyamal and Swartz [11] sched-
uled electric arc furnaces with a moving horizon imple-
mentation to periodically re-evaluate fractional energy
inputs between chemical (e.g. natural gas) and electri-

cal sources based on time-varying electricity prices. He
and Petit [12] solved a grid-side DR scheduling prob-
lem subject to uncertainties in renewable energy sources
and consumption with a two-stage moving horizon frame-
work. Coelho et al. [13] performed real-time byproduct
gas scheduling for iron and steel making applications on
a moving horizon and found that a reduced control hori-
zon (resulting in frequent rescheduling) for implementa-
tion on a moving horizon led to increased system stabil-
ity. Mathur et al. [14] performed moving horizon online
scheduling of cascaded hydropower systems subject to
uncertainty to aid in resolving scheduling “nervousness,”
(a phenomenon where significant variation in schedules
can result from even slight fluctuations in inputs, such
as electricity prices). In our previous work [15], we intro-
duced a framework for moving-horizon, closed-loop DR
scheduling with a focus on the problem formulation, us-
ing dynamic process models. In this paper, using the
model of an air separation unit (ASU), we present an
extensive discussion, focusing on the practical circum-
stances that may be encountered in the implementation
of such a strategy for chemical plants. The computa-
tional efficiency of our models enables us to consider a
significant number of scenarios compared to other works
and can therefore provide a comprehensive picture of the
way accounting for uncertainty affects scheduling solu-
tions and operating cost.
Specifically, the key contributions of this effort are:

e an extensive exploration of the impact of typical
exogenous disturbances on DR scheduling, using
a moving horizon approach enabled by computa-
tionally tractable reduced-order models represent-
ing the closed-loop nonlinear plant dynamics

e a discussion of methods and models of accounting
for exogenous disturbances and uncertainties such
as demand changes, price fluctuations and varia-
tions in ambient temperature

e a framework for optimization under uncertainty com-
bined with moving horizon scheduling, which en-

sures the feasibility of the moving horizon DR schedul-

ing problem in the case where the duration (rather
than the magnitude) of a non-periodic, non-persistent
disturbance (product demand) is not known or can-
not be accurately predicted

2 DR Production scheduling

2.1 Problem formulation

Scheduling is part of a hierarchy of decisions involved in
the operation of chemical processes (Figure 1). In the
context of DR operation, the scheduling layer utilizes in-
formation concerning electricity prices, product demand,
and any factors which may impact operating efficiency
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Figure 1: Hierarchy of chemical process operation deci-
sions, highlighting the interaction of scheduling, control
and the physical process. u are the production rate set-
points/targets, w are the values of the state variables.

(such as ambient temperature) as an input, and deter-
mines the sequence of production rate targets/setpoints,
u. The control layer translates these setpoint signals into
control actions that are implemented in the process and
the material storage system. Process state (or control)
information, w, is provided to the control and schedul-
ing layers, creating a feedback mechanism for control and
rescheduling.

DR scheduling (from a demand-side perspective) con-
sists of an optimization calculation that aims to min-
imize the operating cost associated with time-varying
electricity prices, while maintaining process safety and
service levels, the latter in terms of both product quality
and meeting customer (product) demand. The fact that
electricity prices change with typically hourly frequency
and can thus be represented by a piecewise-constant sig-
nal, suggests the use of a slot-based scheduling formu-
lation with fixed-length time slots. Given the different
timescales involved in the DR scheduling of chemical pro-
cesses (see Figure 1), it is required that the scheduling
model embed dynamic information regarding the pro-
cess and its control system [16, 17, 18]. The dynamic
model of the process is typically discretized in time, with
a discretization time step that is (much) shorter than the
length of the scheduling time slot.

Thus, in order to capture the evolution of the process
variables at the required resolution and over the time
horizon of interest, we define three separate time grids
for formulating and solving moving-horizon DR, schedul-
ing problems. As shown in Figure 2, the scheduling time-
horizon of length Np, is divided into days, represented
by index d. This is motivated by the fact that electric-
ity prices in the day-ahead market are typically known
24h in advance. Within each day, d, there exists a finer
time-grid, referred to as the scheduling time grid, repre-
sented by Ny time slots of length T (denoted by index ).
We specify that the length of each scheduling slot, 4, co-
incide with the frequency that electricity prices change;
later we will also impose that production rate changes
can be made once per scheduling time slot. Within each
scheduling time slot, we define a finer grid indicated by
index j, where there are N; time slots each of length T';.

Np

Figure 2: Representation of time for the DR scheduling
problem, and the transient evolution of a hypothetical
variable, y.

This grid is employed to represent the (discretized ver-
sion) of the (higher-frequency/faster) process dynamics.
The time step/sample time T’y is chosen based on the
dominant time constant of the process [19, p. 319]. For
convenience, we impose that T be an integer multiple of
T, and that Tp be an integer multiple of T7.

We will refer to the number of days considered in the
scheduling model as the scheduling window, and the total
number of days for which calculations are performed (on
a moving horizon basis) as the time horizon.

Based on the above, we define the DR scheduling
problem as follows. For clarity, we assume that the op-
erating cost is influenced solely by the electricity prices
(equivalently, that any other components of the oper-
ating cost are constant in time). Thus, the objective
function of the problem represents a sum over the time
horizon of the product of time-varying electricity prices
(assumed to be constant in each scheduling time slot ),
P;, and the instantaneous power demand of the process
at each time instant j in slot ¢, P; ;. We assume that
a process model is available, and that it represents the
transient response of the process states, w, to changes
in production targets, u, imposed in the scheduling cal-
culation. It is assumed that the process operates un-
der some form of feedback control and that the action
of the control system is reflected in the process model.
We also assume that a storage system is available and
that it operates in tandem with the process to retain
product generated in excess during periods of peak pro-
duction/low energy prices. The process and the storage
system are subject to measurable disturbances. Finally,
we assume that process states and the production rate
are subject to constraints, which may be variable in time
and can be discretized according to the time grid de-
scribed above. The DR scheduling problem thus takes
the following form:

I%IHJ = Zz Zj Ti,jpi
s.t.  Process model (differential-algebraic?
Storage system model (differential-algebraic)
Process constraints (algebraic)
Demand satisfaction constraints (algebraic)

(1)
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Figure 3: Block diagram of a scale-bridging model (SBM)
for integration of scheduling and control. Adapted from
Du et al. [26]

2.2 Process dynamics

Including an explicit representation of the dynamics of
the process and storage system, along with the respec-
tive constraints, ensures that the derived DR schedule
will be dynamically feasible, and its implementation will
not lead to process or demand constraint violations. This
is particularly important for DR scheduling, as it is ex-
pected that frequent changes in production targets will
cause the process states to vary continuously in time. As
we will discuss later, in the context of moving horizon
DR scheduling, it is expected that the schedule will be
recomputed frequently (either periodically or triggered
by specific events). As a consequence, the dynamic rep-
resentation of the process should be computationally ef-
ficient. First-principles models are far from meeting this
requirement as they are typically large-scale, highly non-
linear and ill-conditioned in practical cases.

In our previous work, we introduced the notion of a
“scale-bridging model” (SBM) as a computationally effi-
cient means of representing the process dynamics in DR
scheduling calculations. SBMs bridge the time scales of
the scheduling and control/process dynamics layers (Fig-
ure 1), and represent the closed-loop process dynamics
between inputs u and states w (Figure 3). SBMs can be
derived via system identification using either plant test-
ing or routine historical operating data [20, 21, 8, 22] or
by applying model reduction methods to (full-order, first
principles) models [8, 23, 24, 25, 26].

The derivation of reduced-order SBMs is also guided
by the observation (initially made empirically by Patti-
son et al. [8], and later confirmed using more rigorous
machine-learning and data analysis approaches by Tsay
and Baldea [27]), that only a small subset of the pro-
cess state/output variables are relevant to DR schedul-
ing. This result implies that the dimension of the (scale-
bridging) dynamic process model used in scheduling cal-
culations can be lower than the dimension of a rigorous
first-principles model, with evident computational bene-
fits.

The data-driven path is particularly attractive for de-
riving SBMs in practical situations. Two SBM structures
are relevant in this case: finite step response (FSR) and
Hammerstein-Wiener (HW). Both FSR and HW model

forms expressed in this work are single-input single-output,

H(u) | State-Space > W(y;) ">

Figure 4: Hammerstein-Wiener (HW) model structure.

but multiple-input multiple-output structures are possi-
ble [28, 19]. In addition to being low-dimensional, these
are linear or can be exactly linearized [22, 7], which
presents the additional benefits of allowing the formu-
lation of DR scheduling problems as mixed-integer linear
programs (MILPs). In turn, this enables the use of pow-
erful commercial solvers to derive solutions with well-
defined optimality properties. We briefly describe the
HW and FSR model structures below, where the model
outputs are denoted with w; ;, and inputs are denoted
as u; to reflect the fact that the evolution of the process
variables are tracked over the finest time grid j while
inputs only change once per time slot 4.

Finite step response (FSR) models FSR models
are advantageous for capturing complex process dynam-
ics featuring (unknown) time delays [19]. In the case
where setpoint changes are made once per scheduling
time-slot and dynamics are sufficiently fast (i.e., for vari-
ables w that reach steady state within one scheduling
slot), FSR models can be reduced to:

(2)

The current state, w; ;j, depends on the final state of the
previous scheduling time block (w;—1,n,), a model pa-
rameter, S;, and the change in input between the current
scheduling time slot (u;) and the previous one (u;—_1).

w; ;= wi—1,n, +Sj(u; —ui—1)

Hammerstein-Wiener models Hammerstein-Wiener
(HW) SBMs are used to capture variables with slower dy-
namics. A HW model comprises a linear dynamic model
(here represented in state-space form), flanked by input
(H(u;)) and output (W (y; ;)) static nonlinear functions
[28] (Figure 4). Similar to the FSR model, the input
to the HW model is the target u;, and the output is
the value of the time-varying scheduling-relevant vari-
able, w; ;.

h; = H(u;) (3a)

Tijr1 = AIBZ‘J‘ + Bh; (3b)
L1 = Ti—1,N, (3c)

Yij = C.’Bi,j (3d)

wij = W(yi;) (3e)

Exact linearization of HW models is possible when
the static nonlinearities are piecewise linear as described
in Kelley et al. [22].

2.3 Storage system dynamics

Storage system dynamics are modeled as an integrator
with in/out flows, which will be discussed in more detail



later on as they apply to the case study.

3 Moving horizon DR scheduling

In principle, the DR schedule could be calculated once
by solving a problem of the type outlined in (1), and im-
plemented for the entire scheduling window. This “open
loop” approach is optimal if the model is accurate, the
predictions for the measured disturbances are perfect and
no unmeasured disturbances occur. This is evidently not
the case in practice, providing the impetus for develop-
ing a feedback mechanism where the schedule is updated
as new information becomes available [8, 7].

In our study, we analyze two types of disturbances:
periodic and non-periodic. Of the former category, we
consider price changes and ambient temperature changes.
While both exhibit periodicity over short time scales (in
the order of days) relevant for DR scheduling, the accu-
racy of forecasts differs. Electricity prices are accurately
known for a 24h time horizon, with new values becoming
available at the end of the 24h interval. Weather predic-
tions become more inaccurate as a longer time horizon
is considered, but can be updated with an arbitrary fre-
quency (a 6h update will be considered here). Changes
in product demand are typically non-periodic. We will
model them as square pulse signals of known magnitude
but potentially unknown duration. Based on the distur-
bances under consideration, we define the following sets
of moving horizon scheduling scenarios:

3.1 Electricity price updates

Three electricity price update scenarios are considered,
denoted as problems PP1-PP3:

e PP1 considers the situation where electricity prices
are known with certainty for the entire schedul-
ing time horizon and the DR scheduling problem is
solved once for the full time horizon. This is in ef-
fect the “open loop” case where no moving horizon
is used.

e In PP2, rescheduling occurs daily and a three-day
scheduling window is used. Prices for the first day
in the scheduling window are known with certainty,
while the electricity prices for the two subsequent
days are assumed equal to those in the first day.

e In PP3, electricity prices in the scheduling window
are assumed to be known with certainty, but the
problem is solved daily with a three-day moving
scheduling window.

The schematic in Figure 5 illustrates these scenarios for
a six-day time horizon. The selection of these scenarios
can be explained as follows: PP1 represents an ideal base
case with perfect knowledge of the disturbance variable.

[ scheduling Window

[ unscheduled bay ] payin the past
PP1

1 Day 1 I Day2 I Day3 I Day4 Day5 I Day 6 |

PP2
Reschedule 1 Day1l Day 1 Day 1
Reschedule 2 Day 1 Day2 Day2 Day2
Reschedule 3 Day 1 Day 2 Day 3 Day3 Day3
Reschedule 4 Day 1 Day 2 Day 3 Day 4 Day 4 Day 4

Reschedule 1 Day1 Day2 Day3
Reschedule 2 Day 1 Day2 Day3 Day 4
Reschedule 3 Day 1 Day 2 Day3 Day4 Day5
Reschedule 4 Day 1 Day2 Day3 Day4 Day5 Day6

Figure 5: Electricity price update scenarios.

PP3 reformulates this scenario in a moving horizon con-
text, and is thus expected to provide insights into the im-
pact of using a moving horizon, feedback-based/closed-
loop approach on the economics of the problem, while
still assuming perfect knowledge of the exogenous vari-
able. PP2 represents a likely practical implementation
of the moving horizon concept, whereby a forecast of
the electricity prices will be necessary. The assumption
made above, i.e. that prices for the day ahead can be
used to forecast prices for the next two days, reflects a
“minimal effort” approach to price forecasting, and can
likely be improved by more detailed modeling of elec-
tricity price signals. Nevertheless, we believe that this
simplistic choice provides useful insight on the impact of
imperfect electricity price knowledge on DR scheduling.

3.2 Ambient temperature updates

Ambient temperature represents a measurable disturbance
that affects the efficiency and/or operating conditions of
many processes. It is assumed that its impact on process
performance can be appropriately modeled (this is often
dealt with by including a feed-forward component in the
control system). The following scenarios are considered
(we do not define a scenario PT1, rather, we use PP1
as the reference problem where no temperature changes
are taken into account):

e PT2 is the case where ambient temperatures are
assumed to be known accurately for the entire hori-
zon, and the DR scheduling problem is solved once
for the horizon

e PT3 considers updates to the projected ambient
temperature every 6 hours. A shrinking horizon
is considered: the length of the scheduling win-
dow changes every time the scheduling problem is
solved; 6 hours are subtracted from the window
for each solve up until the end of the day, where
another day is added to the scheduling window to
account for an additional day of electricity prices
becoming available.

e PT4 is similar to PT3, but a constant length mov-
ing window is used.

Both PT3 and PT4 assume that temperatures beyond
the first 6 hours in the scheduling window are at the same
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Figure 6: Ambient temperature update scenarios.

level as the values at the corresponding time instants in
the previous day. In solving PT2-PT3, we have assumed
that electricity prices are known with certainty to better
isolate the effect of temperature. The schematic in Figure
6 illustrates the scenarios discussed above.

3.3 Disturbances in the demand for the
product of the chemical plant

Unlike the exogenous factors discussed above, demand
changes cannot always be forecasted. As such, an event-

driven rescheduling approach (rather than periodic reschedul-

ing as above) is more appropriate. We consider several
potential scenarios for demand disturbances. We relate
these to events occurring at a customer facility located
downstream. We will assume that disturbances are not
persistent and they can be described as deviations from
the nominal value of the demand in the form of square
pulse signals of finite amplitude and finite (but unknown)
duration, shown in Figure 7. Our treatment of the dis-
turbances assumes some knowledge of the operation of
the downstream customers (e.g. timing and/or duration
of the maintenance event/outage).

e PD2 considers planned maintenance at the down-
stream facility, where full knowledge of product de-
mand level is available for the entire horizon, and
the DR scheduling problem is solved once at the
start of the horizon.

e PD3 considers unplanned maintenance at the down-
stream facility, where the length of the demand
disturbance is known once the disturbance begins,
but the start time of the demand disturbance is
unknown.
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Figure 7: Demand profiles (PD5). The assumed end-
points of the duration of the demand event are shown as
equally spaced in time; this is not necessarily the case.

e PD4 considers random failure at the downstream
facility, where the start time of the demand distur-
bance and length of the demand disturbance are
unknown. A conservative approach in this case is
to assume that the demand disturbance is persis-
tent, i.e., that it will continue until the end of the
scheduling window. If/when the disturbance ends
(or a new disturbance occurs), another reschedul-
ing event is triggered. We note that this is similar
to the manner in which the feedforward component
of MPC is typically defined.

It is important to point out that such random fail-
ures are difficult to deal with in a cost-effective
manner, and their occurrence may render the DR
scheduling problem infeasible (examples of such cir-
cumstances are, i) exceeding the capacity of the
storage facility if demand has dropped to a low level
and production has reached its minimum bound,
and ii) the complete depletion of stored material
in case of demand increases - we note that both
outcomes are possible regardless of whether mov-
ing horizon scheduling is used, but they represent
an obstacle to obtaining a feasible solution to the
DR scheduling problem).

Motivated by potential shortcomings of PD4 , PD5
deals with the end-time of random disturbances in a
probabilistic way, as described below.

A probabilistic method of accounting for random
failure (PD5) In dealing with random failures, we will
assume that the magnitude of the corresponding distur-
bance is known, while its length is considered a ran-
dom variable. When a demand disturbance occurs due
to random failure, a set of N, possible demand vectors



are generated (Figure 7), where the end time of the de-
mand disturbance (tenq) is different for each vector and is
drawn from a uniform distribution: tepg ~ Ultevent, T
bounded between the start of the demand disturbance
(tevent) and the end of the time horizon, T,,.
We then reformulate the demand satisfaction con-
straint:
()

as a chance constraint in (5). FZ}? ; represents the produc-
tion rate at time j in scheduling slot 4, D; is the product
demand in slot 7, and fi" and fo"* are, respectively, the
flow rates of material entermg and leaving the storage
system.

Chance constraints state that the probability of meet-
ing a constraint is above a specified tolerance, «. In
a chance-constrained implementation, (4) can be trans-
formed into an inequality, with a binary indicator vari-
able, z,., being used register when the constraint is met
for a particular demand vector, D; .. The constant, M,
is large enough such that if the constraint is met, z, = 1,
and z, = 0 otherwise.
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The use of the binary indicator variable enables calcu-
lation of the probability that the demand constraint is
met, and allows for imposing that this probability be
above the tolerance, a, 0 < o < 1.
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s

Remark. The transformation of equality constraint (4)
to an inequality constraint is valid and will not impact
the solution of the scheduling problem. As we will show
below, we are solving a (linear) cost minimization prob-
lem, and the optimal solution is to not produce any excess
product (i.e. product that is neither sent to the storage
system (f;?g) nor used to meet customer demand (ff}‘;))

(6)

4 ASU case study

We utilize a single-column air separation unit (ASU)
to demonstrate our moving-horizon scheduling method.
Cryogenic air separation is an electricity intensive pro-
cess in the industrial gas sector, which accounted for
2.62% of the yearly industrial electricity consumption in
the US in 2014 [29]. The products of air separation (ni-
trogen, oxygen, and argon) are utility streams in various
industries such as steel production and microelectron-
ics. Cryogenic ASUs are attractive for DR participation
because their only feedstocks are air and electricity. Fur-
thermore, the liquefied cryogenic products can be stored
safely and efficiently.
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Figure 8: Diagram showing the single-column ASU
model based on Johansson [21].

4.1 Process model

The single-column ASU has a single product: high-purity
nitrogen gas (Figure 8). For a full description of the
model, we refer the reader to the works of Johansson
[21] and Pattison et al. [8]. Inlet feed air is compressed
to 6.8 bar before entering the primary multistream heat
exchanger (PHX), where it condenses. The condensed
air is then fed to the cryogenic column at the bottom,
where it is distilled. A high-purity nitrogen gas stream
is obtained from the top. The product nitrogen stream
passes through the PHX as a refrigeration stream. Be-
yond the PHX, the product stream is sent to customers
to meet demand, and any excess is sent to storage.

In the storage system, gaseous No produced in excess
of demand, f in is liquefied in a liquefier. When produc-
tion is lower than demand, product is removed from the
storage tank, at a rate fJ" "“t , to meet demand. A material
balance equation is used to model the storage holdup:

sigr1 = (fol, = FO)AG + 50 (7a)
fr, =0 (7b)
fon >0 (7c)

The following continuity conditions are imposed:

=T (82)
t __ t
gﬁl - ;?L—l‘Nj (Sb)

Si,1 = Si—1,N;
along with the requirement that the total storage holdup
is less than 50 kmol:

0 < 55,5 < 50kmol

(9)
and the storage holdup endpoint condition, where the
piecewise constant parameter, u, is dependent on the



time (t) of day the end of the scheduling window occurs
at (11).

SN, N, = 511 (10)
05 <6
0.75 6 <t <12
£) = = 11
HO=005 12<t<18 (11)

1 18 <t <24

The liquefier () is modeled after an ideal cycle, where
Ny is isothermally compressed and then expanded in an
isentropic turbine. The liquefier is assumed to have an
efficiency that fluctuates based on the ambient tempera-
ture (T ), regardless of the flow through the unit. The
linear relationship below assumes the nominal liquefier
efficiency of 80% that fluctuates 5% over the range of
historical temperatures studied from Fresno, CA in 2017
[30].

ne(Tso) = 0.0055T g + 0.6955 (12)

The liquefier and the compressor (C') drive the elec-
tricity consumption of the process, the two turbines (1, ¢t2)
partially offset this electricity consumption, but the im-
pact is minimal. In calculating the power consumption
of each unit, we assume a linear relationship, where the
flow through each unit is multiplied by the polytropic
head of the unit () to calculate the net work (W; ;) of
each unit.

W = QcF/;
Wi = Qu F/,
W QT
Wi = Qufl"

Si,j

(13)

The variable Flf ; is the plant air feed flowrate, which
becomes an optimization variable for the operation of the
process, as it dictates power demand. The superscripts
C, t1, t2, and ¢ represent the compressor, turbine 1, tur-
bine 2, and the liquefier, respectively. The time-varying
power requirement for the plant is given below, and is
taken to be the sum of the net work (W) for all relevant
units described above.

Pij=Wg, +WiL + W2 + Wi (14)

Power calculated in the above equation is used in
the objective function (1) of our DR scheduling problem,
which minimizes operating cost.

4.2 Scale-Bridging Models for the ASU

We utilize SBMs to represent scheduling-relevant vari-
ables, which are near their bounds during normal opera-
tion or are included in the objective function [8].

e Production Rate and Feed Flowrate: The pro-
duction rate (F};) and feed flowrate (sz ;) deter-
mine the electricity consumption of the compressor
and liquefier. As such, both variables directly af-
fect the objective function 1. The production rate
is also bounded: 16 < Ffj < 24, reflecting that it
can vary +20% from its nominal level of 20 mol/s.

e Impurity Levels in the Nitrogen Product:
The maximum allowed value for the product im-
purity concentration is I, = 2000 ppm, where
ppm is defined by the mole fraction of Oy. Im-

purity level, If’ j» 18 a critical quality variable, and

therefore, is bounded using a “backoff” (i.e. more
restrictive) constraint, i.e., Ifjj < 1800 ppm.

e Column Reboiler Level: The reboiler level (M ;)
is bounded such that 0 < Mf ;< 120kmol and such
that the holdup at the end of the time horizon is
greater than or equal to the holdup at the begin-
ning of the time horizon (M7 ; < M}QI’NJ) to pre-
vent the depletion of liquid (and an artificial drop
in power requirements).

e Column Flooding: We use the flooding fraction
((5{ ;) to quantify column flooding. Based on Sin-
nott [31] and Johansson [21], we set the following
bound: 51{]' < 0.97, and note that detailed velocity
equations are given by Johansson [21].

o Phase of the Air Stream: We have constrained
the ratio between the outlet pressure from zone 1
of the PHX and the dew pressure of the air outlet;
Pif;-’”el /P{fj < 0.96 at the relevant temperature.
This constraint ensures the streams in zone 1 of
the PHX are in the gas phase.

e Minimum Temperature Driving Force: Im-
posing a minimum temperature driving force across
the reboiler-condenser ensures that heat exchange
occurs in the correct direction. Therefore, the tem-
perature difference (AT ;) is bounded such that it
is less than the minimum approach temperature of
1.9°C.

The variables relevant to the constraints above were
modeled using a combination of HW (3) and FSR (2)
models, with one SBM for each scheduling-relevant vari-
able. Closed-loop plant data for model identification
were obtained by simulating a full-order first principles
ASU model described in detail in Johansson [21]. The
SBM used for each scheduling-relevant variable is given
below (where the input for each model is the production
rate setpoint, u;:

o HW Models

— Impurity, If: j
— Reboiler Level, M/ ;
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Figure 9: Price sets used (bottom) from [34] from Oc-
tober 16-21, 2017 and temperature sets used (top) from

[30] for 16-21 October, 2017.
— Column Flooding, 5{;‘
— Air Stream Phase, Pl-dJ-

— Minimum Temperature Driving Force, AT; ;

e 'SR Models
— Production Rate, F};

— Feed Flowrate, Flf j

The storage system model in (7) is linear and was used
as-is.

5 Results

All problems were coded in GAMS 25.1.3 [32] and solved
using CPLEX 12.8.0 [33] to a 0.1% optimality gap on a
64-bit Windows system with Intel Core-7-2600 CPU at
3.40 GHz and 16 Gb RAM.

Two six-day electricity price vectors are considered
(Figure 9). In price set 1, the price profile for the first 24
hours is repeated in the subsequent five days, resulting in
a moderate set of prices which are truly periodic. Price
set 2 reflects historical day-ahead market prices from
CAISO [34], which have high variation between days.
We also use two six-day ambient temperature profiles
(Figure 9). Temperature set 1 is structured in a similar
way to price set 1: the temperature for the first day is
replicated in the five subsequent days. Temperature set 2
comprises historical temperature data [30] corresponding
to the six days represented in price set 2. We consider
two different demand vectors in conjunction with price
set 1 and price set 2. Both demand vectors feature two
events/disturbances (Figure 10) to test the effects of a
sudden increase/decrease in demand at different points
in the time horizon.
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Figure 10: Plots of demand vector 1 (bottom) and de-
mand vector 2 (top) .

Table 1: Results for PP1-PP3 for price set 1.

Problem Operating vs. Energy vs.

cost ($) PTO (MJ) PTO
PPO 1902.93 - 43.26 -
PP1 1898.26 -0.25%  43.90 +1.48%
PP2 1898.77 -0.22%  43.90 +1.48%
PP3 1898.77 -0.22%  43.90 +1.48%

5.1 MH scheduling for periodic changes
in electricity prices

Price set 1 The results are shown in Table 1 and Fig-
ure 11. The solutions of PP2 and PP3 are equivalent,
and the optimal schedules for PP1-PP3 are very simi-
lar, exhibiting near-periodic operation. This is also evi-
dent in the maximum difference in inventory (2.2.kmol)
between the solutions for PP1 and PP2-PP3 (shown
in Figure 11). These results are to be expected given
that all problems effectively have perfect price knowl-
edge (owing to the repetitive nature of the price profile).
The cost for PP2-PP3 is slightly higher than PP1 due
to the constraint on inventory that is enforced at the
end of each scheduling window (with the window being
shorter for the former scenarios). Conversely, the longer
time horizon in PP1 makes the most effective use of
stored material. The results are compared with a simu-
lation case PPO, where the plant operates at a constant
production rate but is still subject to the same price fluc-
tuations. DR operation achieves some modicum of cost
savings, but with the disadvantage of higher overall en-
ergy consumption.

Price set 2 Significant variation between the three MH
scheduling approaches (Figure 12) was seen for price set
2. The operating cost for PP2 has the highest value at
the optimum due to imperfect price knowledge beyond
the first day (Table 2). Inventory levels for PP2 are
more conservative than in PP1 and PP3, with PP1 ex-
hibiting the lowest overall inventory levels as a result of
considering the longest time horizon. The objective func-
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Figure 11: Optimal schedule of production rate setpoints
(top), storage holdup (middle), and the difference in
stored inventory (PP1 vs PP3) for price set 1.

Table 2: Results PP1-PP3 for price set 2.
Problem Operating Energy

VS. VS.
cost (9) PPO (MJ) PPO
PPO 1772.86 — 43.26 —
PP1 1754.93 -1.01%  44.17 +2.10%
PP2 1758.98 -0.79%  44.15 +2.06%
PP3 1754.99 -1.01%  44.20 +2.17%

tion values for PP1 and PP3 are very similar, demon-
strating that MH scheduling remains an effective way of
reducing production cost (assuming that accurate price
predictions are available). The energy consumption for
all three scenarios is similar. Overall, we note that all
MH schemes achieve a cost reduction relative to case
PPO (operating at constant production rate), but that
energy use increases due to liquefier usage.

5.2 MH scheduling for periodic chagnes
in ambient temperature

Price/temperature set 1 For the six-day time hori-
zon, the objective function values at the optimum for
PT2-PT4 are very similar (Table 3). However, the
scheduled production rate target and inventory levels are
noticeably different for the three scenarios (Figure 13),
particularly in the timing and value of the peaks in the
production setpoint. Interestingly, the periodic behavior
seen in Figure 11 is not observed to the same extent in
the solution of PT2-PT4, even though the operating
cost of PP1-PP3 with price set 1 is nearly the same as
that of PT2-PT4 with price and temperature set 1. We
ascribe this to solution degeneracy at the tolerance level
specified.

Figure 13 reveals that inventories for scenario PT3
are in general higher than PT2 and PT4. This reflects a
similar lack of flexibility as in PP2 since the scheduling
window shrinks at every schedule update (up until a new
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Figure 12: Optimal schedule of production rate setpoints
(top) and storage holdup (bottom) for price set 2.

Table 3: PT2-PT4 results for price/temperature set 1.

Problem Operating vs. Energy vs.
cost ($) PTO (MJ) PTO
PTO 1902.93 - 43.26 -
PT2 1898.62 -0.23%  43.87 1.41%
PT3 1898.63 -0.23% 43.89 1.46%
PT4 1898.71 -0.22% 43.91 1.50%

day starts), while the endpoint constraint on inventory
remains unchanged until the horizon is shifted in time. In
contrast, the storage constraint in PT1 is only enforced
at the end of the time horizon and in PT4 the storage
constraint is updated at every rescheduling operation.

Price/temperature set 2 cause slightly more varia-
tion in the results of PT2-PT4 (Table 4). As before, the
optimal schedules are different (Figure 14), particularly
in the timing and height of the peaks in the production
rate set point. The inventories for PT2-PT4 are less
disparate than in the case of price/temperature set 1,
potentially a consequence of a higher variability in elec-
tricity prices in price set 2 (Figure 9).

Table 4: PT2-PT4 results for price/temperature set 2.

Problem Operating vs. Energy vs.
cost ($) PTO (MJ) PTO
PTO 1772.86 — 43.26 -
PT2 1754.62 -1.03 % 44.17 2.10%
PT3 1755.27 -0.99 % 44.18 2.13%
PT4 1755.37 -0.99 % 44.23 2.24%
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Table 5: Objective function values for PD2-PD5 for
price/demand set 1.
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Figure 14: Optimal schedule of production rate setpoints
(top) and storage holdup (bottom) for price and temper-
ature set 2.

5.3 MH scheduling for product demand
disturbances

PD2 assumes perfect knowledge of product demand and
electricity prices for the entire horizon, leading to the
lowest operating cost (Table 5). Energy demand is quite
similar for all scenarios. The production schedules (Fig-
ure 15) further emphasize the benefit of this perfect knowl-
edge, showing that the production rate and inventory
levels for PD2 are quite different from the other sce-
narios. PD5 and PD3 follow similar trajectories since
both scenarios assume knowledge of the end-point of the
pulse demand disturbances. In scenario PD3, inventory
remains low post-demand disturbance. This is due to
the endpoint storage constraint (10), which states that
the holdup must be 50% of its level at the start of the
rescheduling event that occurs at t=72h.

Results for PD2-PD5 for price set 2 and demand

Problem Operating Energy Time
cost ($) (MJ) horizon (days)
PD2 1905.00 43.75 6
PD3 1721.94 40.00 5.54
PD4 1913.66 43.77 6
PD5 1921.16 43.88 6
,(-0\24
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Figure 15: Optimal schedule of production rate setpoints
(top) and storage holdup (bottom) for price set 1 and
demand vector 1.

vector 1 show similar trends, with PD2 preserving its low
operating cost advantage as expected. Complete results
and plots are not included in the interest of saving space.

Demand vector 2 The results here (Table 6 and Fig-
ure 16) are similar to the case of demand vector 1 in terms
of operating cost, with PD2 having the lowest operating
cost.

The results for PD2-PD5 with price/demand vector
2 are given in Table 7. In this case, the final reschedul-
ing calculation (at the end of the second demand dis-
turbance at t=72h) for PD4 was infeasible. This can
be interpreted as follows: the definition of PD4 assumes
that the disturbance will persist until the end of the time
horizon, and as a consequence the solution of this prob-
lem dictates that the storage system be fully depleted.
When the disturbance does in fact end, and product de-

Table 6: Results for PD2-PD5 for price set 1 and de-
mand vector 2.
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Problem Operating Energy Time
cost ($) (MJ) horizon (days)
PD2 1896.67 43.68 6
PD3 1713.36 40.00 5.54
PD4 1912.49 43.80 6
PD5 1944.19 44.36 6
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Figure 16: Optimal schedule of production rate setpoints
(top) and storage holdup (bottom) for price set 1 and
demand vector 2.

Table 7: PD2-PD5 results for price/demand vector 2.

Problem Operating Energy Time
cost (%) MJ horizon (days)
PD2 1752.82 43.84 6
PD3 1612.32 40.20 5.54
PD4 Infeasible — 6
PD5 1798.92 44.63 6

mand is restored (increased) to the nominal level, there
is no stored product available to meet demand while the
plant production is ramped up.

Conversely, the solution of PD5, which uses chance
constraints to estimate the time instant when the de-
mand disturbance ends, does reserve some storage holdup
for the eventual increase in demand and the problem is
feasible across all scheduling windows.

6 Discussion and conclusions

Our empirical results reveal that accounting for fluctua-
tions in operating circumstances (electricity prices, am-
bient conditions) in production scheduling can yield eco-
nomic benefits compared to steady-state operation, the
latter being the accepted (and likely preferred) approach
of plant operators. These benefits are reflected in the
operating cost of the plant, rather than in a reduction in
overall energy use. While the power demand is reduced
during peak hours (an important benefit for the power
grid), overall energy use increases during DR operation
since material must be liquefied to be stored.

For the different scenarios considered, the economics
of using a moving horizon rescheduling strategy did not
differ significantly from the best case of a scheduling cal-
culation based on perfect knowledge of all disturbances
and considering the entire time horizon. This observation
is true in the case where moving horizon scheduling itself
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Figure 17: Optimal schedule of production rate setpoints
(top) and storage holdup (bottom) for price set 2 and
demand vector 2.

possesses perfect knowledge of the disturbances for the
scheduling window considered. However, even simplistic
forecasting strategies for periodic disturbances (e.g., us-
ing information from the preceding day) yield economic
gains. This finding should provide sufficient impetus for
the adoption of such strategies in industry. Our results
also indicate that, while the economic outcomes of dif-
ferent rescheduling strategies are not significantly differ-
ent, the production schedules may be quite dissimilar.
This finding is important in that it suggests that dif-
ferent strategies may lead to, e.g., different patterns of
equipment use and wear and tear/fatigue, a factor that
was not explicitly considered in this study but should
be taken into account in future work and in practical
implementations.

Interestingly, even when both disturbances are per-
fectly cyclical (i.e., profiles from the first day are re-
peated in all subsequent days), the optimal production
schedules do not exhibit a perfectly cyclical pattern. We
ascribe this to the fact that the time horizons consid-
ered here were finite and relatively short (at most six
times the “period of oscillation” for price and tempera-
ture disturbances). As practical implementations cannot
consider infinite horizons, we posit that these results re-
veal the need for using a rigorous, optimization-based
rescheduling strategy for engaging in demand response
initiatives (rather than relying solely on human opera-
tors, who would likely follow a periodic operation strat-
egy).

Finally, we note that dealing with disturbances on
the chemical product demand side is much more diffi-
cult than dealing with changes in electricity prices and
ambient conditions. Demand changes are in many cases
random in magnitude, time of occurrence, and duration.
Assuming (in typical MPC fashion) that a disturbance
will persist until the end of the prediction window can
render scheduling calculations infeasible. Our approach



here was to assume that the disturbance will eventually
end at some time point within the scheduling window.
Of course, this assumption may be violated in practice,
where such disturbances may persist beyond the end of
the scheduling window or may in effect materialize in fre-
quent (e.g., hourly or faster) changes in product demand.
Further investigation in dealing with such circumstances
is warranted, and we posit that the need to deal with fluc-
tuations in chemical product demand may severely limit
the potential of an electricity-intensive chemical plant to
engage in demand response or other initiatives aimed at
supporting the operation of the power grid. The ASU
herein was used to demonstrate how a chemical process
might react to DR operation. We posit that the con-
cepts and outcomes could be extended to other chemical
processes operating under DR.
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