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With the push to expand the operating regimes and the range of
applications of these technologies, the demands on the clocks that
provide this precision timing with also increase.

Microwave-based Clocks:

 Extremely successful commercially

* Miniaturizable

* Frequency stability of 10-1° at the very best

Optical Clocks:

* Frequency stability at 1018 or better

 Large power and size requirements (large optical table)
* Require frequency comb to obtain useful clock signal

The Application Space:

* Most applications do not yet require 10-18 stability

* An optical clock of modest 10-1° stability or better that can be
miniaturized

* Reduced size and power requirements

* Increased signal — multiple ions
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Joule Heating of RF Rails
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Abstract Choosing Trap Parameters

We report our progress on the development of an optical clock based on  Comparison of current trap design with ideal hyperbolic electrodes

the quadrupole transition of a chain of laser-cooled /1Yb* ions in a linear * Finding n allows direct comparison of trap parameters to the ideal

Paul trap. The trap is based on metallized ceramic wafers with trap with analytic equations

segmented DC electrodes that allow for a linear chain of equally spaced e Ao+ Pt o v n = wwr

lons due to a quartic axial potential. Numerical modeling of the trap "' | | | | e

configuration is used to investigate the ability to reduced the associated [ Hyp. S—

frequency shifts for a large chain of ions below the 10> level for this 2o 500pum RF Rail Width
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Precise timing is a critical component of many modern-day technologies. | | 500um 0.76
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 Alumina is able to perfectly !
7z=10 b —

remove excess heat at the ends
Solution (inverted parabola with peak at midpoint):

Tz = Prf(z — L) + Prf + T,

2
AT = Prf

To find the temperature change, we need trap capacitance
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Our Approach
Optical clock based on 2S,,, - 2D, , quadrupole transition in 172Yb* Top RF pads do not contribute, so the equivalent circuit is
* |Increase signal using a linear chain of ~¥ 50 ions
. . . Wrms Pad area: 10.02 mm?,0.1774 pF
* Design trap geometry to minimize frequency shifts below 101> Pad edre: 7.42 mim, 50.30 F
across chain of ions; symmetric RF driving to minimize V¢, R% L
. . ’ Cr _ Rail Width
* Segmented DC electrodes to control ion spacing T C =0.2277 pF (m)
* 2-layer design for simplified alignment V. Cr Wy = 27 X 20 MHz 50
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Finding a Quartic Potential

* Find axial pseudopotential for
various combinations of DC
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voltages in COMSOL
* Fit pseudopotential to 4™ order
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Electric Quadrupole Shift

* Electric quadrupole shift depends on the gradient of the electric field
not only of the pseudopotential but of the ions in the trap
* Find ion locations and calculate the relative frequency shift
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Fmal Trap Design

381 um (15 mil) thick metallized alumina trap wafers

* 100 um DC electrode separation

* 100 um width RF electrodes/rails

* 635 pum (25 mil) thick-film metallized alumina PCB connected with
1x3 mil wire bonds to

* Equal path RF traces for phase matching

* Board connects via BeCu pins and pin receptacles
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