
A u t h o r s

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International

Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-

NA0003525.

A Layer-Parallel Approach for
Training Deep Neural Networks

Stefan ie Guenther (LLNL) , Lars Ruthot to (Emory) , Jacob B.
Schroder (UNM), Nico R. Gauger (TU Kaisers lautern) ,
Gordon Moon (KAU), Ravi Pate l (SNL)

Eric C. Cyr, Sandia National Laboratories

SAND2021-6984PE

Feature
Vectors

Neural Networks
A neural network is a parameterized model:

Neural Network

Input

Output

Parameters

It is composed of multiple layers*

*Your mileage may vary, there are so many possible architectures, this is our starting point

Neural Network Architectures*

Update Rule:

Feed
Forward

ResNet

ODENet

Weighting Matrix

Bias Vector

Activation Function:
nonlinear componentwise

*Your mileage may vary, there are so many possible architectures, this is our starting point

Determining the Parameters
Neural network should map data according to the sampled training set :

Parameters

Input Output

Loss function is model/data difference:

Neural Network Training as Constrained Optimization

u0 u1 u2 u3 u4

Neural networks are a model that
transform input u0 to output u4 by
”evolving” through layers

Forward Inference: Training:

Feature
Vectors

Parameters

Solve optimization problem constrained
by evolutionary models
• Supervised Training: Determine parameters

that give best match to data

5

Training “solves” an optimization
problem for weights and biases:

• Gradient descent:
1. Forward prop: Features
2. Back prop: Loss grad
3. Step in negative grad

Training means optimize: Gradient Descent

La
ye

r 1

La
ye

r 2

O
ut

pu
t

In
pu

t

La
ye

r 3

ᵆ� ᵆ� 1 ᵆ� 2 ᵆ� 3 ᵆ� 4

La
ye

r 1

La
ye

r 2

O
bj

. S
en

s.

Gr
ad

ie
nt

La
ye

r 3

1. Forward Prop

2. Back PropReview of training methods: Bottou, Curtis, Nocedal. "Optimization methods for large
-scale machine learning." SIAM Review 60, 2018.

Constrained Optimization
We take a constrained optimization viewpoint of training

Expanded

Useful transformation! We will relax constraint enforcement and
Trade exactness for parallelism!

How to Accelerate Training With Parallelism?
Training neural networks can be costly (weeks)
• Loads of data to look at
• Lots of weights and features to optimize
• Nonlinear interactions to differentiate through
• Rely on on gradient descent for optimization

Can parallel computing in general, and HPC
specifically help here?
• Already multi-GPU codes are helping
• New optimization algorithms less sensitive to

inaccurate gradients being developed

Our Goal: Develop a new dimension of parallelism
to exploit!

Lars Ruthotto
Emory

Stefanie Guenther
LLNL Fernbach

Fellow

Jacob Schroder
UNM

Nico Gauger
TU Kaiserslautern

Gordon Moon
KAU

Ravi Patel
Sandia

Parallelization strategies: Data Parallel

Data Parallelism:
• Distribute a batch of

samples over processors
• Replicate neural network

across all processors

Problem: Stochastic gradient
descent performance
degrades with increased data
size

Pr
oc

 3

La
ye

r 1

La
ye

r 2

Fi
na

l L
ay

er

O
ut

pu
t

In
pu

t

La
ye

r L
-1

La
ye

r L

La
ye

r X

Pr
oc

 1

La
ye

r 1

La
ye

r 2

Fi
na

l L
ay

er

O
ut

pu
t

In
pu

t

La
ye

r L
-1

La
ye

r L

La
ye

r X

Pr
oc

 2

La
ye

r 1

La
ye

r 2

Fi
na

l L
ay

er

O
ut

pu
t

In
pu

t

La
ye

r L
-1

La
ye

r L

La
ye

r X

Parallelization strategies: Model Parallel

Pr
oc

 4
Pr

oc
 3

Pr
oc

 2
Pr

oc
 1

La
ye

r 1

La
ye

r 2

Fi
na

l L
ay

er

O
ut

pu
t

In
pu

t

La
ye

r L
-1

La
ye

r L

La
ye

r X

Model Parallelism:
• Distribute network across

processors
• Distribute data accordingly

Problem: Forward and backward
propagation are serial bottlenecks.
Increased depth leads
unreasonable computation times
• Using a bigger computer will

not solve this!

Proc 3

Fi
na

l L
ay

er

O
ut

pu
t

In
pu

t

La
ye

r 6

La
ye

r 5

Proc 2

La
ye

r 4

La
ye

r 3

Proc 4

La
ye

r 8

La
ye

r 7

Proc 1

La
ye

r 2

La
ye

r 1

Inexact Evolution: Relax satisfaction of evolution constraints, trade
accuracy for performance

Stitch Together: Constraint continuity required only at convergence of
optimization

Our New Approach: Layer-Parallel Training

Wait, what? (Number one response)
Layer-Parallel makes no sense they say:

• Forward and backward propagation are serial!
• Distributing the layers across processors still serializes!
• It doesn’t make a whole lot of sense does it?

These serialize across the
layers. A forward and
then a backward sweep!
How can you parallelize

Gradient Descent Algorithm:

-
-

Gradient Descent Algorithm:

Critical Assumption: Exactness of propagation
We can relax the exactness of propagation, and trade for parallelism!

• If we can control the error we introduce, we can use it to get
parallelism!

• We introduce this error through a multigrid algorithm, and get
parallelism as a result

Introduce a small error
+ ᵵ� ᵈ�

-
-

Layer Parallel Training – A Multigrid Approach *

*Based on Multigrid-In-Time: Collaboration with J. Schroder (UNM), S. Günther (LLNL), L. Ruthotto (Emory), N. Gauger (TU Kasierslatern)
Multi-grid in time reference: Falgout, Friedhoff, Kolev, MacLachlan, Schroder. "Parallel time integration with multigrid." SIAM SISC 2014.

Multi-grid algorithm uses “divide and conquer” approach to inference
• “Fine grid relaxation”: Fixes local errors between layers – embarrassingly parallel
• “Coarse grid correction”: Fixes global errors – serial inference on smaller network

Proc 3

Fi
na

l L
ay

er

O
ut

pu
t

In
pu

t

La
ye

r 6

La
ye

r 5

Proc 2

La
ye

r 4

La
ye

r 3

Proc 4

La
ye

r 8

La
ye

r 7

Proc 1

La
ye

r 2

La
ye

r 1

La
ye

r 6

La
ye

r 4

La
ye

r 8

La
ye

r 2

Proc 1

Fine Grid Relaxation
(Approximate/Parallel)

Coarse grid correction
(Exact/Serial/Cheap)

Approximate
Solution

Coarse
Correction

Multigrid is applied for both forward and back propagation

Layer-Parallel Algorithm: Details

Fine-Coarse-Fine (FCF) relaxation
with FAS multigrid:
1. Relax fine points
2. Relax on coarse points
3. Relax on fine points again

Using one-shot optimization
• No batching like SGD
• Probably suboptimal
• Using L-BFGS Hessian

Uses ODE Networks (time=layers)
• Think ResNet as an ODE
• Theory from multigrid-in-time
• Questions about regularity required

Discretize

1

2

3

Layer Parallel Scaling Results

Three different classification problems
1. Peaks: Put particle position into one of 5 different classes
2. Indian Pines: Hyperspectral imaging, what crop? Soy, corn, etc…
3. MNIST: Handwritten digit classification

A comment on the code:
• Neural network code using Xbraid (LLNL) parallel-in-time library
• Code is not optimized: e.g. MNIST uses hand coded convolutions
• Neural networks architectures not optimized, simple ODENets

Layer Parallel Scaling Results
Peaks

Indian Pines
W

ea
k

Sc
al

in
g

St
ro

ng
 S

ca
lin

g

16x
Speedup

MNISTIndian Pines

10x
Speedup

Using Stochastic Gradient Descent (SGD)
Workhorse of ML is SGD optimizer
• How does Layer-Parallel perform
• Compare networks trained with SGD
• Using “harder” fashion MNIST data set
• Similar speedups as seen previously

No loss of accuracy from layer-parallel compared to serial algorithm

Beyond ResNets: Recurrent Neural Nets (RNN)
Problem: Classify a sequence, e.g. learn the mapping

Sequence of N items One of C classes

Solution: Recurrent neural network
Learn a neural network ‘Q’ to produce a classifier

See “Colah’s Blog” for a really great discussion (https://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Q

x1

h1 Q

x2

h2 …0 Q

xN

hN

To Classification
Objective: “Output”

Recurrent “Cell”

Input Sequence

Hidden State

Generalized Recurrent Units (GRUs)
LSTMs and GRUs are two trainable types of RNNs
• Historically RNNs are hard to train (my read is they were unstable)
• “memory”: remembers important features in the sequence
• “forget” gates: eliminates some redundant/irrelevant from the sequence

Generalized Recurrent Units:
• h*: Hidden State,
• x*: Input Sequence,
• W* and b*: Learnable Network Parameters

Hadamard Product

Generalized Recurrent Units (GRUs)

Stiff mode: Collapsing onto
multi-rate asymptotic (this
is a stabilizing dissipation
term!)

Introduction of new
sequence information

Implicit GRUs

Multi-Level GRU

Human Activity Recognition Using Smartphones Dataset (v1.0)1,2

1. Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones.
21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.

2. https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

Dataset Details:
• 30 Volunteers performed six activities: WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING

• Smartphone accelerometers measured three different types of motion, yielding 9 features per sample
• Times windows of 2.56s composed of 128 time samples are labeled with activity
• 70% of volunteers selected for training data (7352 sequences), and 30% for test (2947 sequences)

Short Story: Supervised Classification Problem
• 6 labels
• Sequence of 128 steps, with 9 features
• Training set of 7352 sequences
• Testing set of 2947 sequences

https://www.youtube.com/watch?v=XOEN9W05_4A

PyTorch GRU and LSTM Implementations get to 90% test
accuracy in 5-10 epochs with Adam (e.g. its not a really
difficult problem)

Classic/Implicit/Parallel GRU Comparisons
• Parallel speedup of 2x
 Very small problem, Amdahl Law limited

• All three methods have reasonable accuracy
 Slight degradation for Implicit, and Parallel

• Comparing inference serial (blue) and parallel
inference (red) for a network trained in parallel
 Similar forward accuracy

What about initial guesses?
Serial Training:
• Weights: Many different ways – Glorot 2010, He 2016, “Box” 2020
• Features: Defined by evolution both backward and forward

Layer-Parallel:
• Weights: Same way as in serial? Is there something “better”
• Features: Tricky, what is natural guess? What about for backprop?

What is the input to Layer 5 at the
beginning of the Layer-Parallel algorithm?

Glorot, Bengio, 2010; He, Zhang, Ren, Sun, 2015; Cyr, Gulian, Patel, Perego, Trask, “Box”, 2020

Proc 1 Proc 2 Proc 3 Proc P-1 Proc P

La
ye

r 1

La
ye

r 4

La
ye

r 2

Fi
na

l

O
ut

pu
t

In
pu

t

La
ye

r L
-1

La
ye

r L

La
ye

r 3

La
ye

r 6

La
ye

r 5

La
ye

r L
-2

La
ye

r L
-3

Layer-Parallel Initialization: Nested Iteration

Initialization of Layer-Parallel is complex
• Initialize weights and biases
• Initialize state and adjoint

To overcome this, we have developed a
nested iteration
• Like full multigrid
• Train on the coarse network first,

then upscale

Layer-Parallel Initialization: Nested Iteration

Layer-Parallel Iteration: Forward/Backward
(Computational Kernel)

Piecewise Constant transfer to finer level

m(l) optimization iterations
For each level (L=0 is fine)
Initialization on coarse level (see below)

Initialization on the coarse level:
• Weights: Random
• Features: Coarse level runs serially, no

initialization is necessary

Nested Iteration: Indian Pines and Peaks29
Pe

ak
s

In
di

an
 P

in
es

• 3 level example with Indian Pines and Peaks data sets
• Work Unit = Average Fine Level forward/adjoint gradient computation

Nested iteration yields better validation accuracy in less time

200 steps
125 steps

75 steps

200 steps
100 steps

50 steps

Nested Iteration: Regularization
To understand the regularization impact of nested
iteration
• 4 different values for hyper parameters, chosen to give

good results

• 12 independent runs for each hyper parameterization
(48 total runs)

Nested Iteration validation accuracy less sensitive than
non-nested iteration
• Promising improvement to robustness (not definitive)
• Hypothesis: nested iteration applies implicit

regularization

Tikanov Regularization 10-5 10-7

Initial Weights 0.0 10-6

Peaks Validation Accuracy

Introducing Torchbraid (v0.1)31

Original “Layer-Parallel” code was C++ with hand rolled kernels
• Effective research code (thanks Stefanie)
• Performance of convolutional kernels is suspect (blame me)
• Hard to do apples-to-apples comparisons with state of the art
• Not as easy to extend as PyTorch (and TensorFlow)

Torchbraid: Adding Layer-Parallel module to PyTorch
• Leverage more developers
• Uses automatic differentiation
• Currently has support for ODENets
• Recurrent networks under development

Torchbraid Arch. (v0.1): An Evolving Library32

mpi4py

from torchbraid import LayerParallel
...
parallel_nn = LayerParallel(comm, # mpi4py Communicator
 basic_block, # Lambda building a PyTorch module
 local_num_steps, # Processor local number of steps
 Tf) # Final time value

LayerParallel – A PyTorch Module for
parallel training
• Follows ODENet and ResNet (He 2016)

nomenclature
• Supports automatic differentiation
• Memory/performance tradeoffs under

study
• Limited testing of different problems

Layer-Parallel Forward Prop
Running forward propagation:
• ODE Network with N Steps
• Each step contains 2 convolutional

layers
• 3x3 convolutions on 256x256

layers
• 16 convolutions per layer
• Batch size of 16 images
• 2 Layer-Parallel Sweeps
• Dashed lines: pyTorch serial

Take Home: Torchbraid
LayerParallel gives to speedups

against PyTorch serial time

Closing Thoughts
Presented a Layer-Parallel algorithm for training deep NNs
• Parallelism is exposed by permitting inexact propagation
• We trade inexactness for performance with multigrid algorithms
• Developed new recurrent neural network parallel training procedure
• Initialization of state and weights using nested iteration
• Presented first “TorchBraid” result: faster forward prop

Layer-Parallel Papers:
• Guenther, Ruthotto, Schroder, Cyr, Gauger, Layer-Parallel Training of DNNs, SIMODs, 2020
• Cyr, Guenther, Schroder, Nested Iteration Initialization of DNNs, Accepted to PinT Proceedings, 2020
• Moon, Cyr, Working Title: Parallel Training of GRU with a Multi-Grid Solver for Very Long Sequences,

In Preparation, 2021

Thanks to the DOE Office of Science ASCR Early Career Research
Program for supporting this work!

