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Neural Networks

A neural network is a parameterized model:

Neural Network NN(QC, @) —> Y Output

Input Parameters
It is composed of multiple
U1 — AQQZ —+ b(),
uipr = flui;{Aibif) t=1...L—1,

y = Arur;
@ {AZ7 b }z_O U {AL}

“Your mileage may vary, there are so many possible architectures, this is our starting point



‘ Neural Network Architectures”

Qutput

Feed
Forward  Wit1 = g(Aiui + ;)

ResNet Uir1 = U; + Q(Aiuz' T bi)

Weighting Matrix

wi1 = wi + Atg(Agu; + bi) Bias Vector
ODENet
Oru = g(Au + b) Activation Function:

nonlinear componentwise

“Your mileage may vary, there are so many possible architectures, this is our starting point



Determining the Parameters

Neural network should map data according to the sampled training set :
Input Output

Find ® minimizing the in the model over the training set:

N
Parameters mén ; Loss (NN(CUna @)7 yn)

Loss function is model/data difference:

model data)

° LOSS(y Yy model dataHZ

= Hy

° LOSS(y model —»data Z ydata lOg model)



. ‘ Neural Network Training as Constrained Optimization

Forward Inference:

Input Layer 1 Layer 2 Layer 3

Neural networks are a model that
transform input u, to output u, by
“evolving” through layers

Output

Training:

Solve optimization problem constrained

by evolutionary models
* Supervised Training: Determine parameters
that give best match to data

minimize
Ul .2

Loss(ur, 21 ...2L)

subj. to w; = F(u;_1, %)

Parameters



Training means optimize: Gradient Descent

— 1. Forward Prop E
Training “solves” an optimization |
problem for weights and biases: B é‘ |
N ) I

argmin Z Loss(NN (x,,0), yn) 3 -

* Gradient descent: l
1. Forward prop: Features

2. Back prop: Loss grad |

3. Step in negative grad Ve (Loss)

Review of training methods: Bottou, Curtis, Nocedal. "Optimization methods for large 2. Back Prop —
-scale machine learning.” SIAM Review 60, 2018.

h

Gradient
Obj. Sens.




Constrained Optimization

We take a constrained optimization viewpoint of training

T
argmin Z Loss(NN (z,,,0), yn)
S

=1

\_ J

»

-

N
argmin Z Loss(yNV 4,
© n=1

subject to  r uy , = Aoy, + bo,
Ui+1,n = f(uz',n; {Aubz}) t=1...L—1,

\ - yé\/’N — ALUL,TL )

- Expanded yNN = NN (2,; ©)

Useful transformation! We will relax constraint enforcement and
Trade exactness for parallelism!




How to Accelerate Training With Parallelism?

Training neural networks can be costly (weeks)

* Loads of data to look at

* Lots of weights and features to optimize

* Nonlinear interactions to differentiate through

* Rely on on gradient descent for optimization Ravi Patel Stefanie Guenther  Jacob Schroder
Sandia LLNL Fernbach UNM 8
Fellow

Can parallel computing in general, and HPC

specifically help here?

* Already multi-GPU codes are helping

* New optimization algorithms less sensitive to
inaccurate gradients being developed

Our Goal: Develop a new dimension of parallelism  ordon Moon Lars Ruthotto Nico Gauger
to exploit! KAU Emory TU Kaiserslautern



Parallelization strategies: Data Parallel

Data Parallelism:

* Distribute a batch of
samples over processors

 Replicate neural network
across all processors

Final Layer

Final Layer

Problem: Stochastic gradient
descent performance
degrades with increased data
Size

Final Layer




Parallelization strategies: Model Parallel

Model Parallelism:

* Distribute network across
processors

* Distribute data accordingly

Problem: Forward and backward

propagation are serial bottlenecks.

Increased depth leads

unreasonable computation times

* Using a bigger computer will
not solve this!
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Our New Approach: Layer-Parallel Training

Input
Final Layer
Output

Inexact Evolution: Relax satisfaction of evolution constraints, trade
accuracy for performance

Stitch Together: Constraint continuity required only at convergence of
optimization




Wait, what? (Number one response)

Layer-Parallel makes no sense they say:
Gradient Descent Algorithm:

# initialize the solution
w W = initialize W({)
w b = initialize b{)

y8 = data
for iter in [1,max_iter]:
# do forward propagation inference step

% = foruard prop(y6.u W.u_b) These serialize across the

layers. A forward and
then a backward sweep!
How can you parallelize

# do backward propogationj to compute the gradient
g W,g b = backward prop(x,y8,w W,w b)

# update the solution with gradient descent
W W =wl- learning rate * g W
wb=wb - learning rate * g b

* Forward and backward propagation are serial!
* Distributing the layers across processors still serializes!
* |t doesn’t make a whole lot of sense does it?



Critical Assumption: Exactness of propagation

We can relax the exactness of propagation, and trade for parallelism!
Gradient Descent Algorithm:

# initialize the solution
w W = initialize W({)
w b = initialize b{)

y8 = data

for iter in [1,max_iter]:
# do forward propagation inference step
¥ = forward prop{y@,w W,w _b) +—€f

# do backward propogationj to compute the gradient I Introduce a small error
g_W,g_b = backward_prop(x,y8,w_W,w_b) +€p

# update the solution with gradient descent
W W =wl- learning rate * g W
wb=wb - learning rate * g b

* |f we can control the error we introduce, we can use it to get
parallelism!

 We introduce this error through a multigrid algorithm, and get
parallelism as a result



Layer Parallel Training — A Multigrid Approach’

Multi-grid algorithm uses “divide and conquer” approach to inference
* “Fine grid relaxation”: Fixes local errors between layers - embarrassingly parallel
« “Coarse grid correction”: Fixes global errors - serial inference on smaller network

Proc 1 Proc 2 Proc 3 Proc 4

Fine Grid Relaxation
(Approximate/Parallel)

Input
Layer 3
Output

Final Layer

[ h\

Approximate Coarse
Solution Correction
Coarse grid correction \ /
(Exact/Serial/Cheap)

Multigrid is applied for both forward and back propagation

‘Based on Multigrid-In-Time: Collaboration with J. Schroder (UNM), S. Glinther (LLNL), L. Ruthotto (Emory), N. Gauger (TU Kasierslatern)
Multi-grid in time reference: Falgout, Friedhoff, Kolev, MacLachlan, Schroder. "Parallel time integration with multigrid.” SIAM SISC 2014.



Layer-Parallel Algorithm: Details

Uses ODE Networks (time=layers) Xi4+1 = Xg + Ato(Wyxy + by)

* Think ResNet as an ODE I Discret

* Theory from multigrid-in-time ETEHEE

* Questions about regularity required d:x(t) = a(W(t)x(t) + b(t))

Fine-Coarse-Fine (FCF) relaxation & & B b & & @

with FAS multigrid: TN T T ) N YT W )
. . o i i t i @ i i i i

1. Relax fine points o

2. Relax on coarse points Y

3. Relax on fine points again ¢ ¢

Using one-shot optimization L dLoss, L

* No batching like SGD - OH 97

* Probably suboptimal with H @ (L+ ky - Hy, )&)

* Using L-BFGS Hessian



Layer Parallel Scaling Results
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(a) Peaks (b) Indian Pines (c) MNIST

Three different classification problems
1. Peaks: Put particle position into one of 5 different classes

2. Indian Pines: Hyperspectral imaging, what crop? Soy, corn, etc...

3. MNIST: Handwritten digit classification

A comment on the code:

* Neural network code using Xbraid (LLNL) parallel-in-time library
* Code is not optimized: e.g. MNIST uses hand coded convolutions
* Neural networks architectures not optimized, simple ODENets

Xér@ao-




training loss

training loss

‘ Layer Parallel Scaling Results
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uracy (%) of L0000

Test Acc

Workhorse of ML is SGD optimizer

0.90

How does Layer-Parallel perform

Compare networks trained with SGD
Using “harder” fashion MNIST data set
Similar speedups as seen previously
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No loss of accuracy from layer-parallel compared to serial algorithm




Beyond ResNets: Recurrent Neural Nets (RNN)

Problem: Classify a sequence, e.g. learn the mapping

(I)(litl,il’ig e ,LUN) %.{170}.

Y
Sequence of N items One of C classes

Solution: Recurrent neural network

Learn a neural network ‘Q’ to produce a classifier
Hidden State

See “Colah’s Blog” for a really great discusSion ps./cola.githu.io/posts/2015-08-understanding-Lsus)

To Classification

Objective: “Output”

Recurrent “Cell”

Input Sequence



Generalized Recurrent Units (GRUSs)
LSTMs and GRUs are two trainable types of RNNs

* Historically RNNs are hard to train (my read is they were unstable)
* “memory”: remembers important features in the sequence
* “forget” gates: eliminates some redundant/irrelevant from the sequence

Generalized Recurrent Units:

* h.: Hidden State,

* Xs«: Input Sequence,

* W. and b.: Learnable Network Parameters

Tt = U(Wirmt + bir + Wirhe_q + bh?’) "
2t — U(Wizxt +bix + Wi he—1 + bh,z)

ny = tanh(W;,xy + bin + 17 © (Whnhe—1 + b)) F hy = Q(ht—la Lty 5)

he =2 O hi_1+ (1 —2:) ©ny

Hadamard Product




Generalized Recurrent Units (GRUSs)

We rewrite the update with a time step update (assume At = 1)

hy = Q(hi—1,x4;E) =2 © hy—1 + (1 — 2¢) O ny
— ht—l + At ((Zt — 1) ® ht—l -+ (1 — Zt) ® nt)

Taking At = 0, we arrive at an ODE form

Oh(t) = —(1— 2() @ h(t) + (1 — 2(£)) ® n(t)

Stiff mode: Collapsing onto Introduction of new
multi-rate asymptotic (this sequence information
is a stabilizing dissipation

term!)



Implicit GRUs

Stiff mode suggests a problem for traditional GRU’s with large At:
» This will be a problem for coarse grids in layer-parallel!

We introduce a new “Implicit GRU” as a result, default to At = 1:
(1 -+ At(]. — Zt)) O ht — ht—l -+ At(l — Zt) ) Ny

* Because stiff mode is implicit, this new formulation will be stable
for "large” At
* We will leverage this in a multi-level solver



Multi-Level GRU

There are several forms of GRU that we could consider for layer-parallel
1. Classic GRU (explicit with At = 1) — All multi-grid levels

When you take bigger time steps, the result is instability on the coarse grid!

2. Classic GRU on fine levels, Implicit GRU on coarse

With MGRIT this results in a mismatch that doesn’t converge!

3. Variable At GRU (implicit or explicit)

| have finite time ®

4. Implicit GRU on coarse with At = 1 € We try this one



1.

2.

Human Activity Recognition Using Smartphones Dataset (v1.0)%?

Dataset Details:

* 30 Volunteers performed six activities: WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING

* Smartphone accelerometers measured three different types of motion, yielding 9 features per sample
* Times windows of 2.56s composed of 128 time samples are labeled with activity

e 70% of volunteers selected for training data (7352 sequences), and 30% for test (2947 sequences)

Short Story: Supervised Classification Problem
* 6 labels

* Sequence of 128 steps, with 9 features

* Training set of 7352 sequences

* Testing set of 2947 sequences

PyTorch GRU and LSTM Implementations get to 90% test
accuracy in 5-10 epochs with Adam (e.g. its not a really
difficult problem)

ttps://www.youtube.com/watch?v=XOEN9WO05_4A

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones.
21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones



‘ Classic/Implicit/Parallel GRU Comparisons

* Parallel speedup of 2x

» Very small problem, Amdahl Law limited
* All three methods have reasonable accuracy
» Slight degradation for Implicit, and Parallel
 Comparing inference serial (blue) and parallel
inference (red) for a network trained in parallel

» Similar forward accuracy
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What about initial guesses?

Serial Training:
* Weights: Many different ways — Glorot 2010, He 2016, “Box” 2020
* Features: Defined by evolution both backward and forward

Layer-Parallel:
 Weights: Same way as in serial? Is there something “better”
* Features: Tricky, what is natural guess? What about for backprop?

Proc 1 Proc 2 Proc 3 Proc P-1 Proc P

HHH |

What is the input to Layer 5 at the
beginning of the Layer-Parallel algorithm?

Output

Input
Layer 2
Layer 4

Glorot, Bengio, 2010; He, Zhang, Ren, Sun, 2015; Cyr, Gulian, Patel, Perego, Trask, “Box”, 2020

I I Em B



Layer-Parallel Initialization: Nested Iteration

Initialization of Layer-Parallel is complex
* |nitialize weights and biases
* |nitialize state and adjoint

To overcome this, we have developed a

nested iteration

e Like full multigrid

* Train on the coarse network first,
then upscale

Well-initialized DNN
with 728 layers

Final trained 128
layer network

1
1
)
Nested iteration refinement yields good initial :
network parameters for deeper network Y

T T ) 128 layers
| : Ly
1
: ! . 64 layers
] =
L 32 layers
— ->
Initial coarse 16 _’./ \. I
layer network L ;o P 16 layers

Layer-parallel multigrid training




Layer-Parallel Initialization: Nested Iteration

Algorithm 1 nested_iter(u(t=" 57D [ rm} )

1. . Loop over nested iter. levels, then optimization iter.

2. Initialize u(t =1 (L-1)

3. for/l=L-11>0,1-=1do

4: fori=0i<m, j+=1do

5: T LPTu) D ) . LPT: Layer-

6: parallel training
-

; end for

g =N = p . Interpolate
9. end for
10: return [(0) . Return finest level weights

Initialization on the coarse level:

* Weights: Random

* Features: Coarse level runs serially, no
initialization is necessary

Initialization on coarse level (see below)
For each level (L=0 is fine)

m{) optimization iterations

Layer-Parallel Iteration: Forward/Backward
(Computational Kernel)

Piecewise Constant transfer to finer level



.| Nested Iteration: Indian Pines and Peaks

* 3 level example with Indian Pines and Peaks data sets
* Work Unit = Average Fine Level forward/adjoint gradient computation

Peaks

Validation Accuracy (%)
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80 A
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Validation Accuracy
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Nested iteration yields better validation accuracy in less time

200 steps
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Indian Pines
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Nested Iteration: Regularization

To understand the regularization impact of nested

iteration

* 4 different values for hyper parameters, chosen to give
good results

Tikanov Regularization 10~ 107

Initial Weights 0.0 10

* 12 independent runs for each hyper parameterization
(48 total runs)

Nested Iteration validation accuracy less sensitive than

non-nested iteration

* Promising improvement to robustness (not definitive)

* Hypothesis: nested iteration applies implicit
regularization

Peaks Validation Accuracy

5 Channel
Nested Non-Nested
Mean 86.7% 85.0%
Median 88.0% 88.5%
M ax 97.0% 95.0%
Min 66.0% 20.0%
Std. Dev | 7.69% 11.7%
8 Channel
Nested Non-Nested
Mean 92.3% 90.7%
Median 94.0% 91.8%
M ax 99.0 % 96.5%
Min 72.5 % 57.0%
Std. Dev | 518 % 6.08 %




. | Introducing Torchbraid (v0.1)

Original “Layer-Parallel” code was C++ with hand rolled kernels

* Effective research code (thanks Stefanie) ‘
e Performance of convolutional kernels is suspect (blame me)

* Hard to do apples-to-apples comparisons with state of the art |
* Not as easy to extend as PyTorch (and TensorFlow) -
Torchbraid: Adding Layer-Parallel module to PyTorch

* Leverage more developers ' |
e Uses automatic differentiation O PyT Ch

* Currently has support for ODENets . ';;J »> |
* Recurrent networks under development Tor h B RA"‘I ."f '

ign is ‘
'-dﬂ. [
| i




. | Torchbraid Arch. (v0.1): An Evolving Library

LayerParallel — A PyTorch Module for

parallel training
* Follows ODENet and ResNet (He 2016)

nomenclature
e Supports automatic differentiation

O Py

mpidpy

* Memory/performance tradeoffs under
study
* Limited testing of different problems

from torchbraid import LayerParallel

parallel nn = LayerParallel(comm, # mpid4py Communicator
basic _block, # Lambda building a PyTorch module
local num_steps, # Processor local number of steps
Tf) # Final time value



Layer-Parallel Forward Prop

Running forward propagation:

* ODE Network with N Steps

* Each step contains 2 convolutional
layers

* 3x3 convolutions on 256x256
layers

* 16 convolutions per layer

* Batch size of 16 images

e 2 Layer-Parallel Sweeps

Take Home: Torchbraid
LayerParallel gives to speedups
against PyTorch serial time

Time (s)

Run times: Dashed lines - torch serial time

1024.00 -

512.00 4

265.65 -
131.39 -
66.31-5
33.21—:

16.50

T T LI B B T T T T T Tt T
2 4 8 16 32 64 128

TorchBRAID

——
256

——
512



Closing Thoughts

Presented a Layer-Parallel algorithm for training deep NNs

* Parallelism is exposed by permitting inexact propagation

 We trade inexactness for performance with multigrid algorithms

* Developed new recurrent neural network parallel training procedure
* |nitialization of state and weights using nested iteration

* Presented first “TorchBraid” result: faster forward prop

Layer-Parallel Papers:

* Guenther, Ruthotto, Schroder, Cyr, Gauger, Layer-Parallel Training of DNNs, SIMODs, 2020

* Cyr, Guenther, Schroder, Nested Iteration Initialization of DNNs, Accepted to PinT Proceedings, 2020

* Moon, Cyr, Working Title: Parallel Training of GRU with a Multi-Grid Solver for Very Long Sequences,
In Preparation, 2021
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