This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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INTRODUCTION

Single-event transients (SETs) are becoming more prevalent with smaller transistor sizes and faster clocks

Methods to measure and model SET distributions are needed.

SET distributions in combinational logic can be converted into an upset at clocked register.
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BACKGROUND: ALTERNATING LOADS CAUSE SETs 1O
:1 BROADEN OR SHRINK
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MEASURE SINGLE EVENT TRANSIENTS AND UPSETS ON D-

FLIP FLOP (DFF) SCAN CHAIN |
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.| CLocK HIGH vs CLoCK Low SETs

Measure SETs on 15,840 long chain of DFFs using
36 MeV Oxygen ions at an linear energy transfer (LET) of 6.5 MeV-cm?/mg at
Sandia lon Beam Lab
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Average SET Caused 8,918 DFFs to shift



ESTIMATE SET CROSS SECTION AS A FUNCTION

LET=4.0 MeV-cm?/mg LET=10.4 MeV-cm?/mg
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* Measured at Texas A&M University using 40 MeV Argon beam with degrader to change LET
» Used circuit simulations to estimate propagation delay per flip flop



PREDICTING SET CROSS-SECTION DISTRIBUTIONS

» TCAD simulations to compute charge collection efficiency |
i

» Monte Carlo Radiative Energy Deposition (MRED) to compute deposited
charge distribution

» Circuit simulations to compute pulse width for a given amount of
collected charge on a given gate



USE TCAD SIMULATIONS TO DETERMINE CHARGE
COLLECTION EFFICIENCY
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CoMPUTE DEPOSITED CHARGE USING MONTE CARLO

ENERGY DEPOSITION (MRED)

LET=17.9
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Discrete data is due to binning of monte carlo simulations

10710 5

LET=10.4

 Computed deposited charge at each location
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* Integrate deposited charge multiplied by collection efficiency
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COMPUTE PULSE WIDTH FOR A GIVEN AMOUNT OF
COLLECTED CHARGE

Model injected current as dual double exponential

400 . Peak current:
« Charges internal nodes, computed as current
= 300 needed to flip node to opposite rail
a2
£ 200 Hold current:
o - « Computed as current needed to hold node at opposite
S 100 rail, is within 5% of transistor saturation current
0
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\ ] Time (ns) Double Exponential Current Model:
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Pulse length determined by time * Both peak and hold currents are fit to this model

needed to drain all injected charge « Time constants from TCAD, |, from circuit simulations
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MATCHING MODELING AND EXPERIMENT!
MODELING GOES BEYOND EXPERIMENT LIMITS
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SUMMARY

» Demonstrated a new method for experimental

pulse width

» Accurately modeled SET pulse width distribution and matched to experiment
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