

STEM Characterization of Dislocation Loops in Irradiated FCC Alloys

Pengyuan Xiu^a, Hongbin Bei^b, Yanwen Zhang^{b,c}, Lumin Wang^{a,d}, and Kevin G. Field^{a*}

^a Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA

^b Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

^c Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA

^d Department of Materials Science Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

Abstract

In this study, we demonstrate the methodology systematically developed for dislocation loop (perfect and faulted loops) imaging and analysis in irradiated face-centered-cubic (FCC) alloys using scanning transmission electron microscopy (STEM). On-zone [001] STEM imaging was identified as the preferred choice based on the comparison to (i) on-zone STEM imaging using other major low-index zone axes, (ii) two-beam bright field imaging condition near the [001] zone axis using conventional TEM (CTEM), and (iii) Rel-Rod CTEM dark-field (DF) imaging near the [011] zone axis. The effect of STEM collection angle on the contrast formation of dislocation loops was also investigated. The developed method was confirmed by imaging all populations of perfect and faulted loops of types $a/2\langle 110 \rangle\{110\}$ and $a/3\langle 111 \rangle\{111\}$ found in an ion irradiated Ni₄₀Fe₄₀Cr₂₀ alloy. The proposed STEM-based technique can easily identify said loops with a size greater than 10 nm without any assumptions such as those commonly made using the conventional Rel-Rod CTEM-DF technique. The recommended methodology in this study is developed as a quick and convenient tool that can be generally applied to irradiated FCC-based materials due to their common crystallography.

Keywords: Radiation effects; STEM characterization; dislocation loops; microstructure characterization; face-centered-cubic (FCC) alloy; Ni-based concentrated solid solution alloy; dislocation loop morphology

*Corresponding author: kgfield@umich.edu, University of Michigan, Ph: 734-764-4260

1 **1. Introduction**

2 Face-centered-cubic (FCC) based materials are attracting attention for potential use in
3 advanced reactor applications due to their acceptable radiation resistance, corrosion resistance,
4 ductility, and high temperature creep strength. Among all the observed radiation-induced
5 microstructural changes, dislocation loops are of specific importance as they are known to
6 contribute to the degradation of mechanical properties of FCC alloys [1–3]. The change in
7 mechanical properties is primarily evaluated via hardening and embrittlement, where radiation-
8 induced dislocation loops acting as obstacles for dislocation motion contribute to this response [4–
9 6]. Perfect dislocation loops of type $a/2 \langle 110 \rangle \{110\}$ and faulted dislocation loops of type $a/3$
10 $\langle 111 \rangle \{111\}$, where a represents the lattice parameter of the FCC crystal, are well known to
11 form either under neutron, ion, or electron irradiation, or by quenching, in various FCC-based
12 materials including silver [7,8], aluminum [9–13], gold [9], copper [7,8,14,15], austenitic steel
13 [16–22], Ni or Ni-based superalloys [23–37], and Ni-containing multi-component solid solution
14 alloys [38–44]. In general, perfect loops are considered mobile due to its Burgers vector being in-
15 plane with the $\langle 110 \rangle$ close packed direction, while faulted loops are considered sessile [45,46].
16 Therefore, faulted loops are believed to contribute more to radiation hardening as compared to
17 perfect loops [5,43]. This difference in the contribution to radiation hardening leads to studies on
18 how to tailor an FCC material's response to irradiation, including the formation and evolution of
19 these two types of dislocation loops using alloy design.

20 However, there has not yet been a convenient and standardized way to characterize and
21 differentiate *both* $a/2\langle 110 \rangle\{110\}$ perfect and $a/3\langle 111 \rangle\{111\}$ faulted dislocation loops in irradiated
22 FCC-based materials that has been widely used by the nuclear materials community. For example,
23 conventional Rel-Rod TEM dark-field (CTEM-DF) imaging at $\mathbf{g}(311)$ near the $[011]$ zone has

24 been extensively used to image faulted dislocation loops [47,48] because of the white-on-black
25 contrast formation exhibited when faulted loops are slightly inclined from the edge-on position.
26 This method, however, is not suited to image perfect loops which do not consist of faulted planes.
27 In addition, only two out of four variants of edge-on faulted loops can be captured in the DF images
28 from using a TEM foil near [011] zone. When it comes to the loop density counting, it is common
29 to use the assumption that the fraction of all four variants, $[111][1\bar{1}\bar{1}][1\bar{1}1][\bar{1}11]$, of faulted loops
30 are equal resulting in a simple multiplication factor to obtain the total density (e.g. both visible
31 edge-on and non-visible, non-edge-on) of faulted loops. However, deviation from this assumption,
32 e.g. observation of loop Burgers vector anisotropy, has been experientially observed in electron,
33 neutron, and ion irradiated austenitic stainless steels with either internally generated stress field or
34 when an external stress is applied [49]. Therefore, the simple assumption made in the Rel-Rod
35 method may result in additional errors for the loop counting statistics for faulted loops while also
36 generally negating the contributions of perfect loops to the microstructure. The result is the
37 possibility of a skewed analysis used in subsequent alloy design, use, and performance
38 considerations.

39 Another common method deployed for both FCC and body-centered cubic (BCC) alloys is
40 the use of kinematic two-beam conditions bright field (BF) imaging in CTEM, where the \mathbf{g} -vector
41 is selected and excited by carefully tilting to bring varying loops of a given Burgers vector in and
42 out of contrast via the $\mathbf{g} \bullet \mathbf{b}$ invisibility criterion [50]. The CTEM-based method can become tedious
43 because sequential series of sample tilting involving at least three or more \mathbf{g} -vectors are required
44 to unambiguously determine the dislocation loop Burgers vectors and habit planes for both loop
45 types. In addition, the deviation parameter, s_g needs to be kept slightly positive for all \mathbf{g} vectors in
46 order to keep the kinematic two-beam imaging condition [50]. The result is a complex experiment

47 ripe for errors even when completed carefully and in detail. In addition, the resulting two-beam
48 condition images still contain significant background contrast including thickness fringes and bend
49 contours that can skew the interpretation and analysis of the loop type and size.

50 Yao et al. [51]**Error! Reference source not found.** looked to alleviate some of the inherent
51 errors using CTEM by publishing a systematic work on projected dislocation loop morphologies
52 using CTEM in irradiated BCC ferritic-based alloys. Within their work, the projected dislocation
53 loop morphologies taken at a given kinematic two-beam condition can be used to infer the Burgers
54 vector and habit plane. The work of Yao et al. was extended by Parish et al. [52] and Nathaniel et
55 al. [53] where the projected dislocation loop morphologies are used in conjunction with scanning
56 transmission electron microscopy (STEM) to provide rapid imaging and identification of loops
57 with different Burgers vectors in BCC ferritic-based alloys. The culmination of these studies has
58 led to wide-spread adoption of the STEM-BF method for dislocation loop imaging because of (i)
59 the suppression of bend contour induced contrast and improved signal-to-noise ratio compared to
60 CTEM-BF [54], (ii) the ability to exhibit all dislocation and dislocation loop structures in the thin
61 foil without necessity to make simplifying assumptions **Error! Reference source not found.**, (iii)
62 the hardness and reliability of identifying loop type from the loop morphology with the
63 appropriate selection of zone axis [51], and (iv) the applicability of CTEM $\mathbf{g} \bullet \mathbf{b}$ and $\mathbf{g} \bullet \mathbf{R}$ criteria for
64 dislocation and stacking fault analysis respectively in STEM [56]. To date, the above-mentioned
65 advantages of STEM have been demonstrated almost exclusively for BCC ferritic-based alloys
66 with no treatment for imaging faulted loops due to the expected high stacking fault energy [57] in
67 ferritic alloys.

68 In the current study, the methodology of using on-zone STEM-BF for dislocation loop
69 imaging is extended to irradiated FCC-based materials, with the goal of developing a standardized

70 way to characterize and identify populations of perfect and faulted dislocation loops in a single
71 micrograph that are both known to form in FCC-based materials upon irradiation. A nickel-based
72 single-phase concentrated solid solution alloy (SP-CSA) $\text{Ni}_{40}\text{Fe}_{40}\text{Cr}_{20}$, which has an FCC crystal
73 structure and a stacking fault energy in the realm where both perfect and faulted loops are
74 anticipated under the chosen radiation condition, was used for this purpose. SP-CSAs are attracting
75 more attentions in recent years due to their excellent void swelling resistance under irradiation
76 [26,27,42,58–62], with only a handful of studies focused on dislocation loop evolution in this class
77 of materials [26,39,43]. In the current study, various techniques in loop imaging using S/TEM
78 have been systematically investigated including: the selection of the optimal zone axis, collection
79 angle effects (BF vs. annular dark field - ADF), and the comparison between CTEM and STEM.

80 **2. Experimental**

81 **2.1 Materials Synthesis, Ion Irradiation and S/TEM Sample Preparation**

82 An FCC Ni-based SP-CSA, $\text{Ni}_{40}\text{Fe}_{40}\text{Cr}_{20}$ alloy, was used as the model alloy for the dislocation
83 loop imaging after 3 MeV Ni^{2+} self-ion irradiation [63] to a peak damage level of 7.2 dpa at 500°C
84 with a dose rate of 1.7×10^{-2} dpa/s predicted by the Stopping and Range of Ions in Matter (SRIM)
85 2013 code in “Detailed Calculation with Full Damage Cascades” mode [64–66]. The irradiation
86 conditions centered the damage peak around 900 nm from the implantation surface. The
87 $\text{Ni}_{40}\text{Fe}_{40}\text{Cr}_{20}$ alloy was chosen for reasons of (i) its unirradiated microstructure that is free of defect
88 sinks such as pre-existing dislocations or precipitates; and (ii) the co-existence of $a/2\langle 110 \rangle\{110\}$
89 perfect and $a/3\langle 111 \rangle\{111\}$ faulted dislocation loops in the irradiated microstructure with the
90 selected irradiation condition, which is a result of the sluggish loop evolution in this ternary alloy
91 with relatively lower stacking fault energy compared to the chemically less complex binary alloy,
92 Ni-20Fe [43]. The unirradiated microstructure of the $\text{Ni}_{40}\text{Fe}_{40}\text{Cr}_{20}$ alloy in this study is provided

93 in Figure S1 in the Supplementary Information for reference. In other words, the combination of
94 the Ni₄₀Fe₄₀Cr₂₀ ternary alloy and the radiation condition makes it ideal for the purpose of studying
95 dislocation loop morphologies and loop type identification using S/TEM imaging. Detailed
96 material synthesis and ion radiation parameters are provided elsewhere [43].

97 Following the ion irradiation, the electron backscatter diffraction (EBSD) microscopy
98 technique coupled with a dual-beam Scanning Electron Microscope/Focused Ion Beam (SEM/FIB)
99 was used to determine the crystal orientations of S/TEM thin foils ([001], [011] and [1̄11] in this
100 study) prepared using the “lift-out” technique by FIB. The “flash polishing” technique [67]
101 involving 0.05s ~ 0.12s electro-polishing using the reagent of 96% ethanol and 4% perchloric acid
102 was then conducted to remove any FIB-induced damage to improve the overall imaging quality in
103 S/TEM.

104 2.2 S/TEM characterization

105 All S/TEM characterization work on imaging dislocation loops in the irradiated Ni₄₀Fe₄₀Cr₂₀
106 sample was conducted at *MC*² using a Thermo Fisher Talos F200X G2 in STEM or TEM mode
107 operating at 200 kV. Region of interests were selected to include most of the irradiated region
108 within the lift-outs (100 ~ 1200 nm in depth range and 1100 nm in width) regardless of imaging
109 conditions used.

110 2.2.1 On-Zone STEM-BF and STEM-ADF Imaging

111 The FEI Talos in STEM mode includes multiple STEM detectors (up to four) that allows for
112 simultaneous collection of on-zone STEM Bright Field (STEM-BF), Annular Dark Field (STEM-
113 ADF), and High Angle Annular Dark Field (STEM-HAADF) images. These imaging modes were
114 used to characterize dislocation loops at the three major low-index zone axes: [001], [011], and [1̄
11]. Only these three major commonly used low-index zone axes were selected, though in practice

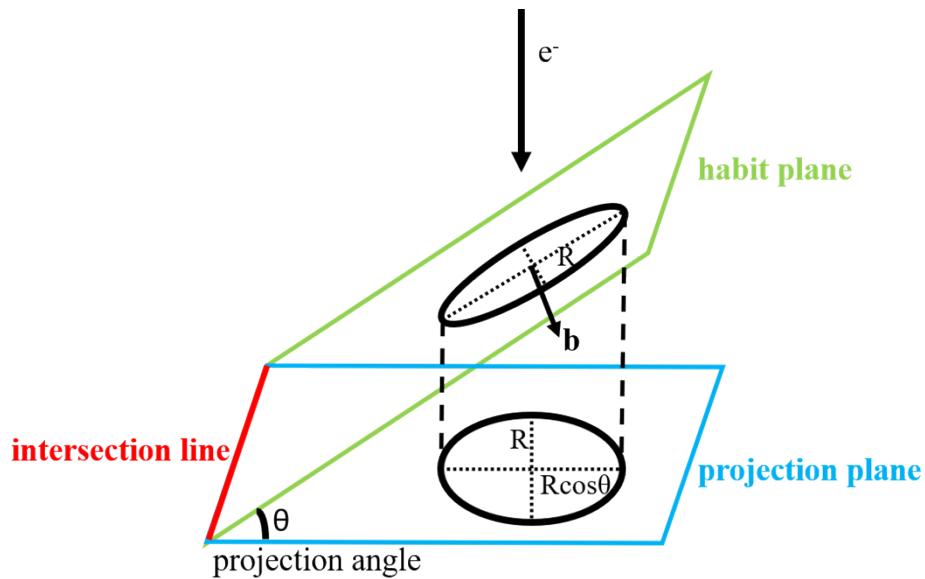
116 the prescribed methodologies could be extended to other imaging orientations. A manufacturer
117 indicated camera length (CL) of 98 mm coinciding with a collection angle of 0-8 mrad was the
118 primary imaging configuration used within. STEM-BF images taken under these zone axes were
119 compared with the simulated loop morphology maps, discussed in detail below, to investigate the
120 optimal choice of zone axis for the purpose of identifying dislocation loop types. Here, *family*
121 denotes if a loop is perfect or faulted, *type* denotes the specific Burgers vector and habit plane of
122 dislocation loops, while *nature* denotes if they are comprised of vacancies or interstitials. The
123 nature of the dislocation loops was not within the scope of this study.

124 Collection angle effects while imaging down the [001] zone axis were also investigated by
125 simply changing the manufacturer indicated CL from 98 mm to 330 mm in STEM-BF and STEM-
126 ADF imaging modes, coinciding with a collection angle of 0-8 and 0-3 mrad in STEM-BF mode
127 and 22-52 and 7-16 mrad in STEM-ADF mode, respectively. STEM-BF and STEM-ADF images
128 at CL of 98 mm were acquired as duplets, allowing for the exact region of interest to be compared
129 between the different image generation configurations.

130 All STEM images were collected with 4096×4096 pixels with generic post-processing
131 conducted to optimize the brightness and contrast of the images. Image dwell times were optimized
132 to increase signal-to-noise ratios while minimizing drift within the captured images.

133 2.2.2 CTEM Imaging Techniques

134 In order to compare CTEM imaging to STEM-BF imaging, two common CTEM techniques
135 to image dislocation loops were employed: (i) the kinematical two-beam conditions (deviation
136 parameter $s_g > 0$) in Bright Field (CTEM-BF) using \mathbf{g} vectors of (020), ($\bar{2}20$), ($\bar{2}00$) and ($\bar{2}\bar{2}0$) near
137 [001] zone axis, and (ii) the Rel-Rod method in Dark Field (CTEM-DF) using \mathbf{g} vectors of ($\bar{3}1\bar{1}$)
138 and ($31\bar{1}$) near [011] zone axis to image two edge-on variants (out of total four variants) of faulted


139 loops. The CTEM imaging results are compared with the STEM-BF images taken at the same area
140 of the thin foil.

141 **3. Results and Discussions**

142 **3.1 On-Zone STEM-BF Imaging**

143 Figure 1 is an illustration of a dislocation loop lying on its habit plane within the S/TEM, and
144 how Bragg diffraction contrast or the strain field near a dislocation loop core is projected onto the
145 projection viewing plane (i.e. onto the CCD capture device), where the electron traveling direction
146 is normal to the projection viewing plane. Note, Figure 1 is an adaption from Yao et al [51]. The
147 projection angle, θ , which denotes the angle between the habit plane and the projection plane can
148 range from 0° to 90° . If the dislocation loop core is circular in nature, the major to minor axis
149 length ratio (aspect ratio) for the projected ellipse is $1:\cos(\theta)$. If θ is 0° , the habit plane and the
150 projection plane are the same and the aspect ratio is $1:1$, allowing for direct visualization of the
151 dislocation loop shape (e.g. circular or faceted). This specific imaging contrast is typically referred
152 to as plane-view loops. If θ is 90° , the habit plane and the projection plane are normal, and thus
153 only the side or edge of the dislocation loops will be visible generating loop contrast denoted as
154 edge-on. Note the Burgers vector of the dislocation loop in Figure 1 is assumed to be normal to
155 the habit plane.

156

$$\text{Aspect ratio} = 1 : \cos(\theta)$$

Figure 1. The schematic of an assumed circular-shape dislocation loop lying on an inclined habit plane being imaged in TEM with electrons traveling down the optic axis, and the resultant image formed on the projection viewing plane. The aspect ratio of the elliptical loop in the S/TEM image is a function of the projection angle, θ . Adapted from Ref. [51].

157

158 Based on the schematic in Figure 1, the dislocation loop aspect ratio, and thus projected
 159 morphology, can be determined if the habit plane and projection angle are known. As discussed,
 160 in FCC materials it is commonly accepted that perfect loops form with a Burgers vector and habit
 161 plane of $a/2\langle 110 \rangle\{110\}$ and faulted loops form with a Burgers vector and habit plane of
 162 $a/3\langle 111 \rangle\{111\}$. Tables 1-3 summarizes the crystallographic information of habit planes and
 163 Burgers vectors of all loop variants assuming an FCC crystal structure such as that present for the
 164 $\text{Ni}_{40}\text{Fe}_{40}\text{Cr}_{20}$ alloy when imaged using on-zone STEM-BF on the [001], [011] and the $[\bar{1}11]$ zone
 165 axis respectively. The projection angle and the resultant aspect ratio of the ellipses are calculated
 166 and shown, together with the line direction of the intersection between the dislocation loop habit
 167 plane and the foil plane. Multiple low-index \mathbf{g} vectors near each zone axis and the $\mathbf{g} \cdot \mathbf{b}$ values for
 168 the invisibility criterion are provided as well.

169 *Table 1. Crystallographic information between dislocation loop habit planes and (001) viewing plane*
170 *imaged under [001] zone axis.*

Habit Plane*	(111)	($\bar{1}11$)	(1 $\bar{1}1$)	($\bar{1}\bar{1}1$)	(110)	(1 $\bar{1}0$)	(011)	(0 $\bar{1}1$)	(101)	($\bar{1}01$)
Family	faulted	faulted	faulted	faulted	perfect	perfect	perfect	perfect	perfect	perfect
Burgers vector, \mathbf{b}^*	a/3[111]	a/3[$\bar{1}11$]	a/3[1 $\bar{1}1$]	a/3[$\bar{1}\bar{1}1$]	a/2[110]	a/2[1 $\bar{1}0$]	a/2[011]	a/2[0 $\bar{1}1$]	a/2[101]	a/2[$\bar{1}01$]
Projection angle, θ	54.74°	54.74°	54.74°	54.74°	90°	90°	45°	45°	45°	45°
Aspect ratio, $\cos \theta$	1:0.577	1:0.577	1:0.577	1:0.577	edge-on	edge-on	1:0.707	1:0.707	1:0.707	1:0.707
Direction of intersection line between loop plane and foil plane	[1 $\bar{1}0$]	[110]	[110]	[1 $\bar{1}0$]	[1 $\bar{1}0$]	[110]	[100]	[100]	[010]	[010]
$\mathbf{g}_{020} \bullet \mathbf{b}$	nonzero	nonzero	nonzero	nonzero	nonzero	nonzero	nonzero	nonzero	0	0
$\mathbf{g}_{\bar{2}20} \bullet \mathbf{b}$	0	nonzero	nonzero	0	0	nonzero	nonzero	nonzero	nonzero	nonzero
$\mathbf{g}_{\bar{2}00} \bullet \mathbf{b}$	nonzero	nonzero	nonzero	nonzero	nonzero	nonzero	0	0	nonzero	nonzero
$\mathbf{g}_{\bar{2}\bar{2}0} \bullet \mathbf{b}$	nonzero	0	0	nonzero	nonzero	0	nonzero	nonzero	nonzero	nonzero

171 *Burgers vector \mathbf{b} variant for dislocation loops is chosen so that its angle with electron beam direction (in this case, [001]), or the projection angle
172 θ , is always non-blunt (between 0° and 90°). For example, a/3[111] with angle of 54.74° is chosen over a/3[$\bar{1}\bar{1}1$] with angle of 125.26° at [001]
173 zone axis.

174 *Table 2. Crystallographic information between dislocation loop habit planes and (011) viewing plane*
175 *imaged under [011] zone axis.*

Habit Plane	(111)	($\bar{1}11$)	(1 $\bar{1}1$)	(11 $\bar{1}$)	(110)	($\bar{1}10$)	(011)	(01 $\bar{1}$)	(101)	($\bar{1}01$)
Family	faulted	faulted	faulted	faulted	perfect	perfect	perfect	perfect	perfect	perfect
Burgers vector, \mathbf{b}	a/3[111]	a/3[$\bar{1}11$]	a/3[1 $\bar{1}1$]	a/3[11 $\bar{1}$]	a/2[110]	a/2[1 $\bar{1}0$]	a/2[011]	a/2[01 $\bar{1}$]	a/2[101]	a/2[$\bar{1}01$]
Projection angle, θ	35.26°	35.26°	90°	90°	60°	60°	0°	90°	60°	60°
Aspect ratio, $\cos \theta$	1:0.816	1:0.816	edge-on	edge-on	1:0.5	1:0.5	1:1	edge-on	1:0.5	1:0.5
Direction of intersection line between loop plane and foil plane	[01 $\bar{1}$]	[01 $\bar{1}$]	[21 $\bar{1}$]	[2 $\bar{1}1$]	[1 $\bar{1}1$]	[11 $\bar{1}$]	N/A	[100]	[11 $\bar{1}$]	[1 $\bar{1}1$]
$\mathbf{g}_{\bar{1}1\bar{1}} \bullet \mathbf{b}$	nonzero	nonzero	nonzero	nonzero	0	nonzero	0	nonzero	nonzero	0
$\mathbf{g}_{\bar{2}00} \bullet \mathbf{b}$	nonzero	nonzero	nonzero	nonzero	nonzero	nonzero	0	0	nonzero	nonzero
$\mathbf{g}_{022} \bullet \mathbf{b}$	0	0	nonzero	nonzero	nonzero	nonzero	0	nonzero	nonzero	nonzero
$\mathbf{g}_{11\bar{1}} \bullet \mathbf{b}$	nonzero	nonzero	nonzero	nonzero	nonzero	0	0	nonzero	0	nonzero

176

177 *Table 3. Crystallographic information between dislocation loop habit planes and ($\bar{1}11$) viewing plane*
178 *imaged under [$\bar{1}11$] zone axis.*

Habit Plane	(111)	($\bar{1}\bar{1}1$)	($\bar{1}1\bar{1}$)	($\bar{1}\bar{1}\bar{1}$)	(110)	($\bar{1}10$)	(011)	(01 $\bar{1}$)	(101)	($\bar{1}01$)
Family	faulted	faulted	faulted	faulted	perfect	perfect	perfect	perfect	perfect	perfect
Burgers vector, \mathbf{b}	a/3[111]	a/3[$\bar{1}\bar{1}1$]	a/3[$\bar{1}1\bar{1}$]	a/3[$\bar{1}\bar{1}\bar{1}$]	a/2[110]	a/2[1 $\bar{1}0$]	a/2[011]	a/2[01 $\bar{1}$]	a/2[101]	a/2[$\bar{1}01$]
Projection angle, θ	70.53°	70.53°	70.53°	0°	90°	35.26°	35.26°	90°	90°	35.26°
Aspect ratio, $\cos \theta$	1:0.333	1:0.333	1:0.333	1:1	edge-on	1:0.817	1:0.817	edge-on	edge-on	1:0.817
Direction of intersection line between loop plane and foil plane	[01 $\bar{1}$]	[101]	[110]	N/A	[1 $\bar{1}2$]	[110]	[01 $\bar{1}$]	[211]	[12 $\bar{1}$]	[101]
$\mathbf{g}_{\bar{2}\bar{2}0} \bullet \mathbf{b}$	nonzero	nonzero	0	0	nonzero	0	nonzero	nonzero	nonzero	nonzero

$\mathbf{g}_{\bar{2}0\bar{2}} \bullet \mathbf{b}$	nonzero	0	nonzero	0	nonzero	nonzero	nonzero	nonzero	nonzero	0
$\mathbf{g}_{02\bar{2}} \bullet \mathbf{b}$	0	nonzero	nonzero	0	nonzero	nonzero	0	nonzero	nonzero	nonzero

179 Inclined faulted loops and stacking faults are known to exhibit repetitious white-black contrast
 180 within the perimeter of the loop when imaged using CTEM two-beam conditions. In those cases,
 181 only one \mathbf{g} vector is activated (be on the Ewald sphere in the reciprocal space) besides the
 182 transmitted beam, and therefore, only one phase factor change, $e^{i\theta}$ resulting in electron beam
 183 interference between the beam diffracted by the perfect crystal planes and the faulted crystal planes.
 184 This interference phenomenon leads to the typical black-white repeating fringe contrast for faulted
 185 loops when imaged using two-beam conditions. However, in the case in our study, because faults
 186 are imaged at an on-zone (low index) condition, all \mathbf{g} s in the imaging plane are activated, with at
 187 least a two-fold degree of symmetry. That means whenever there is an activated \mathbf{g} that causes a
 188 phase factor of $e^{i\theta}$, there is a corresponding activated $-\mathbf{g}$ that causes a phase factor of $e^{-i\theta}$. For a
 189 faulted dislocation loop that is imaged using on-zone STEM, the imaging contrast is a result of the
 190 superimposition from multiple sets of dipoles of black-white and white-black contrast. A full dark
 191 shadow, or shadow contrast, ends up exhibiting the overall contrast of the faulted dislocation loop
 192 when imaged using on-zone STEM-BF. A comprehensive study that systematically demonstrates
 193 this with experimental and simulation work is in Ref. [68].

194 Stacking faults in FCC materials on an inclined plane (either $a/3\{111\}$ or $a/6\{112\}$) when
 195 imaged using two-beam conditions is generally visible on an electron micrograph as a repeating
 196 pattern of parallel fringes running parallel to the intersection between the fault plane and the plane
 197 of the foil. The number of repetitions in the fringe pattern is dependent on the imaging conditions
 198 used [69,70] and stacking fault size. In the case of radiation-induced dislocation loops, the inserted
 199 fault plane is exclusively $a/3\{111\}$ [67,71–73] and therefore, the intersection direction and thus
 200 theoretical fringes direction can be calculated, as provided in Tables 1-3. It is interesting to note

201 that this direction is always along the $\langle 110 \rangle$ family of directions, for any inclined variants of faulted
202 loops under any of the three selected low-index zone axes. Theoretical and experimental details
203 on the formation of stacking fault contrast can be found elsewhere with great thoroughness [69,74].

204 Using the information presented in Tables 1-3, dislocation loop morphology maps at on-zone
205 conditions were constructed and are shown in Figures 2-4 with the corresponding diffraction
206 patterns for zone axes of $[001]$, $[011]$ and $[\bar{1}11]$, respectively. For the elliptical projection of the
207 inclined dislocation loops in the thin foil, their major axis direction is aligned with the intersection
208 line direction, as illustrated in Figure 1. In some cases, two different loop variants can give the
209 same morphology on the projection plane. For example, the $a/3(111)$ and $a/3(\bar{1}\bar{1}1)$ faulted loops
210 in Figure 2 both exhibit elliptical shapes with the identical aspect ratio and the direction of the
211 major axis. Therefore, it is advantageous to use the on-zone STEM method to rapidly determine
212 the total loop density for each family of loop (i.e. perfect or faulted) by using a single on-zone
213 tilting condition, while one is still advised to use the tedious but necessary multiple tilting series
214 to determine the type of each dislocation loop, if needed.

215 Inclined faulted loop shadow contrast arises in the on-zone STEM imaging due to the $\mathbf{g} \bullet \mathbf{R}$
216 invisibility criterion [56,75], as there always exists some if not all excited \mathbf{g} vectors such that $\mathbf{g} \bullet \mathbf{R}$
217 invisibility condition is not satisfied and the shadow contrast is visible. Thus, in most cases, loops
218 showing shadow contrast are identified as faulted loops, and loops without interior shadow contrast
219 are identified as perfect loops due to the lack of inserted faults. However, this rapid method for
220 determining if a loop is faulted based on the observed shadow contrast fails when a faulted loop is
221 in plane and normal to electron traveling direction, i.e., when the in plane $a/3\bar{1}11$ faulted
222 loop is imaged at the on-zone $[\bar{1}11]$ condition. In this case, all \mathbf{g} vectors in the $(\bar{1}11)$ plane get
223 excited, just like imaging conducted at other zone axes such as $[001]$ and $[011]$, but all the excited

224 \mathbf{g} vectors satisfy the invisibility condition of $\mathbf{g} \cdot \mathbf{R} = 0$ because \mathbf{R} is normal to the faulted loop plane
225 and thus to all excited \mathbf{g} vectors. Therefore, the in-plane faulted loop morphology at the on-zone $[1$
226 $11]$ condition was predicted to not exhibit the characteristic interior shadow contrast and is
227 depicted as such in Figure 4.

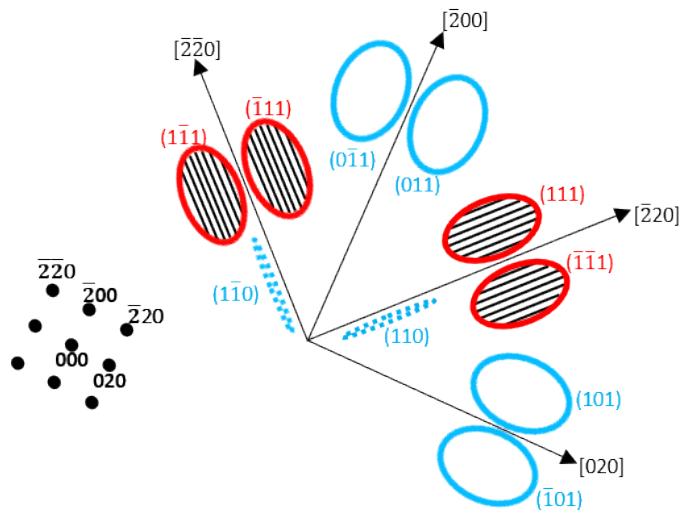


Figure 2. Simulated diffraction pattern and dislocation loop morphology map of FCC based alloys under [001] zone axis without considering $\mathbf{g} \cdot \mathbf{b}$ invisibility criterion. Red loops with inside shadow contrast denote inclined faulted loops, blue elliptical loops without inside shadow contrast denote inclined perfect loops, dotted blue loops perimeters denote edge-on perfect loops. Pre-factors associated with the lattice parameter are omitted for visual clarity.

228

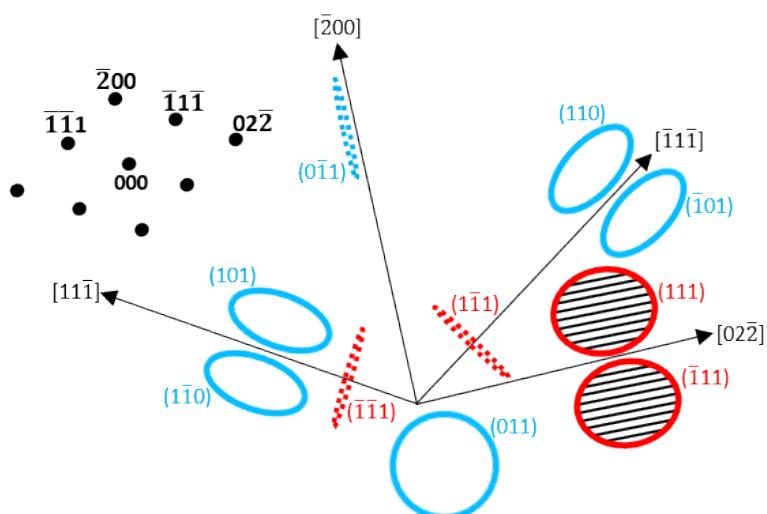


Figure 3. Simulated diffraction pattern and dislocation loop morphology map of FCC based alloys under [011] zone axis without considering $\mathbf{g} \cdot \mathbf{b}$ invisibility criterion. Red loops with inside shadow

contrast denote inclined faulted loops, blue loops without inside shadow contrast denote perfect loops, dotted loop perimeters of either color denote edge-on loops. Pre-factors associated with the lattice parameter are omitted for visual clarity.

229

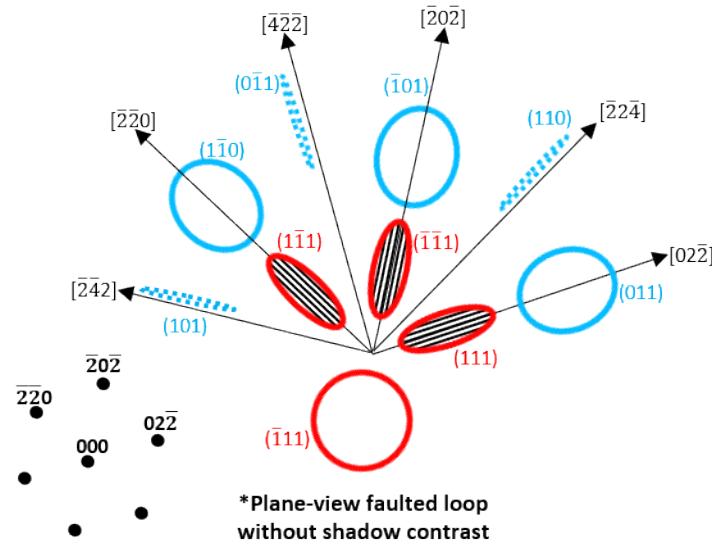


Figure 4. Simulated diffraction pattern and dislocation loop morphology map of FCC based alloys under $\bar{1}11$ zone axis without considering $\mathbf{g} \cdot \mathbf{b}$ invisibility criterion. Red loops with inside shadow contrast denote inclined faulted loops, a red loop without inside shadow contrast denote in-plane plane-view faulted loop, blue loops without inside shadow contrast denote perfect loops, and dotted blue loop perimeters denote edge-on perfect loops. Pre-factors associated with the lattice parameter are omitted for visual clarity.

230

231 In order to confirm the validity of the simulated loop morphology maps in Figures 2-4, cross-
 232 sectional on-zone STEM-BF images were acquired for the irradiated $\text{Ni}_{40}\text{Fe}_{40}\text{Cr}_{20}$ alloy under the
 233 three zone axes of $[001]$, $[011]$ and $\bar{1}11$ as shown in Figures 5-7, respectively. In all three images,
 234 the irradiation direction is from the top of the page, with the damage peak near 900 nm from the
 235 free surface based on ion range calculations [43]. The resulting irradiation damage variation from
 236 top to bottom of the image, image force from the free surface, and the interjected interstitial effect
 237 [76-79] are the primary driving factors for the variances in loop density and type as a function of
 238 distance from the free surfaces. Here, it is noted that both perfect and faulted loop types with
 239 varying sizes are formed under irradiation and observed in Figures 5-7.

240 On-zone [011] and on-zone [$\bar{1}11$] STEM-BF images were taken at the same region of interest
241 to demonstrate the disappearance of shadow contrast in faulted loops when transitioned from an
242 inclined orientation in Figure 6 ([011] zone axis) to an in-plane orientation in Figure 7 ([$\bar{1}11$] zone
243 axis) as indicated by red circles in Figures 6 & 7. Figures 6 & 7 confirm the prediction from the
244 simulated morphology maps where the in-plane loop type in the [$\bar{1}11$] on-zone STEM image does
245 not exhibit the shadow contrast while it does when imaged down the [011] zone axis.

246 The FIB lift outs prepared with EBSD for foils with [001] and [011] orientation make the
247 tilting within STEM to be minimum, resulting in the improved image quality in Figures 5 & 6 with
248 sharp dislocation loop core contrast and low noise level. The image quality in Figure 7
249 corresponding to on-zone [$\bar{1}11$] STEM-BF, however, is reduced compared to Figure 5 and 6 due
250 to the TEM foil being tilted from the nearly normal to the electron beam position on the [011]
251 orientation to the highly inclined [$\bar{1}11$] orientation. The large tilting angle, β , of $\sim 35^\circ$ between the
252 two orientations corresponds to $\sim 46\%$ increase of effective thickness of the foil down the electron
253 penetrating direction, resulting in quite significant beam broadening and spatial resolution
254 reduction, shown in Figure 7, due to multiple electron scatterings in the sample with thickness
255 greater than one electron mean-free-path [80]. The “black spots” also appear in Figure 6, and in
256 Figure 7 with higher frequency, while they are not observed in Figure 5 where the effective
257 thickness is the smallest among the three images. These small features are believed not to be caused
258 by FIB damage, because of the flash polishing that has been conducted to effectively remove the
259 surface damaged layer. These “black spots” features might be just modal contrast indicative of the
260 local structure of the alloy, which arises when the effective thickness is increased. It is expected
261 though, that the image quality should be significantly improved by reducing the apparent thickness
262 effects from excessive sample tilting by preparing samples that are orientated near the exact [$\bar{1}11$]

263 zone axis. An example of such is provided in Figure S2 in the Supplementary Information where
264 another on-zone $[\bar{1}11]$ STEM-BF image is taken at a different sample area with reduced thickness
265 showing improved image quality. Regardless, the variance in image quality between Figures 6 &
266 7 highlights a distinct advantage of STEM where thickness variations are less of an impact on the
267 signal-to-noise collection compared to CTEM [50].

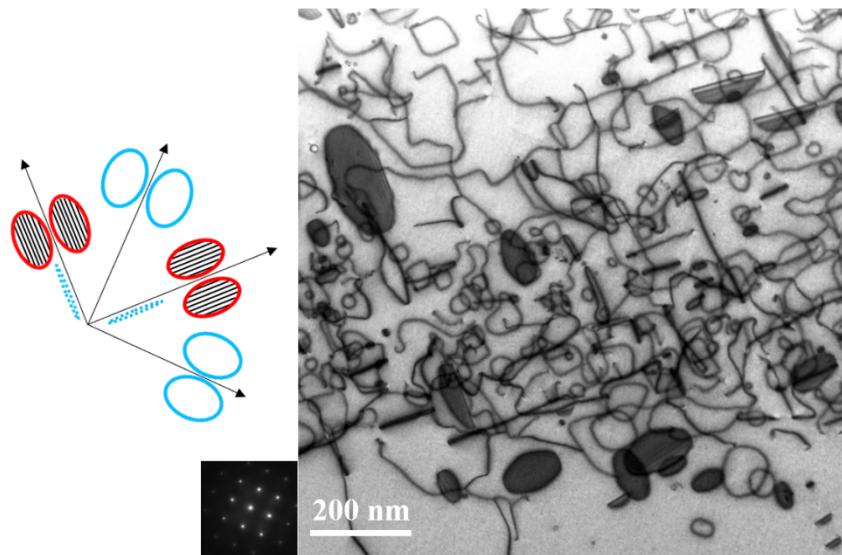


Figure 5. Cross-sectional on-zone $[001]$ STEM-BF image of irradiated $\text{Ni}_{40}\text{Fe}_{40}\text{Cr}_{20}$ with correctly oriented simulated morphology map and experimental diffraction pattern. For labelling of crystallographic directions, please refer to Figure 2.

268



Figure 6. Cross-sectional on-zone [011] STEM-BF image of irradiated $\text{Ni}_{40}\text{Fe}_{40}\text{Cr}_{20}$ with correctly oriented simulated morphology map and experimental diffraction pattern. For labelling of crystallographic directions, please refer to Figure 3. Note, that two inclined faulted loops showing shadow contrast are highlighted using red circles, while the contrast disappears in Figure 7 when these two loops are in-plane.

269

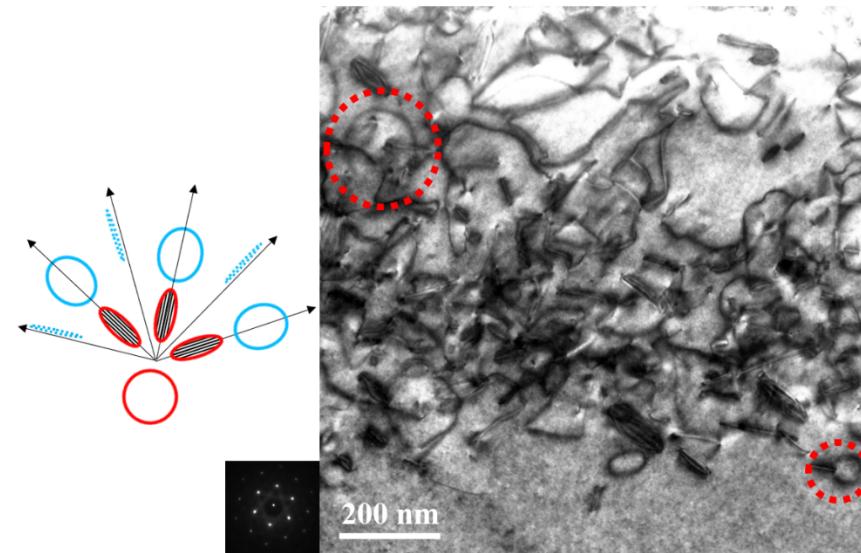


Figure 7. Cross-sectional on-zone [111] STEM-BF image of irradiated $\text{Ni}_{40}\text{Fe}_{40}\text{Cr}_{20}$ with correctly oriented simulated morphology map and experimental diffraction pattern. For labelling of crystallographic directions, please refer to Figure 4. Note, that in-plane faulted loops without shadow contrast are highlighted using red circles, while the contrast appears in Figure 6 when these two loops are inclined.

270

271 It appears that faulted loop morphology in the simulated maps and STEM micrographs are
272 very consistent, in terms of the aspect ratio and the major axis direction in the projected elliptical
273 loops. For example, in Figure 5, the major axes of faulted loops projection under zone axis of [001]
274 are along the $[\bar{2}20]$ and $[\bar{2}\bar{2}0]$ directions, which are normal to each other. Perfect experimental
275 loops morphology in the STEM image, however, are not always exactly directly replicated via the
276 simulated morphology maps. Some dislocation loops do not appear rounded, but rather, faceted in
277 either hexagonal or rhombus shape, depending on the loop type and size [81] [46]. Some perfect
278 loops open up to form entangled dislocation networks upon growth and interaction with other line
279 dislocation or dislocation loops during irradiation [43] [82]. Both factors could contribute to non-
280 elliptical projections from non-circular loop shape, which was initially assumed when the loop
281 morphology map was constructed. Nevertheless, the STEM-BF technique still enables imaging of
282 these complex morphologies. The edge-on perfect loops generally match the simulated and
283 expected morphologies, indicating their habit plane is consistent with the simulated loop map. For
284 example, in Figure 5, edge-on perfect loops lying on (110) and $(1\bar{1}0)$ habit planes are observed to
285 match the simulated loop morphology map. This observation indicates that faulted loops tend to
286 preserve the circular shape on their $\{111\}$ habit plane during irradiation, resulting in their elliptical
287 projection more rigidly satisfying the loop morphology maps in Figures 2-4. Perfect loops, on the
288 other hand, present a higher degree of freedoms for their morphology, and some discrepancies are
289 observed between the STEM images and the loop morphology maps.

290 In principle, all three low index zone axes allow one to image all dislocation loops in the on-
291 zone STEM-BF mode with the aid of the corresponding rotation corrected diffraction pattern
292 according to the morphology maps presented in Figures 2-4. However, due to the complications
293 under certain imaging conditions discussed before, a preferred zone axis used for STEM-BF

294 imaging can be suggested. The criteria of choosing the optimal zone axis to image dislocation
295 loops should be aligned with: (i) relative ease to observe loop morphology, and (ii) straightforward
296 differentiation of loop family (perfect vs. faulted) based on observed loop interior contrast and
297 morphology. Based on those, it is highly desired that the choice of the zone axis would allow all
298 faulted loops to be inclined to provide direct imaging of the shadow contrast, rather than some
299 variants being either edge-on or in plane-view.

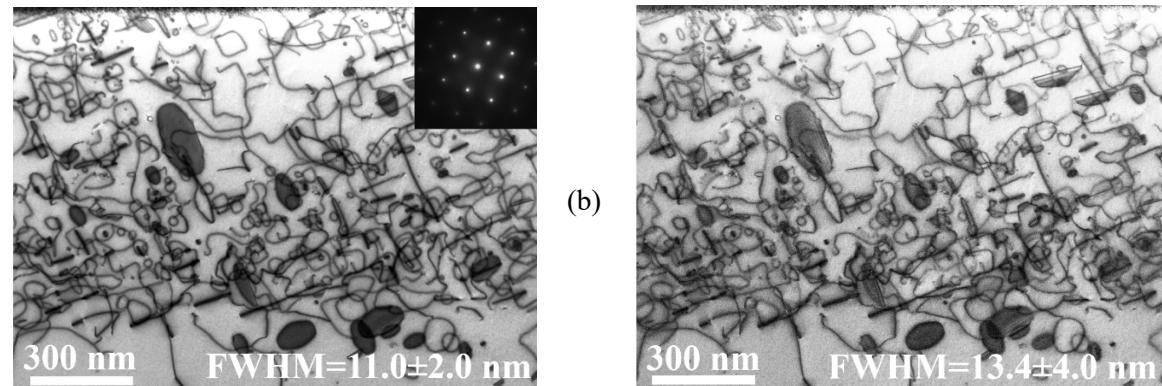
300 The loop morphology map of the [001] zone axis in Figure 2 shows that all four variants of
301 faulted loops are non-edge-on with an aspect ratio of the projected ellipses of 1:0.577. They
302 elongate along the $[\bar{2}\bar{2}0]$ and $[\bar{2}20]$ according to the diffraction pattern. The STEM-BF image in
303 Figure 5 exhibits the matching of the faulted loop morphology, which makes it straightforward to
304 identify and count with accuracy. The [011] zone axis is inferior compared to the [001] zone axis
305 as shown in Figure 3, even though there are no plane-view faulted loops. There are two variants
306 of edge-on faulted loops, $[1\bar{1}1]$ and $[\bar{1}\bar{1}1]$, which are 70.52° apart, together with one variant of
307 edge-on perfect loops $[0\bar{1}1]$ having 35.26° with both edge-on loop variants. The identification of
308 the loop types from the [011] STEM-BF image is still achievable with the aid of the rotation
309 corrected diffraction pattern, but not as convenient or unambiguous in the case of [001] zone.
310 Lastly the $[\bar{1}11]$ zone appears to be the least ideal choice. Shown in Figure 4 is the simulated loop
311 morphology map of $[\bar{1}11]$. It is shown that the aspect ratio of the faulted loops is 1:0.33, which is
312 quite close to edge-on loops in the image that could cause additional confusion and errors. Most
313 importantly, one variant of plane-view faulted loops exists under this imaging condition, where
314 they do not exhibit shadow contrast, and therefore causes additional confusion for its
315 differentiation with inclined perfect loops. The result of the above analysis is the finding that

316 STEM-BF imaging down the [001] zone axis is suggested as the preferred orientation over any
317 other low-index major zone axes.

318 It is noted that the proposed on-zone STEM-BF imaging technique for dislocation loop
319 imaging heavily utilizes the observed loop morphology as well as the visibility of the shadow
320 contrast from inclined faulted loops, both of which require loop size to be beyond a certain
321 threshold so that one can determine these morphological features without ambiguity from the
322 STEM micrographs. Here, the threshold was found near 10 nm. Although loops below this
323 threshold cannot be unambiguously identified using the recommended techniques, these small
324 dislocation loops are not typically considered as strong obstacles to dislocation motion [83],
325 especially when their density is lower than the dislocation loops with greater size. The dislocation
326 loop induced hardening and embrittlement under irradiation is a result of a balanced combination
327 of density, size and barrier strength according to the dispersed barrier hardening model [84]. The
328 weak barrier characteristics of these small dislocation loops [83] mean they contribute significantly
329 less to radiation hardening compared to larger dislocation loops in irradiated FCC alloys. Therefore,
330 the proposed methodology can provide insights on microstructure-property relationships whenever
331 a significant population of dislocation loops above the given threshold are present within a given
332 material. Under the circumstances where it is expected that small dislocation loops are of great
333 significance to a study, it is recommended to use the two-beam conditions and Tables 1-3 for
334 identifying loop types by examining the visibility of dislocation loops. It should be noted that the
335 two-beam conditions can still be performed using the STEM-BF techniques which will reduce
336 erroneous background contribution compared to CTEM techniques [56,68].

337 Based on the criteria above and discussion regarding Figures 2-4 and Figures 5-7, the choice
338 of [001] zone STEM-BF imaging is suggested as the preferred orientation among all three studied

339 zone axes, as it meets all desired criteria including the observation that all faulted loops can exhibit
340 the shadow contrast in the STEM-BF image. Note that the recommendation must be taken at the
341 discretion of the research, as different alloys, irradiation conditions, etc. could alter the
342 morphology of the loops and thus our recommendations should not be taken blindly for vastly
343 different conditional domains.


344 3.2 STEM (-BF and -ADF) Collection Angle Effects

345 Besides the specimen quality, which can include sample thickness discussed in Section 3.1
346 and FIB damage removal via flash-polishing, etc., there are multiple factors and conditions using
347 a STEM microscope that can affect imaging contrast and quality as well. Here, we focus on
348 commonly manipulated imaging conditions with the first being the alteration of manufacturer
349 indicated CL and selection of STEM detector. Note that, alteration of the CL will change the
350 projected angles onto the STEM detectors and thus alters the collection angle of the system. Figure
351 8 shows three on-zone [001] images: STEM-BF CL 98 mm, STEM-BF CL 330mm, and STEM-
352 ADF CL 98mm with the collection angle of 0-8 mrad, 0-3 mrad, and 22-52 mrad respectively.
353 Imaging collection conditions of pixel dwell time of 12.73 μ s and pixel counts of 2048 by 2048
354 were kept identical between images in Figure 8. As can be seen, the image contrast and quality
355 vary significantly when the collection angle is changed.

356 Intuitively from STEM-BF images in Figures 8(a) and (b), with decreasing CL and higher
357 collection angle, the signal-to-noise ratio is significantly improved, and the shadowed diffraction
358 contrast in faulted loops increases, because more signal counts including transmitted electrons and
359 low angle diffracted electrons get collected by the bright-field detector. The signal level of STEM-
360 ADF image in Figure 8(c) is significantly lower than the STEM-BF images as the ADF detector
361 only captures portions of the diffracted beam. Meanwhile, more details are observed in the STEM-

362 ADF image, especially when there are features overlapping, indicating a better image resolution
363 compared to the two STEM-BF images.

364 All these observations are confirmed by conducting line profiles across the long axis of perfect
365 loops using ImageJ [85,86], with a representative line profile shown in Figure 8(d), where the
366 signal counts in relative units is plotted as a function of the position of the scan. The full-width-
367 half-max (FWHM) at the perfect loop core have been measured to be 10.95 ± 1.98 nm, 13.39 ± 3.96
368 nm and 6.91 ± 1.93 nm, with the signal-to-noise ratio measured at the interior region (“featureless”)
369 of the loops to be 30, 16, and 3 (unitless, e.g. I/I_0) for the three profiles obtained from Figure 8(a),
370 (b) and (c), respectively. The quantitative results verify that STEM-ADF indeed has the highest
371 diffraction contrast resolution, while STEM-BF with a CL of 98 mm provides the best image
372 quality in terms of the signal-to-noise ratio.

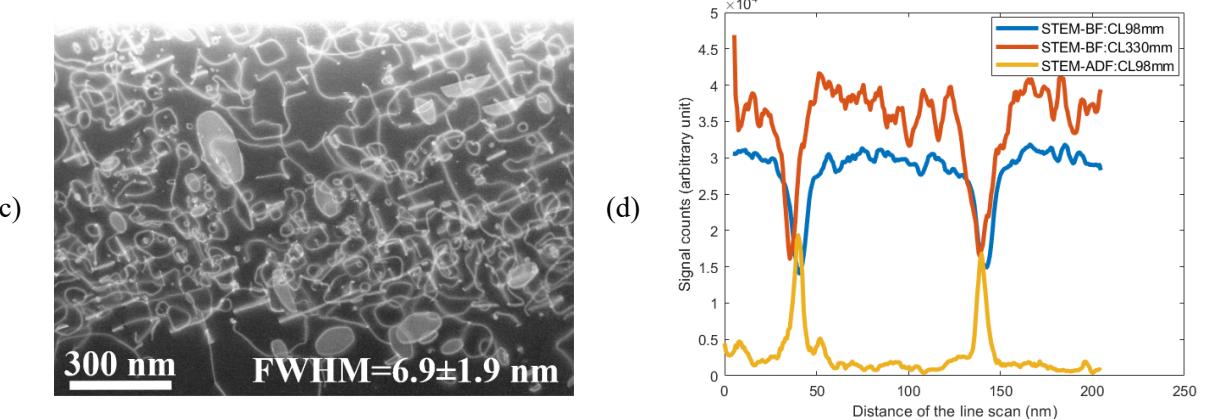
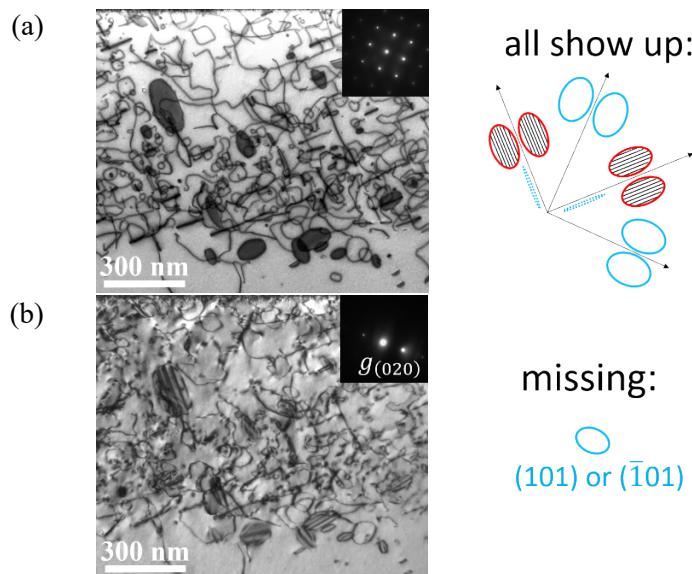


Figure 8. Same area of the on-zone [001] at different conditions: (a) STEM-BF with CL of 98 mm, (b) STEM-BF with CL of 330 mm, and (c) STEM-ADF with CL of 98 mm. The collection angles are 0-8, 0-3, and 22-52 mrad, respectively. (d) Plot profile generated from a line across the long axis of an identical perfect loop in (a-c). The FWHM of perfect dislocation loop core in (d) is measured and labelled in (a), (b) and (c) respectively.

373


374 Li et al. [87] and Anderson et al. [88] have evaluated the variances of quantification of
 375 microstructural features associated with hand labelling images, which can be 10-20% difference
 376 across researchers. Changes in loop size based on contrast resolution are minimum compared to
 377 other errors such as hand labelling and human interpretation of contrast. Therefore, although
 378 STEM-ADF provides better resolution, it will not significantly impact the overall error of the
 379 quantification technique used as human-based errors overwhelm the systematic experimental
 380 errors. For the purpose of dislocation loop imaging in the current study, STEM-BF with CL of 98
 381 mm is sufficient, with the aid of STEM-ADF image to double check potential overlapping features.
 382 STEM, again, has a distinct advantage compared to CTEM as simultaneous acquisition of BF and
 383 ADF signals is routine with most modern STEM instruments. It is noted that all these conditions
 384 are affected by various factors including sample thickness, specimen surface quality, STEM
 385 accelerating voltage, and so on. The optimal combination of the STEM settings, therefore, may
 386 change depending on a given researcher's situations.

387 3.3 CTEM-BF Two-Beam Conditions Imaging

388 Figure 9 presents the on-zone [001] STEM-BF and the CTEM-BF kinematical two-beam
389 condition images near the [001] zone axis using various g vectors of (020) , $(\bar{2}20)$, $(\bar{2}00)$, and $(\bar{2}\bar{2}0)$
390 respectively, taken at the same sample area to correlate and compare. As can be seen, the
391 traditional loop Burgers vector analysis using CTEM two-beam conditions based on the invisibility
392 criterion is consistent with the on-zone STEM-BF imaging, where consistency across these two
393 methods validates the feasibility of the proposed on-zone STEM method.

394 The advantage of the STEM method is demonstrated in Figure 9a, where all dislocation loops
395 are imaged within one micrograph using a single tilting condition, which also has the benefits of
396 sharp imaging contrast and improved signal-to-noise ratio compared to CTEM, shown in Figures
397 9b-e.

398

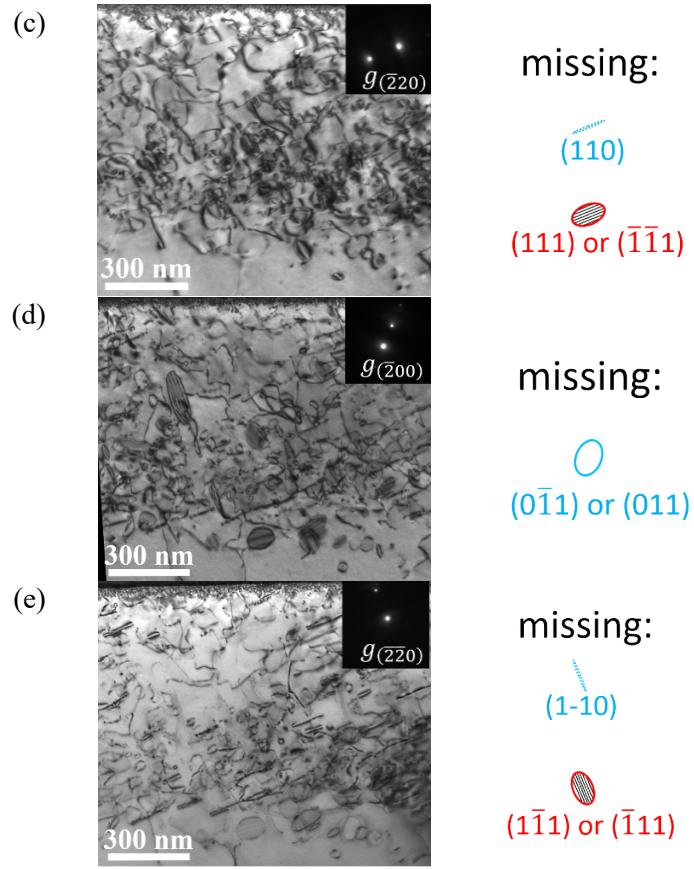


Figure 9. Correlated (a) on-zone [001] STEM-BF, and multiple CTEM-BF kinematical two-beam condition images near [001] zone axis using multiple \mathbf{g} vectors of (b) (020), (c) ($\bar{2}20$), (d) ($\bar{2}00$), and (e) ($\bar{2}\bar{2}0$). Note that the missing dislocation loop(s) in (b)~(e) due to the $\mathbf{g} \bullet \mathbf{b}$ invisibility criterion are provided in Table 1, and the complete labeling for all loop variants are shown in Figure 2.

399

400 The amount of work involved during the full Burgers vector analysis using multiple- \mathbf{g} -vector
 401 two-beam condition imaging and invisibility criterion is extremely intensive. On the contrary, the
 402 on-zone STEM-BF imaging technique is simplified significantly, with only a single on-zone tilting
 403 condition required to enable the exhibition of all dislocation loop types and variants. In addition,
 404 the shadow contrast is very pronounced in [001] on-zone STEM-BF with much improved signal-
 405 to-noise ratio as compared to the CTEM two-beam condition images, making it easier to identify
 406 the faulted loops using the proposed STEM method.

407 3.4 CTEM-DF Rel-Rod Imaging

408 Figure 10 presents the correlated on-zone [011] STEM-BF and the Rel-Rod CTEM-DF where
409 $\mathbf{g}_{\bar{3}\bar{1}\bar{1}}$ and $\mathbf{g}_{\bar{3}\bar{1}\bar{1}}$ vectors near [011] zone are used for imaging two faulted loop variants of $a/3(\bar{1}\bar{1}\bar{1})$
410 and $a/3(1\bar{1}1)$ that are nearly edge-on, respectively. As can be seen, the on-zone [011] STEM-BF
411 image in Figure 10 (a) is consistent with the CTEM-DF Rel-Rod method in Figures 10 (b) and (c)
412 for imaging two edge-on variants of faulted dislocation loops.

413 However, neither the other two inclined variants of faulted loops, nor any perfect loops can
414 be imaged using the Rel-Rod method, while it can be seen in Figure 10 (a) that a significant fraction
415 of dislocation loops in the irradiated microstructure are of the perfect family. Additionally, faulted
416 loop anisotropy is clearly observed: the quantities (i) of the sum of the two inclined variants of
417 $a/3(111)$ and $a/3(\bar{1}\bar{1}1)$ faulted loops, (ii) of one nearly edge-on variant of $a/3(\bar{1}\bar{1}1)$ faulted loops,
418 and (iii) of the other nearly edge-on variant of $a/3(1\bar{1}1)$ faulted loops can be counted within the
419 area of interest from Figures 10 (a), (b) and (c) as 14, 12 and 13, respectively. In this system and
420 region of interest, the faulted loops tend to preferentially nucleate on the $(\bar{1}\bar{1}1)$ and $(1\bar{1}1)$ planes
421 over the (111) or $(\bar{1}11)$ planes, and this observation might be attributed to the momentum carried
422 by the incident ions that cause the cascade and displacement. This hypothesis needs more detailed
423 studies to verify, and the loop anisotropy is not the scope of the current study.

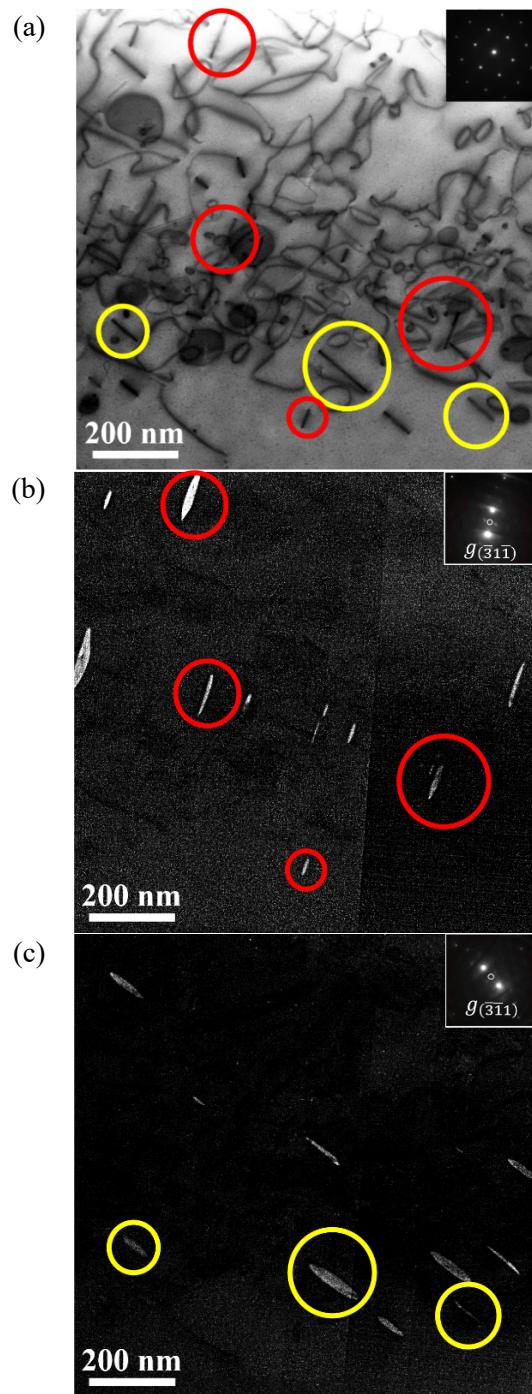


Figure 10. Correlated (a) on-zone [011] STEM-BF, and Rel-Rod CTEM-DF using (b) $\mathbf{g}_{\bar{3}1\bar{1}}$ and (c) $\mathbf{g}_{\bar{3}\bar{1}\bar{1}}$ for imaging $a/3(\bar{1}\bar{1}1)$ and $a/3(1\bar{1}1)$ faulted loops respectively. The slight tilting of the nearly edge-on faulted loops near the [011] zone axis allows for the illumination of the contrast because of the inserted stacking fault plane. Note that the white circles in the diffraction pattern in (b) and (c) denote the position of the inserted objective aperture to obtain the Rel-Rod DF images.

425 In summary, although the Rel-Rod technique has the advantage of moderately convenient
426 sample tilting and the capability of capturing high density of the edge-on faulted loops with good
427 sensitivity, the serious shortcomings have been demonstrated here when one tries to understand
428 the full picture of loop evolution involving the necessary imaging of perfect loops, non-edge-on
429 faulted loops, and dislocation lines in FCC materials under irradiation. The on-zone STEM-BF
430 method would allow the observation and identification of both families of loops with all variants
431 using the correlated diffraction pattern, in addition to the advantage of the convenience from a
432 single tilting condition required. Nevertheless, all the techniques demonstrated are effectively
433 coupled and complementary, and thus together provide a toolbox for the nuclear materials
434 microscopists. Due to the ease of use and interpretation of the developed on-zone STEM-BF
435 method at [001] zone axis in this work, this technique is likely to be the first “tool” that should be
436 used for imaging radiation induced dislocation loops in FCC materials.

437 **4. Conclusion**

438 On-zone STEM-based imaging has emerged as an efficient and effective technique for
439 imaging dislocation loops in BCC-based alloys. Here, the technique has been extended to FCC
440 material systems with the optimal imaging conditions identified as on-zone [001] STEM-BF
441 imaging coupled with simultaneous STEM-ADF imaging. Under this imaging condition, not only
442 the signal-to-noise ratio is improved, but more importantly, all four faulted loop variants are
443 inclined in the foil and can be identified by their shadow contrast generated in STEM-BF. STEM-
444 ADF can serve as an additional check during feature overlapping and thus improve the counting
445 precision. On-zone [111] should be avoided without two-beam tilting conditions to confirm loop
446 family or type, because of the lack of shadow contrast for the in-plane faulted loop in the STEM-
447 BF image. The loop morphology obtained using CTEM-BF is the same as STEM-BF, while the

448 dislocation loop core strain field of CTEM-BF image is greater and the shadow contrast of faulted
449 loops are reduced, which hinders accurate identification of loop type and the measurement of loop
450 size. On-zone STEM-BF has also been confirmed to be an accurate tool to identify faulted loops
451 at [011] zone by comparing to the CTEM dark-field Rel-Rod imaging without the assumption of
452 equal fraction of faulted loop variants. Therefore, on-zone [001] STEM-BF imaging is advised as
453 the preferred methodology for dislocation loop imaging in irradiated FCC-based materials.

454 **Acknowledgements**

455 Materials synthesis, ion irradiations, and preliminary characterization of irradiated material
456 was supported as part of the Energy Dissipation to Defect Evolution (EDDE) Center, an Energy
457 Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy
458 Sciences under contract number DE-AC05-00OR22725. Detailed characterization and manuscript
459 preparation were supported by the Advanced Fuels Campaign - Nuclear Technology Research and
460 Development program by the US Department of Energy, Office of Nuclear Energy under sub-
461 contract 4000175183 through Oak Ridge National Laboratory. Ion beam work was performed at
462 the UT ORNL Ion Beam Materials Laboratory located on the campus of the University of
463 Tennessee-Knoxville. FIB and S/TEM analysis were conducted in the Michigan Center for
464 Material Characterization of the University of Michigan-Ann Arbor.

465 Pengyuan Xiu would like to appreciate Dr. Gihan Velisa for performing the ion radiation.
466 Pengyuan Xiu would also like to acknowledge the helpful discussions of various S/C-TEM
467 imaging techniques with: Dr. Kai Sun, Dr. Miao Song, Dr. Tao Ma and Dr. Robert Hovden at
468 University of Michigan; Dr. Kelvin Xie at Texas A&M University; Dr. Lingfeng He and Dr. Jian
469 Gan at Idaho National Laboratory; and Dr. Patrick J Phillips at JEOL USA.

470

471

472

473 **References**

474 [1] T. Diaz De La Rubla, H.M. Zblb, T.A. Khralshl, B.D. Wirth, M. Victoria, M.J. Caturia,
475 Multiscale modelling of plastic flow localization in irradiated materials, *Nature*. (2000).
476 <https://doi.org/10.1038/35022544>.

477 [2] D.J. Edwards, E.P. Simonen, F.A. Garner, L.R. Greenwood, B.M. Oliver, S.M.
478 Bruemmer, Influence of irradiation temperature and dose gradients on the microstructural
479 evolution in neutron-irradiated 316SS, *J. Nucl. Mater.* (2003).
480 [https://doi.org/10.1016/S0022-3115\(03\)00003-5](https://doi.org/10.1016/S0022-3115(03)00003-5).

481 [3] P.G. Tipping, Understanding and mitigating ageing in nuclear power plants, Woodhead
482 Publishing Limited, 2010. <https://doi.org/10.1533/9781845699956>.

483 [4] D. Rodney, Molecular dynamics simulation of screw dislocations interacting with
484 interstitial frank loops in a model FCC crystal, *Acta Mater.* (2004).
485 <https://doi.org/10.1016/j.actamat.2003.09.044>.

486 [5] T. Nogaret, C. Robertson, D. Rodney, Atomic-scale plasticity in the presence of Frank
487 loops, *Philos. Mag.* (2007). <https://doi.org/10.1080/14786430601011497>.

488 [6] D.J. Bacon, Y.N. Ossetsky, D. Rodney, Chapter 88 Dislocation–Obstacle Interactions at
489 the Atomic Level, in: *Dislocations in Solids*, Elsevier, 2009: pp. 1–90.
490 [https://doi.org/10.1016/S1572-4859\(09\)01501-0](https://doi.org/10.1016/S1572-4859(09)01501-0).

491 [7] L.M. Clarebrough, R.L. Segall, M.H. Loretto, Faulted defects in quenched copper and
492 silver, *Philos. Mag.* (1966). <https://doi.org/10.1080/14786436608213542>.

493 [8] M.L. Jenkins, H. Fukushima, M.A. Kirk, On the determination of loop nature in the TEM,
494 in: *Mater. Res. Soc. Symp. - Proc.*, 1997.

495 [9] R.M.J. Cotterill, R.L. Segall, The effect of quenching history, quenching temperature and
496 trace impurities on vacancy clusters in aluminium and gold, *Philos. Mag.* (1963).
497 <https://doi.org/10.1080/14786436308207339>.

498 [10] P.S. Dobson, P.J. Goodhew, R.E. Smallman, Climb kinetics of dislocation loops in
499 aluminium, *Philos. Mag.* (1967). <https://doi.org/10.1080/14786436708229253>.

500 [11] W.J. Yang, R.A. Dodd, G.L. Kulcinski, Electron irradiation damage in high purity
501 aluminium, *J. Nucl. Mater.* (1977). [https://doi.org/10.1016/0022-3115\(77\)90019-8](https://doi.org/10.1016/0022-3115(77)90019-8).

502 [12] Q. Chen, I. Mukouda, Y. Shimomura, Formation of voids and faulted loops in quenched
503 pure aluminum and aluminum dilute (Cu, Si, Mg) alloys, *Bull. Fac. Eng. Hiroshima Univ.*

504 Fac. Eng. Hiroshima Univ. (1998).

505 [13] Y. Satoh, T. Yoshiie, H. Mori, M. Kiritani, Formation of stacking-fault tetrahedra in
506 aluminum irradiated with high-energy particles at low-temperatures, Phys. Rev. B -
507 Condens. Matter Mater. Phys. (2004). <https://doi.org/10.1103/PhysRevB.69.094108>.

508 [14] S.B. Fisher, Electron radiation damage in copper in the high voltage electron microscope,
509 Radiat. Eff. 7 (1971) 173–177. <https://doi.org/10.1080/00337577108230985>.

510 [15] A.Y. Stathopoulos, C.A. English, B.L. Eyre, P.B. Hirsch, The effect of alloying additions
511 on collision cascades in heavy-ion irradiated copper solid solutions, Philos. Mag. A Phys.
512 Condens. Matter, Struct. Defects Mech. Prop. (1981).
513 <https://doi.org/10.1080/01418618108239535>.

514 [16] H.R. Brager, J.L. Straalsund, Defect development in neutron irradiated type 316 stainless
515 steel, J. Nucl. Mater. (1973). [https://doi.org/10.1016/0022-3115\(73\)90131-1](https://doi.org/10.1016/0022-3115(73)90131-1).

516 [17] N. Hashimoto, E. Wakai, J.P. Robertson, Relationship between hardening and damage
517 structure in austenitic stainless steel 316LN irradiated at low temperature in the HFIR, J.
518 Nucl. Mater. (1999). [https://doi.org/10.1016/S0022-3115\(99\)00009-4](https://doi.org/10.1016/S0022-3115(99)00009-4).

519 [18] N. Hashimoto, S.J. Zinkle, A.F. Rowcliffe, J.P. Robertson, S. Jitsukawa, Deformation
520 mechanisms in 316 stainless steel irradiated at 60 °C and 330 °C, J. Nucl. Mater. (2000).
521 [https://doi.org/10.1016/S0022-3115\(00\)00087-8](https://doi.org/10.1016/S0022-3115(00)00087-8).

522 [19] Z. Jiao, J.T. Busby, G.S. Was, Deformation microstructure of proton-irradiated stainless
523 steels, J. Nucl. Mater. (2007). <https://doi.org/10.1016/j.jnucmat.2006.12.012>.

524 [20] M.N. Gussev, K.G. Field, J.T. Busby, Deformation localization and dislocation channel
525 dynamics in neutron-irradiated austenitic stainless steels, J. Nucl. Mater. (2015).
526 <https://doi.org/10.1016/j.jnucmat.2015.02.008>.

527 [21] K.G. Field, Y. Yang, T.R. Allen, J.T. Busby, Defect sink characteristics of specific grain
528 boundary types in 304 stainless steels under high dose neutron environments, Acta Mater.
529 (2015). <https://doi.org/10.1016/j.actamat.2015.01.064>.

530 [22] X. Liu, J.G. Gigax, J.D. Poplawsky, W. Guo, H. Kim, L. Shao, F.A. Garner, J.F. Stubbins,
531 Radiation response of a Fe–20Cr–25Ni austenitic stainless steel under Fe2+ irradiation at
532 500 °C, Materialia. (2020). <https://doi.org/10.1016/j.mtla.2019.100542>.

533 [23] D.J. Mazey, J.A. Hudson, Observation of large faulted interstitial loops in proton-
534 irradiated nickel, J. Nucl. Mater. (1970). [https://doi.org/10.1016/0022-3115\(70\)90177-7](https://doi.org/10.1016/0022-3115(70)90177-7).

535 [24] D.I.R. Norris, Dislocation loop growth in an electron irradiated thin foil, Philos. Mag.
536 (1970). <https://doi.org/10.1080/14786437008226935>.

537 [25] S.A. Briggs, C.M. Barr, J. Pakarinen, M. Mamivand, K. Hattar, D.D. Morgan, M. Taheri,
538 K. Sridharan, Observations of defect structure evolution in proton and Ni ion irradiated
539 Ni-Cr binary alloys, J. Nucl. Mater. (2016).
540 <https://doi.org/10.1016/j.jnucmat.2016.06.046>.

541 [26] C. Lu, T. Yang, L. Niu, Q. Peng, K. Jin, M.L. Crespillo, G. Velisa, H. Xue, F. Zhang, P.

542 Xiu, Y. Zhang, F. Gao, H. Bei, W.J. Weber, L. Wang, Interstitial migration behavior and
543 defect evolution in ion irradiated pure nickel and Ni-xFe binary alloys, *J. Nucl. Mater.*
544 (2018). <https://doi.org/10.1016/j.jnucmat.2018.07.006>.

545 [27] T. ni Yang, C. Lu, G. Velisa, K. Jin, P. Xiu, M.L. Crespillo, Y. Zhang, H. Bei, L. Wang,
546 Effect of alloying elements on defect evolution in Ni-20X binary alloys, *Acta Mater.*
547 (2018). <https://doi.org/10.1016/j.actamat.2018.03.054>.

548 [28] M. Song, C.R. Lear, C.M. Parish, M. Wang, G.S. Was, Radiation tolerance of commercial
549 and advanced alloys for core internals: a comprehensive microstructural characterization,
550 *J. Nucl. Mater.* (2018). <https://doi.org/10.1016/j.jnucmat.2018.08.035>.

551 [29] K. Ma, B. Décamps, A. Fraczkiewicz, F. Prima, M. Loyer-Prost, Drastic influence of
552 micro-alloying on Frank loop nature in Ni and Ni-based model alloys, *Mater. Res. Lett.*
553 (2020). <https://doi.org/10.1080/21663831.2020.1741042>.

554 [30] L.J. Chen, A.J. Ardell, The observation of multiple-layer loops in nickel base alloys under
555 ion bombardment, *Phys. Status Solidi.* (1976). <https://doi.org/10.1002/pssa.2210340232>.

556 [31] H. Ro, T.E. Mitchell, Effects of electron irradiation on precipitation in Ni-Al alloys,
557 *Metall. Trans. A.* 9 (1978) 1749–1760. <https://doi.org/10.1007/BF02663404>.

558 [32] K. Hamada, S. Kojima, Y. Ogasawara, T. Yoshiie, M. Kiritani, Role of solute atoms on
559 microstructural evolution in neutron irradiated nickel, *J. Nucl. Mater.* (1994).
560 [https://doi.org/10.1016/0022-3115\(94\)90070-1](https://doi.org/10.1016/0022-3115(94)90070-1).

561 [33] B.H. Sencer, G.M. Bond, F.A. Garner, M.L. Hamilton, B.M. Oliver, L.E. Thomas, S.A.
562 Maloy, W.F. Sommer, M.R. James, P.D. Ferguson, Microstructural evolution of Alloy
563 718 at high helium and hydrogen generation rates during irradiation with 600-800 MeV
564 protons, *J. Nucl. Mater.* (2000). [https://doi.org/10.1016/S0022-3115\(00\)00308-1](https://doi.org/10.1016/S0022-3115(00)00308-1).

565 [34] N. Hashimoto, J.D. Hunn, T.S. Byun, L.K. Mansur, Microstructural analysis of ion-
566 irradiation-induced hardening in inconel 718, in: *J. Nucl. Mater.*, 2003.
567 [https://doi.org/10.1016/S0022-3115\(03\)00013-8](https://doi.org/10.1016/S0022-3115(03)00013-8).

568 [35] S.I. Porollo, A.M. Dvoriashin, Y. V. Konobeev, F.A. Garner, Microstructure and swelling
569 of neutron irradiated nickel and binary nickel alloys, *J. Nucl. Mater.* (2013).
570 <https://doi.org/10.1016/j.jnucmat.2013.05.019>.

571 [36] H.K. Zhang, Z. Yao, C. Judge, M. Griffiths, Microstructural evolution of CANDU spacer
572 material Inconel X-750 under in situ ion irradiation, *J. Nucl. Mater.* (2013).
573 <https://doi.org/10.1016/j.jnucmat.2013.06.034>.

574 [37] H.K. Zhang, Z. Yao, G. Morin, M. Griffiths, TEM characterization of in-reactor neutron
575 irradiated CANDU spacer material Inconel X-750, *J. Nucl. Mater.* (2014).
576 <https://doi.org/10.1016/j.jnucmat.2014.03.043>.

577 [38] M.R. He, S. Wang, K. Jin, H. Bei, K. Yasuda, S. Matsumura, K. Higashida, I.M.
578 Robertson, Enhanced damage resistance and novel defect structure of CrFeCoNi under in
579 situ electron irradiation, *Scr. Mater.* (2016).
580 <https://doi.org/10.1016/j.scriptamat.2016.07.023>.

581 [39] C. Lu, T. Yang, K. Jin, N. Gao, P. Xiu, Y. Zhang, F. Gao, H. Bei, W.J. Weber, K. Sun, Y.
582 Dong, L. Wang, Radiation-induced segregation on defect clusters in single-phase
583 concentrated solid-solution alloys, *Acta Mater.* (2017).
584 <https://doi.org/10.1016/j.actamat.2017.01.019>.

585 [40] S. Shi, M.R. He, K. Jin, H. Bei, I.M. Robertson, Evolution of ion damage at 773K in Ni-
586 containing concentrated solid-solution alloys, *J. Nucl. Mater.* (2018).
587 <https://doi.org/10.1016/j.jnucmat.2018.01.015>.

588 [41] D. Chen, Y. Tong, J. Wang, B. Han, Y.L. Zhao, F. He, J.J. Kai, Microstructural response
589 of He⁺ irradiated FeCoNiCrTi0.2 high-entropy alloy, *J. Nucl. Mater.* (2018).
590 <https://doi.org/10.1016/j.jnucmat.2018.08.006>.

591 [42] C. Lu, T.N. Yang, K. Jin, G. Velisa, P. Xiu, Q. Peng, F. Gao, Y. Zhang, H. Bei, W.J.
592 Weber, L. Wang, Irradiation effects of medium-entropy alloy NiCoCr with and without
593 pre-indentation, *J. Nucl. Mater.* (2019). <https://doi.org/10.1016/j.jnucmat.2019.06.020>.

594 [43] P. Xiu, Y.N. Ossetsky, L. Jiang, G. Velisa, Y. Tong, H. Bei, W.J. Weber, Y. Zhang, L.
595 Wang, Dislocation loop evolution and radiation hardening in nickel-based concentrated
596 solid solution alloys, *J. Nucl. Mater.* 538 (2020) 152247.
597 <https://doi.org/10.1016/j.jnucmat.2020.152247>.

598 [44] T. Yang, W. Guo, J.D. Poplawsky, D. Li, L. Wang, Y. Li, W. Hu, M.L. Crespillo, Z. Yan,
599 Y. Zhang, Y. Wang, S.J. Zinkle, Structural damage and phase stability of Al0.3CoCrFeNi
600 high entropy alloy under high temperature ion irradiation, *Acta Mater.* (2020).
601 <https://doi.org/10.1016/j.actamat.2020.01.060>.

602 [45] Y.N. Ossetsky, F. Gao, D.J. Bacon, Glissile and sessile vacancy and self-interstitial clusters
603 in BCC and FCC metals, *Mater. Res. Soc. Symp. - Proc.* (1999).
604 <https://doi.org/10.1557/proc-540-691>.

605 [46] Y.N. Ossetsky, D.J. Bacon, A. Serra, B.N. Singh, S.I. Golubov, Stability and mobility of
606 defect clusters and dislocation loops in metals, *J. Nucl. Mater.* (2000).
607 [https://doi.org/10.1016/S0022-3115\(99\)00170-1](https://doi.org/10.1016/S0022-3115(99)00170-1).

608 [47] D.J. Edwards, E.P. Simonen, S.M. Bruemmer, Evolution of fine-scale defects in stainless
609 steels neutron-irradiated at 275 °C, *J. Nucl. Mater.* (2003). [https://doi.org/10.1016/S0022-3115\(03\)00002-3](https://doi.org/10.1016/S0022-3115(03)00002-3).

611 [48] L. Tan, J.T. Busby, H.J.M. Chichester, K. Sridharan, T.R. Allen, Thermomechanical
612 treatment for improved neutron irradiation resistance of austenitic alloy (Fe-21Cr-32Ni), *J.*
613 *Nucl. Mater.* (2013). <https://doi.org/10.1016/j.jnucmat.2013.01.333>.

614 [49] F.A. Garner, D.S. Gelles, Irradiation creep mechanisms: An experimental perspective, *J.*
615 *Nucl. Mater.* (1988). [https://doi.org/10.1016/0022-3115\(88\)90098-0](https://doi.org/10.1016/0022-3115(88)90098-0).

616 [50] C.B. Carter, D.B. Williams, Transmission electron microscopy: Diffraction, imaging, and
617 spectrometry, 2016. <https://doi.org/10.1007/978-3-319-26651-0>.

618 [51] B. Yao, D.J. Edwards, R.J. Kurtz, TEM characterization of dislocation loops in irradiated
619 bcc Fe-based steels, *J. Nucl. Mater.* (2013). <https://doi.org/10.1016/j.jnucmat.2012.12.002>.

620 [52] C.M. Parish, K.G. Field, A.G. Certain, J.P. Wharry, Application of STEM characterization
621 for investigating radiation effects in BCC Fe-based alloys, *J. Mater. Res.* (2015).
622 <https://doi.org/10.1557/jmr.2015.32>.

623 [53] J.E. Nathaniel, A.C. Lang, O. El-Atwani, P.K. Suri, J.K. Baldwin, M.A. Kirk, Y. Wang,
624 M.L. Taheri, Toward high-throughput defect density quantification: A comparison of
625 techniques for irradiated samples, *Ultramicroscopy*. (2019).
626 <https://doi.org/10.1016/j.ultramic.2019.112820>.

627 [54] Y. Zhu, C. Ophus, M.B. Toloczko, D.J. Edwards, Towards bend-contour-free dislocation
628 imaging via diffraction contrast STEM, *Ultramicroscopy*. (2018).
629 <https://doi.org/10.1016/j.ultramic.2018.06.001>.

630 [55] Y. Miyajima, M. Mitsuhashara, S. Hata, H. Nakashima, N. Tsuji, Quantification of internal
631 dislocation density using scanning transmission electron microscopy in ultrafine grained
632 pure aluminium fabricated by severe plastic deformation, *Mater. Sci. Eng. A*. (2010).
633 <https://doi.org/10.1016/j.msea.2010.09.058>.

634 [56] P.J. Phillips, M.C. Brandes, M.J. Mills, M. de Graef, Diffraction contrast STEM of
635 dislocations: Imaging and simulations, *Ultramicroscopy*. (2011).
636 <https://doi.org/10.1016/j.ultramic.2011.07.001>.

637 [57] R.J. Arsenault, M.S. of A.N.M. Committee., U.S.N.B. of Standards., N.S.F. (U.S.),
638 Defects and Defect Clusters in B.c.c. Metals and Their Alloys: Proceedings, National
639 Bureau of Standards, 1973.

640 [58] C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, M.R.
641 He, I.M. Robertson, W.J. Weber, L. Wang, Enhancing radiation tolerance by controlling
642 defect mobility and migration pathways in multicomponent single-phase alloys, *Nat.*
643 *Commun.* (2016). <https://doi.org/10.1038/ncomms13564>.

644 [59] K. Jin, C. Lu, L.M. Wang, J. Qu, W.J. Weber, Y. Zhang, H. Bei, Effects of compositional
645 complexity on the ion-irradiation induced swelling and hardening in Ni-containing
646 equiatomic alloys, *Scr. Mater.* (2016). <https://doi.org/10.1016/j.scriptamat.2016.03.030>.

647 [60] C. Lu, T. Yang, K. Jin, G. Velisa, P. Xiu, M. Song, Q. Peng, F. Gao, Y. Zhang, H. Bei,
648 W.J. Weber, L. Wang, Enhanced void swelling in NiCoFeCrPd high-entropy alloy by
649 indentation-induced dislocations, *Mater. Res. Lett.* (2018).
650 <https://doi.org/10.1080/21663831.2018.1504136>.

651 [61] Y. Zhang, X. Wang, Y.N. Osetsky, Y. Tong, R. Harrison, S.E. Donnelly, D. Chen, Y.
652 Wang, H. Bei, B.C. Sales, K.L. More, P. Xiu, L. Wang, W.J. Weber, Effects of 3d
653 electron configurations on helium bubble formation and void swelling in concentrated
654 solid-solution alloys, *Acta Mater.* (2019). <https://doi.org/10.1016/j.actamat.2019.10.013>.

655 [62] T. ni Yang, C. Lu, G. Velisa, K. Jin, P. Xiu, Y. Zhang, H. Bei, L. Wang, Influence of
656 irradiation temperature on void swelling in NiCoFeCrMn and NiCoFeCrPd, *Scr. Mater.*
657 (2019). <https://doi.org/10.1016/j.scriptamat.2018.08.021>.

658 [63] Y. Zhang, M.L. Crespillo, H. Xue, K. Jin, C.H. Chen, C.L. Fontana, J.T. Graham, W.J.
659 Weber, New ion beam materials laboratory for materials modification and irradiation

660 effects research, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater.
661 Atoms. (2014). <https://doi.org/10.1016/j.nimb.2014.07.028>.

662 [64] J.F. Ziegler, J.P. Biersack, The Stopping and Range of Ions in Matter, in: Treatise Heavy-
663 Ion Sci., 1985. https://doi.org/10.1007/978-1-4615-8103-1_3.

664 [65] J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM - The stopping and range of ions in matter
665 (2010), Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms.
666 (2010). <https://doi.org/10.1016/j.nimb.2010.02.091>.

667 [66] W.J. Weber, Y. Zhang, Predicting damage production in monoatomic and multi-elemental
668 targets using stopping and range of ions in matter code: Challenges and recommendations,
669 Curr. Opin. Solid State Mater. Sci. (2019). <https://doi.org/10.1016/j.cozsms.2019.06.001>.

670 [67] A. Schemer-Kohrn, M.B. Toloczko, Y. Zhu, J. Wang, D.J. Edwards, Removal of FIB
671 Damage using Flash Electropolishing for Artifact-free TEM Foils, Microsc. Microanal.
672 (2019). <https://doi.org/10.1017/s1431927619008766>.

673 [68] P.J. Phillips, M.J. Mills, M. De Graef, Systematic row and zone axis STEM defect image
674 simulations, Philos. Mag. (2011). <https://doi.org/10.1080/14786435.2010.547526>.

675 [69] M.J. Whelan, P.B. Hirsch, Electron diffraction from crystals containing stacking faults: II,
676 Philos. Mag. (1957). <https://doi.org/10.1080/14786435708243208>.

677 [70] R.E. Smallman, A.H.W. Ngan, Modern Physical Metallurgy: Eighth Edition, 2013.
678 <https://doi.org/10.1016/C2011-0-05565-5>.

679 [71] P.J. Maziasz, Overview of microstructural evolution in neutron-irradiated austenitic
680 stainless steels, J. Nucl. Mater. (1993). [https://doi.org/10.1016/0022-3115\(93\)90077-C](https://doi.org/10.1016/0022-3115(93)90077-C).

681 [72] S.J. Zinkle, P.J. Maziasz, R.E. Stoller, Dose dependence of the microstructural evolution
682 in neutron-irradiated austenitic stainless steel, J. Nucl. Mater. (1993).
683 [https://doi.org/10.1016/0022-3115\(93\)90128-L](https://doi.org/10.1016/0022-3115(93)90128-L).

684 [73] D. Hull, D.J. Bacon, Introduction to Dislocations, 2011. <https://doi.org/10.1016/C2009-0-64358-0>.

686 [74] M.J. Whelan, P.B. Hirsch, Electron diffraction from crystals containing stacking faults: I,
687 Philos. Mag. (1957). <https://doi.org/10.1080/14786435708242742>.

688 [75] D.M. Maher, D.C. Joy, The formation and interpretation of defect images from crystalline
689 materials in a scanning transmission electron microscope, Ultramicroscopy. (1976).
690 [https://doi.org/10.1016/0304-3991\(76\)90038-3](https://doi.org/10.1016/0304-3991(76)90038-3).

691 [76] E.H. Lee, L.K. Mansur, M.H. Yoo, Spatial variation in void volume during charged
692 particle bombardment - the effects of injected interstitials, J. Nucl. Mater. (1979).
693 [https://doi.org/10.1016/0022-3115\(79\)90548-8](https://doi.org/10.1016/0022-3115(79)90548-8).

694 [77] F.A. Garner, Impact of the injected interstitial on the correlation of charged particle and
695 neutron-induced radiation damage, J. Nucl. Mater. (1983). [https://doi.org/10.1016/0022-3115\(83\)90023-5](https://doi.org/10.1016/0022-3115(83)90023-5).

697 [78] M.P. Short, D.R. Gaston, M. Jin, L. Shao, F.A. Garner, Modeling injected interstitial

698 effects on void swelling in self-ion irradiation experiments, J. Nucl. Mater. (2016).
699 <https://doi.org/10.1016/j.jnucmat.2015.10.002>.

700 [79] T. ni Yang, C. Lu, K. Jin, M.L. Crespillo, Y. Zhang, H. Bei, L. Wang, The effect of
701 injected interstitials on void formation in self-ion irradiated nickel containing concentrated
702 solid solution alloys, J. Nucl. Mater. (2017).
703 <https://doi.org/10.1016/j.jnucmat.2017.02.026>.

704 [80] P. Rez, A transport equation theory of beam spreading in the electron microscope,
705 Ultramicroscopy. (1983). [https://doi.org/10.1016/0304-3991\(83\)90302-9](https://doi.org/10.1016/0304-3991(83)90302-9).

706 [81] J.P. Tartour, J. Washburn, Climb kinetics of dislocation loops in aluminium, Philos. Mag.
707 18 (1968) 1257–1267. <https://doi.org/10.1080/14786436808227755>.

708 [82] E. Levo, F. Granberg, C. Fridlund, K. Nordlund, F. Djurabekova, Radiation damage
709 buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys,
710 J. Nucl. Mater. (2017). <https://doi.org/10.1016/j.jnucmat.2017.04.023>.

711 [83] L. Tan, J.T. Busby, Formulating the strength factor α for improved predictability of
712 radiation hardening, J. Nucl. Mater. (2015).
713 <https://doi.org/10.1016/j.jnucmat.2015.07.009>.

714 [84] G.S. Was, Fundamentals of radiation materials science: Metals and alloys, second edition,
715 2016. <https://doi.org/10.1007/978-1-4939-3438-6>.

716 [85] N.S. Husseini, D.P. Kumah, J.Z. Yi, C.J. Torbet, D.A. Arms, E.M. Dufresne, T.M.
717 Pollock, J. Wayne Jones, R. Clarke, Mapping single-crystal dendritic microstructure and
718 defects in nickel-base superalloys with synchrotron radiation, Acta Mater. (2008).
719 <https://doi.org/10.1016/j.actamat.2008.05.041>.

720 [86] J.M. Rosalie, C. Dwyer, L. Bourgeois, On chemical order and interfacial segregation in
721 <mml:math altimg="si24.gif" overflow="scroll"
722 xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd"
723 xmlns:xs="http://www.w3.org/2001/XMLSchema"
724 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/xocs/dtd", Acta Mater.
725 (2014). <https://doi.org/10.1016/j.actamat.2014.01.032>.

726 [87] W. Li, K.G. Field, D. Morgan, Automated defect analysis in electron microscopic images,
727 Npj Comput. Mater. (2018). <https://doi.org/10.1038/s41524-018-0093-8>.

728 [88] C.M. Anderson, J. Klein, H. Rajakumar, C.D. Judge, L.K. B, Automated Detection of
729 Helium Bubbles in Irradiated X-750, Ultramicroscopy. (2020).
730 <https://doi.org/10.1016/j.ultramic.2020.113068>.

731

732