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Introduction

® Motivation
® Uncertainty quantification and data assimilation for high
resolution models.
® fine mesh resolution
® many random parameters/variables
® many measurements

® QObjective
® Develop scalable (numerical and parallel) algorithms for
uncertainty quantification and data assimilation in large-scale
computational models.

® Methodology

® Exploit non-overlapping domain decomposition methods in
conjunction with an intrusive polynomial chaos approach.



Uncertainty Quantification Framework
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SSFEM Discretization

FEM/PCE System Solver
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Step 2
Simulation

Response Statistics Data Assimilation

PCE coefficients Sensitivity Analysis
mean/variance PCKF/GSA

Step 3
Analysis

DA



® Model Equation

Bayesian Estimation using Nonlinear Filtering

uir1 = ¥, (uk, fr,q,) — — Forecast Step
® Measurement Equation

di = hy (ug, €x)

Sensors

—— Assimilation Step




Domain Decomposition Method for Stochastic PDFEs

® Spatial decomposition

oy o [ o 1)

® Polynomial Chaos expansion
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Domain Decomposition Method for Stochastic PDFEs
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Domain Decomposition Method for Stochastic PDFEs
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Block Sparsity Structure
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Extended Interface Problem
® The Extended Schur Complement System

SUr =Gr.

S =Y RI[Afr — AH(A}) AR,
s=1

® Develop parallel iterative algorithms.
® Formulate scalable preconditioners.
® Application to 2D and 3D Stochastic PDEs with non-Gaussian

coefficients.




Two-Level Domain Decomposition Methods for SPDFEs

M= HET[SE] T HE + H (S Ho,

s=1

® Condition Number Bound of Deterministic System
® One-level preconditioner

(M 5) < C*(l + Iog 7)
& H? h

® Two-level preconditioner

2

K(M-1S) < C(1+ Iog%)



Two-Level Domain Decomposition Methods for SPDFEs

® partitioning the interface nodes into remaining (M) and corner(®) nodes




Probabilistic Balancing Domain Decomposition with Constraints
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Probabilistic Dual Primal Domain Decomposition
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Two-Level Domain Decomposition Methods for SPDFEs
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Implementational Framework
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Problem Setup for Numerical Fxperiments

® Model Problem:

~V - (ci(x,0) Vu(x,0)) = F(x), QxW,
u(x,0) = 0, 0 x W,
e Diffusion coefficient c¢; modelled as a lognormal process with

the underlying a Gaussian process having mean p, variance o
and exponential covariance function C (on a 2D domain).

2

C(Xl,}/l X2’y2)—0- e |X2 Xl‘/bl |y2 _y].‘/b2



Fixed

mesh

Block-Sparsity Structures

resolution N ~ 150, P, = 3 with L =3 and L = 5.

N



Errors Analysis of PCE Coefficients of Solution Process:

Intrusive Vs Non-Intrusive
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Scalability against Stochastic Dimensions:

Intrusive vs Non-Intrusive (Sparse Grid)
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Scalability against Number of Random Variables: NNC/BDDC
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Scalability against Number of Random Variables: NNC/BDDC
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Parallel Scalability (Strong): NNC/BDDC'
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Scalability using Large-Scale HPC' Cluster
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Scalability using Large-Scale HPC' Cluster
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Probabilistic Coarse Grid in Three Dimensions:

FExtended Wirebasket Grid

(-) - the global interface edge, (e) - vertices (x) - interface-edges
and (e) - interface-faces.



Deterministic Setting: Condition Number Bound Vertex vs Wirebasket-based
Methods
Ref. Book by Smith, Bjorstad and Gropp, 2004
For the vertex-based method in two dimensions
k< C(1+log(H/h))?,
For the vertex-based method in three dimensions

K < C(H/h)(1 + log(H/h)).

For the wirebasket-based methods in three dimensions

r < C(1+log(H/h))>.



Probabilistic BDDC/NNC using Extended Wirebasket-based Coarse Grid
Fww Uy = dw,

Fuw = Biy" (Stow — SielSzel " Stw ) Biv.
s=1

dw = > By (A — SiurlSEI T Z).

s=1

Modified BDDC/NNC Preconditioner:
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Numerical Experiments: Wirebasket based BDDC/NNC' solver

e Diffusion equation

—V - (ca(x,0) Vu(x,0)) = F(x), QxW,
u(x,0) = 0, IQx W,

e Diffusion coefficient ¢4 - lognormal process having underlying
a Gaussian process with exponential covariance C

Clxa,y1, 215 %0, y2, 22) = o7 e Peal/blbemnl/byml=al/b:




Characteristics of the Solution Process:

Diffusion Fquation
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Characteristics of the Solution Process
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Numerical Experiments: Wirebasket based BDDC/NNC' solver for PDE System

® linear Elasticity

—V-o(U(x,0)) = F(x) in D,
o(U(x,0))-A=br on T1=0D\l,
Ux,0) =0 on Ty

Stress tensor o
a(U(x,0)) = ANV -U(x,0)) ] + 2ue(U(x,0)),

where A\ = —E¥ _—_and 1 = are Lamé constants.
T)( H

v E
1-2v) 2(1+v)
® Young's modulus E - lognormal stochastic process (as before).



Characteristics of the Solution Process:

i U Magnitude
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Characteristics of the Solution Process:

Linear FElasticity

| dsplace
2 17608 0

2 “ 2008
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X,y and z components of the mean and standard deviation.



Characteristics of the Solution Process:

Linear FElasticity

4, oot 0 e0s “; 60003

X,y and z components of the selected PCE coefficients.
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15 T T T T

—%— wirebasket coarse grid
—O- vertex coarse grid
10+
o =0
=== o
5t = ——— % —— — — — H————— — x
0 . . . .
160 240 320 400

Number of cores (subdomains)

Diffusion



Number of iterations
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Bayesian Estimation using Nonlinear Filtering
® Model Equation

uii1 = ¥, (uk, fr,q,) — — Forecast Step
® Measurement Equation

di = hy (ug, €)

Sensors

—— Assimilation Step




Diffusion: Ezxperiment with Four Sensors



Parallel Data Assimilation: Polynomial Chaos-Based Kalman

Filter (Saad and Ghanem, 2009)
® State Vector Representation

® Measurement Vector Representation

N N

2

d=>"djw;(0); T=>_ didj(V¥;)
=0 i=1

¢ Analysis/Update Step (Saad and Ghanem, 2009)

4% = A"+ PTH (HP'H 4T) - (p—Ha)



Parallel Data Assimilation: Analysis Step - Distributed

Implementation

® Spatial decomposition of the state vector
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® Decomposition of the state ensemble matrix
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Parallel Data Assimilation
® Analysis Step - Distributed Implementation

A=A 1 PH (HPfH/ T r) -t (]D) - HAf)

7 ’ —1
=a" [I +BD" (DfBDf + ]DB]DJ) (D - Df)

=afc

e Compute the forecast observation matrix Df = HA in
parallel
pf = Haf

= Hy (a7 o (W] [T e ],

S R P ], - S P [,

s=1

® Perform ensemble update in parallel

1
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Global boundary nodes — [A%] f ¢
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Diffusion: Posterior PCE Coefficients - 4 Sensors

b




Parallel Scalability

For a fixed problem size and number of measurements:
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Parallel Scalability

For a fixed problem size per subdomain/core:
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Parallel Scalability

For a fixed number of measurements per subdomain/core:

Execution time (s)
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Sherman-Morrison Solver

® For independent measurement
DB, D' = A,

is a diagonal matrix.

® Rewrite
T N
A= (DBmDT + DBDf ) - (Ao +3 u,-v,-T>
i=1

® Use Sherman-Morrison formula recursively

—1,. T A -1
Ay "uv A

Ag+uvl)t=A;t 0 —— "0
(Ao ) O 1.0+vTA;u



Timing
® Problem size: 19602 nodes, 39209 elements
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Conclusion

® Development of parallel PCKF that exploits available two-level
domain decomposition algorithms for SPDEs.

® Distributed implementation and scalability studies of the
parallel PCKF using a stationary stochastic diffusion problem.
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