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Introduction

• Motivation
• Uncertainty quantification and data assimilation for high

resolution models.
• fine mesh resolution
• many random parameters/variables
• many measurements

• Objective
• Develop scalable (numerical and parallel) algorithms for

uncertainty quantification and data assimilation in large-scale
computational models.

• Methodology
• Exploit non-overlapping domain decomposition methods in

conjunction with an intrusive polynomial chaos approach.



Uncertainty Quantification Framework



Bayesian Estimation using Nonlinear Filtering

• Model Equation

uk+1 = ψk (uk , fk ,qk) −− Forecast Step

• Measurement Equation

dk = hk (uk , εk) −− Assimilation Step

Sensors



Domain Decomposition Method for Stochastic PDEs

• Spatial decomposition[
As

II (θ) As
IΓ (θ)

As
Γ I (θ) As

ΓΓ (θ)

]{
us
I (θ)

us
Γ (θ)

}
=

{
fsI
fsΓ

}
.

• Polynomial Chaos expansion

L∑
i=0

Ψi

[
As

II ,i As
IΓ ,i

As
Γ I ,i As

ΓΓ ,i

]{
us
I (θ)

us
Γ (θ)

}
=

{
fsI
fsΓ

}
.



Domain Decomposition Method for Stochastic PDEs
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Domain Decomposition Method for Stochastic PDEs
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Sarkar, A. Benabbou, N. and Ghanem, R., IJNME, 2009.



Block Sparsity Structure

L = 3 and pu = 4, 5.

pu = 3 and L = 4, 5.



Extended Interface Problem

• The Extended Schur Complement System

SUΓ = GΓ .
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• Develop parallel iterative algorithms.
• Formulate scalable preconditioners.
• Application to 2D and 3D Stochastic PDEs with non-Gaussian

coefficients.



Two-Level Domain Decomposition Methods for SPDEs
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Two-Level Domain Decomposition Methods for SPDEs

• Partitioning the interface nodes into remaining (�) and corner(•) nodes
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Probabilistic Balancing Domain Decomposition with Constraints   
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Probabilistic Dual Primal Domain Decomposition
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Two-Level Domain Decomposition Methods for SPDEs
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a) Neumann-Neumann with Coarse grid, b) Primal-Primal,c) Dual-Primal Operator.

Investigated numerical and parallel scalabilities:
Subber, W. and Sarkar, A., JCP, 2014

Subber, W. and Sarkar, A., CMAME, 2013

Desai, A., Khalil, M., Pettit, C., Poirel, D. and Sarkar, A., CMAME 2017



Implementational Framework



Problem Setup for Numerical Experiments

• Model Problem:

−∇ ·
(
cd(x, θ) ∇u(x, θ)

)
= F (x), Ω×W,

u(x, θ) = 0, δΩ×W,

• Diffusion coefficient cd modelled as a lognormal process with
the underlying a Gaussian process having mean µ, variance σ2

and exponential covariance function C (on a 2D domain).

C (x1, y1; x2, y2) = σ2 e−|x2−x1|/b1−|y2−y1|/b2 ,



Block-Sparsity Structures

Fixed mesh resolution N ≈ 150, Pu = 3 with L = 3 and L = 5.



Errors Analysis of PCE Coefficients of Solution Process:

Intrusive Vs Non-Intrusive
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Scalability against Stochastic Dimensions:

Intrusive vs Non-Intrusive (Sparse Grid)

Fixed mesh resolution (52704 nodes and 105410 elements) and
third order PCE for intrusive. Smolyak sparse grid with l = 3 and
l = 4 for non-intrusive.



Scalability against Number of Random Variables: NNC/BDDC

Fixed mesh resolution (52704 nodes and 105410 elements), fixed
problem size per subdomain (≈ 60,000) and third order PCE
(linear system of order max. ≈ 93 million)



Scalability against Number of Random Variables: NNC/BDDC
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Parallel Scalability (Strong): NNC/BDDC
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Scalability using Large-Scale HPC Cluster

For the fixed mesh resolution (0.332 million nodes and 0.664
million elements.) and fixed number of PCE terms (Pu = 56).



Scalability using Large-Scale HPC Cluster

For the fixed mesh resolution (0.332 million nodes and 0.664
million elements.) and fixed number of PCE terms (Pu = 56).



Probabilistic Coarse Grid in Three Dimensions:

Extended Wirebasket Grid

(-) - the global interface edge, (•) - vertices (?) - interface-edges
and (•) - interface-faces.



Deterministic Setting: Condition Number Bound Vertex vs Wirebasket-based

Methods

Ref. Book by Smith, Bjorstad and Gropp, 2004

For the vertex-based method in two dimensions

κ ≤ C (1 + log(H/h))2,

For the vertex-based method in three dimensions

κ ≤ C (H/h)(1 + log(H/h)).

For the wirebasket-based methods in three dimensions

κ ≤ C (1 + log(H/h))2.



Probabilistic BDDC/NNC using Extended Wirebasket-based Coarse Grid

FWW UW = dW ,
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Numerical Experiments: Wirebasket based BDDC/NNC solver

• Diffusion equation

−∇ ·
(
cd(x, θ) ∇u(x, θ)

)
= F (x), Ω×W,

u(x, θ) = 0, δΩ×W,

• Diffusion coefficient cd - lognormal process having underlying
a Gaussian process with exponential covariance C

C (x1, y1, z1; x2, y2, z2) = σ2e−|x2−x1|/bx−|y2−y1|/by−|z2−z1|/bz .



Characteristics of the Solution Process:

Diffusion Equation

Mean and standard deviation.



Characteristics of the Solution Process

Selected PCE coefficients.



Numerical Experiments: Wirebasket based BDDC/NNC solver for PDE System

• Linear Elasticity

−∇ · σ
(
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= F (x) in D,
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where λ = Eν
(1+ν)(1−2ν) and µ = E

2(1+ν) are Lamé constants.

• Young’s modulus E - lognormal stochastic process (as before).



Characteristics of the Solution Process:

Linear Elasticity

Mean magnitude of the beam deflection subjected to self-weight.



Characteristics of the Solution Process:

Linear Elasticity

x , y and z components of the mean and standard deviation.



Characteristics of the Solution Process:

Linear Elasticity

x , y and z components of the selected PCE coefficients.



Diffusion



Elasticity



Bayesian Estimation using Nonlinear Filtering
• Model Equation

uk+1 = ψk (uk , fk ,qk) −− Forecast Step

• Measurement Equation

dk = hk (uk , εk) −− Assimilation Step

Sensors



Diffusion: Experiment with Four Sensors



Parallel Data Assimilation: Polynomial Chaos-Based Kalman

Filter (Saad and Ghanem, 2009)

• State Vector Representation
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• Analysis/Update Step (Saad and Ghanem, 2009)
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Parallel Data Assimilation: Analysis Step - Distributed

Implementation

• Spatial decomposition of the state vector
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Parallel Data Assimilation
• Analysis Step - Distributed Implementation
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Diffusion: Posterior PCE Coefficients - 4 Sensors

ua0 ua1 ua2 ua3 ua4

ua5 ua6 ua7 ua8 ua9

ua10 ua11 ua12 ua13 ua14

ua15 ua16 ua17 ua18 ua19

ua20 ua21 ua22 ua23

Figure: Data assimilation in stationary stochastic diffusion problem -
Experiment 2: Posterior PCE coefficients.



Parallel Scalability
For a fixed problem size and number of measurements:
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Parallel Scalability

For a fixed problem size per subdomain/core:
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Parallel Scalability
For a fixed number of measurements per subdomain/core:
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Sherman-Morrison Solver

• For independent measurement

DBmD
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• Rewrite
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Timing

• Problem size: 19602 nodes, 39209 elements
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Conclusion

• Development of parallel PCKF that exploits available two-level
domain decomposition algorithms for SPDEs.

• Distributed implementation and scalability studies of the
parallel PCKF using a stationary stochastic diffusion problem.
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