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Abstract
This report summarizes the technical progress made in the past three
years on CRADA #1078, Molecular Engineering of Polymer Alloys. The
thrust of this CRADA was to start with the basic ideas of PRISM theory and
develop it to the point where it could be applied to modeling of polymer
alloys. In this program, BIOSYM, Sandia and the University of Illinois
worked jointly to develop the theoretical techniques and numerical
formalisms necessary to implement the theoretical ideas into commercial
software aimed at molecular engineering of polymer alloys. This CRADA
focused on developing the techniques required to make the transition from
theory to practice. These techniques were then used by BIOSYM to
incorporate PRISM theory and other new developments into their
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I. INTRODUCTION

Condensed polymeric fluids exhibit a rich and complex set of
experimental phenomena associated with the combined influences of local,
system-specific monomer structure and global connectivity and flexibility.
Such behavior is of both fundamental and practical interest. Early
pioneering theoretical work focused largely on simple lattice models which
invoked severe simplifications of both molecular structure and statistical
mechanics1,13. More recently, remarkable progress has been made in
describing relatively long wavelength structure and properties by
employing scaling and renormalization-group approaches inspired by
analogies with critical phenomena, as well as self-consistent field
methods2-4. However, these modern continuous space approaches have
restricted ranges of applicability(e.g., long chains, low and moderate
densities) , and generally address only the generic qualitative behavior of
macromolecular systems from a polymer physics point of view. System-
specific chemical structure features are lumped into fitting constants or
"prefactors”, and local fluid structure is not addressed. Thus, the a priori
chemical predictive capacity of such approaches is generally modest or
nonexistent. In contrast, for simple atomic(and colloidal) and small
molecule fluids much theoretical progress for both structural and
thermodynamic properties has been made over the past two-to-three
decades based on continuous space "integral equation” methods®. Such
approaches are nonperturbative in interaction potentials and
density(though generally "uncontrolled"), microscopic in nature, and can
treat the physical consequences of the local molecular structure and
intermolecular forces over a wide range of thermodynamic state conditions.

We shall focus on one particular integral equation approach, the
"Polymer Reference Interaction Site Model" (PRISM) theory©,9,10 which
was first proposed by us in 1987. PRISM is a macromolecular extension of
the pioneering RISM theory of Chandler, Andersen and co-
workers?,8,11,12, The purpose of this report is to summarize the technical
progress made in the past three years on CRADA #1078, Molecular
Engineering of Polymer Alloys.. The thrust of this CRADA was to start
with the basic ideas of PRISM theory and develop it to the point where it
could be applied to modeling of polymer alloys. In this program, BIOSYM,




Sandia and the University of Illinois worked jointly to develop the
theoretical techniques and numerical formalisms necessary to implement
the theoretical ideas into commercial software aimed at molecular
engineering of polymer alloys. This CRADA focused on developing the
techniques required to make the transition from theory to practice. These
techniques were then used by BIOSYM to incorporate PRISM theory and
other new developments into their commercial software.

II. PRISM THEORY : BASIC ASPECTS

The integral equation approach to simple classical liquids was
pioneered by Kirkwood and many othersd,14, Considerable progress was
made initially in the application of integral equation theory to simple
monatomic liquids®:15. The most accurate theories for simple liquids are
based on. the well-known Ornstein-Zernike equation which defines the
direct correlation function C(r) in terms of fluid density and the radial
distribution function g(r) = 1 + h(r). Pioneering work was done in the 1960's
and early 1970's.5 For dense simple liquids with strongly repulsive and
weak attractive interactions, the Percus-Yevick (PY) approximation5’16
gives remarkably accurate results when compared to computer simulation
and x-ray scattering experiments on monatomic liquids. The PY
approximation can be viewed as a closure which approximately relates the
direct correlation function to the radial distribution function, inigeratomic
potential, and temperature. This closure, together with the Ornstein-
Zernike equation, leads to a nonlinear integral equation for the radial
distribution function g(r) of a monatomic liquid. Theoretical treatment of
the structural consequences of attractive forces at moderate and low
densities is far more difficult even for simple fluids®. This area remains
active in order to get better quantitative and thermodynamically consistent
theories?:17 a better description of nonclassical critical phenomenals, and
also to correctly treat situations where the intermolecular interactions are
complex such as in colloidal suspensionslg.

In the 1970's Chandler,Andersen, and coworkers initiated the
pioneering extension and applications of atomic integral equation concepts
to molecular liquids based on the Reference Interaction Site Model or RISM
theory?,3. This work, and other theoretical approaches based on interaction




site models, has been reviewed in several places&zo. In RISM theory each
molecule is subdivided into bonded spherically symmetric "interaction
sites”. For small molecules(e.g., nitrogen, benzene, carbon tetrachloride)
the definition of such sites is essentially obvious based on the chemical view
of a molecule as a bonded collection of elementary units or functional
groups. The liquid structure can be characterized by a matrix of site-site
intermolecular pair correlation or radial distribution functions ggy (r)

defined according to/»8

2 M
Pey @ ={ X 3@EH8GE-F)) 2.1)

i#j=1

for a fluid of M molecules. In Eq. (2.1) p is the number density of molecules
and f‘ix specifies the position of site o on molecule i. In RISM theory

Chandler and Andersen generalized the Ornstein-Zernike equation of
monatomic liquids to molecular liquids in a manner which includes
intramolecular, as well as, intermolecular correlations’. Physically, the
key idea is that intramolecular chemical bonding constraints, which
describe molecular shape of rigid molecules, strongly influence
intermolecular packing. Based on heuristic arguments, Chandler and
Andersen then employed a PY type closure for the direct correlation
functions in analogy with the monatomic case’»8. The resulting set of
nonlinear integral equations can be solved numerically for the
intermolecular pair correlation functions8:21,

Chandler and coworkers successfully applied this RISM formalism to
describe the structure of rigid diatomic and polyatomic molecular
1iquids8:21. The generalization of the RISM theory to treat flexible
molecules was initiated by Chandler and Prattl2 in the late 1970's, and
extensively applied to short alkane liquids12 and the hydrophobic effect22,
By combining the RISM methodology for a single flexible "ring molecule”
(in imaginary time) with the Feynman path integral formulation of
quantum mechanics, Chandler and coworkers have recently developed
microscopic theories of quantum processes in fluids focusing particularly
on the solvated electron problem23a24.

Beginning in 1987, we and our coworkers have extended and widely




applied the RISM concepts to the case of flexible polymer solutions and
melts8,25,26 polymer mixtures or blends27-32, and block copolymers33. We
generically refer to this work as polymer-RISM or PRISM theoryl0. The
connection of the elementary aspects of PRISM theory with the quantum
electron work has been discussed34.

The earliest version of PRISM theory rests on two very simple ideas
which allow the circumvention of difficult computational and conceptual
problems inherent to flexible macromolecular systems : points (1) and (2)
enumerated in the Introduction. The first technical simplification applies
to linear polymers when the degree of polymerization N is large. In this
case one can, to a good approximation, take each of the monomers along
the chain backbone as equivalent. At the most fundamental level, this
corresponds to assuming the site-site direct correlation functions are
independent of where monomers are located along the chain. This "pre-
averaging of end effects" approximation results in a reduced theory for
"chain averaged" site-site pair correlation functions® such as gr) = N-2 Zory
gory(r). Such a simplification, gay(r) = g(), would be exact for cyclic ring
polymers. Of course, this approach represents a loss of detailed structural
information, and interesting questions such as the packing of chain ends
cannot be addressed. Tractable schemes to go beyond the equivalent
monomer approximation have been proposed®, but to our knowledge not
implemented. Numerical RISM studies on short linear molecules(propane,
butane) suggest the "pre-averaging" approximation is very accurate for the
chain averaged pair correlations39 even when N= 3 or 4.

Within the equivalent monomer approximation scheme, each
monomer in the linear chain is constructed from one or more spherically
symmetric interaction sites A, B, C, etc. The generalized Ornstein-Zernike-
like equations of Chandler and Andersen’ can be conveniently written in
Fourier transform space in the general form

H(k) = fz(k).é(k).[fz(k) +f1(k)] (2.23)

where the caret denotes Fourier transformation with wave vector k. In real
space one obtains



H(r) = [dr'[dr"QUF -T'])- C(lf'—i""l)~[Q(f")+H(f'")] (2.2b)

The first set of terms on the right hand side of Eq(2.2) describes all possible
site-site correlation pathways between a pair of tagged molecules. In the
low molecular density limit only these contributions survive. The second
set of terms describe all correlation pathways between two sites on different
molecules which are mediated by one or more different molecules. The
matrix multiplications in Egs. (2.2) run over v independent sites A, B, C,
etc., and Cgy(r) is the vx v matrix of direct correlation functions. Because

of symmetry there are v(v+1)/2 independent Ornstein-Zernike equations
for the total correlation functions Heg(r)

Hey () = pePyhoy (1) = PoPy [oy (1) - 1] (2.3)

where pg = pN,, is the density of sites of type o, and Ny is the number of

sites of type o per chain.

When the generalized Ornstein-Zernike-like or PRISM Eq. (2.2) is
applied to flexible macromolecules a conformational preaveraging
assumption is employed by replacing the instantaneous, N-body
intramolecular structure of the flexible chain by its ensemble-averaged pair
correlation function description6:8:12:24. Thus, all information concerning

the intramolecular structure of the polymer chains is contained in the
functions Qgy(r) defined as

Q) =p % osr) (2.4)

ieo,jey

where ©j;(r) is the normalized probability density between two sites i and j
on the same molecule. In Fourier transform space fzay (k) can be identified

as the single-chain partial structure factors.

The generalized Ornstein-Zernike-like equations in Eq. (2.2) define
v(v+1)/2 independent direct correlation functions. In order to have a
solvable system of equations additional approximate "closure relations" are
required. This is the critical step, since the RISM or PRISM equations are




really just defining relations for the site-site direct correlation functions.
The most accurate closure is system-specific, and is a question of enduring
interest. In our original work on dense one-component repulsive force
liquids, we followed Chandler and Andersen by adopting the approximate
site-site PY closure’»8

Coy (1) = {1~ explBay (1)1} gay () 2.52)

where vy (1) is a spherically symmetric, repulsive interaction potential

between sites o and v, and B=1/kgT at temperature T where kg is
Boltzmann's constant. For hard sphere interactions between sites, the PY
closure reduces to the particularly simple form

Boy(r)=0 r<dgy
(2.5b)
Coy(r)=0 r > dgy

which is equivalent to the so-called "Mean Spherical Approximation"
(MSA)5,8,11, The condition inside the distance of closest approach dgy is an
exact statement reflecting the impenetrability of hard spheres. The second
condition, in which the direct correlation functions are approximated as
zero outside the hard core, exploits the standard idea of Ornstein and
Zernike that the direct correlation function is spatially short range. For
atomic fluids, Eq(2.5b) can be derived by established graph theoretical
partial summations and other functional methods.5 However, for
interaction site molecular fluids the PY closure is argued to be useful based
on analoies with atomic fluids and hueristic physical concepts.?»8 The lack
of a rigorous interaction site cluster series basis for Eq(2.5b) has lead to
RISM theory being described as a "diagramatically improper" theory.8

Egs. (2.3) - (2.5) lead to v(v+1)/2 coupled integral equations which
make up the polymer RISM theory in its simplest form appropriate for
dense, repulsive force polymer fluids. The integral equations can be solved
numerically using a variety of standard techniques5s8.

Alternative closure approximations for the repulsive force fluid have
been investigated and will be briefly commented on in subsequent sections.




Based on the idea that the atomic-like closures are useful by analogy for
molecular fluids , there are several alternatives to the PY or MSA
approximation for hard core fluids. These include the Hypernetted Chain
(HNC) approximation5,20,36

Cun) = he (1) = In(1+hg, (1)), r>des (2.6)
and the Martytnov-Sarkisov (MS) closure®:37

Cur) = hw(r)—(1/2)[{1+ln(1+hw(r))}2—1] , r>dg 2.7)

Numerical studies of chain molecule fluids have also been carried out by
Yethiraj38 using the considerably more complicated "diagramatically
proper" formulation of RISM theory due to Chandler, Silbey and
Ladanyi39’40. Novel, even more complicated closures have been recently
proposed by several workers41,42 but numerical predictions for polymer
fluids have not been established.

Appropriate closures for describing the influence of attractive forces on
polymer liquid structure is a much more subtle and difficult problem than
the repulsive force or hard core fluid case. We defer discussing this aspect
until Section VL.

In our application of PRISM theory to flexible polymer systems one
expects that the inframolecular structure, represented by Eq. (2.4), depends
on the intermolecular structure specified in Eq. (2.3) and vice versa6,8,12,
Thus, in a rigorous calculation the intramolecular and intermolecular
structure must be determined in a self-consistent manner leading to
problem (2) mentioned in the Introduction. This problem represents a
major conceptual difficulty and might be thought to be especially formidable
for large macromolecules. The self-consistent issue for flexible molecules
was originally'addressed by Chandler and Pratt in both a formal
diagrammatic manner, and in the context of tractable approximation
schemes formulated for short chain molecules8,12. For macromolecules,
several new theories for performing such self-consistent structural
calculations have been formulated and applied 43-47 which will be
discussed in Sections VIII and IX.




A simple, zeroth approximation to the self-consistent problem for
dense one-component polymer melts can be invoked as suggested by our
earliest PRISM work6. Subsequent structurally self-consistent
calculations(see section VII), as well as computer simulations and
experiments, suggest that to a good approximation one can avoid (under
appropriate conditions) the self-consistency complication by exploiting
Flory's "ideality hypothesis". Floryl,48 argued many years ago that in a
high density melt of strongly interpenetrating chains at high density, the
"long range" intramolecular excluded volume interactions that lead to
chain expansion in a dilute solution in a good solvent are "screened out" or
"canceled" by the compressive intermolecular interactions between chains
embedded in a nearly incompressible fluid. A¢ the level of a single chain,
the net result is a cancellation of repulsive bare intrachain interactions by
the attractive, "solvent-mediated" interactions. Thus, in a dense, one-
component melt the chains act as a "theta or ideal solvent" for themselves
in the sense that the chain radius-of-gyration obeys the maximum entropy
ideal random walk scaling law : Rg «NL/2  The "prefactor” in this scaling
relation can be computed based on an atomistic single chain modell3 which
ignores interactions among monomers beyond close neighbors. Neutron
scattering experiments49 and computer simulations®9,91 on polymer melts
have demonstrated the accuracy of Flory's conjecture. This approximation
provides an enormous simplification because the intramolecular
correlations in Eq. (2.4) can then be calculated from a separate single chain
computation in which long range (in chemical sequence) interactions
along the chain backbone are set to zero. A wide variety of single chain
models are availablel3, and thus the connection between polymer
structural features and bulk properties and phenomena can be
systematically investigated.

It is important to note that in calculation of the intramolecular
structure factors for input into PRISM theory, one can include as much(or
as little) chemical detail regarding the molecular architecture as desired.
For questions regarding intermolecular packing on relatively long length
scales (eg. the so-called "correlation hole" regime2 corresponding to
intermolecular separations of several monomer diameters and larger), the
local monomeric structure is not important and one can use a coarse
grained description of the polymer chain structure2-4,13, In this case a



Gaussian, freely-jointed, or semiflexible chain model for f)aB(k) would

suffice. Such coarse-grained models are also useful for investigating
general trends which transcend the fine details of specific polymer
molecules.

On the other extreme, in order to make specific quantitatively accurate
predictions for thermodynamic properties and the details of local packing,
we anticipate that the local monomeric structure is important. For the often
subtle question of macromolecular mixture miscibility and copolymer self-
assembly, it is often unclear a priori what level of chemical detail is
adequate. For such problems, one may employ a model that includes the
effects of constant bond lengths, bond angles and rotational potentials such
as the rotational isomeric state modell3. Inclusion of these local details into
fZaB(k) is feasible but requires significantly more numerical effort.With

modern workstations, a tractable option is to perform a single-chain
simulation to provide a chemically realistic input to PRISM. Thus PRISM
theory is versatile in its ability to make predictions about intermolecular
packing on both local (monomeric) and global (radius of gyration) length
scales, as a functional of intramolecular architecture. In this article we
will describe PRISM applications that include the entire range of local
chemical detail.

III. STRUCTURE AND THERMODYNAMICS OF DENSE MELTS

Pure one-component polymer liquids or "melts", are in one sense the
simplest case since single chain conformation is nearly "ideal". However,
there remains the question of the influence of local chemical architecture
on melt structure, thermodynamic properties, and physical
phenomena(e.g., wide angle scattering, crystallization). In the context of
PRISM theory, the question is on what length scale, or degree of coarse-
graining, is an "interaction site" defined ? Since there does not exist a
rigorous renormalization group type scheme to "integrate out" degrees of
freedom and chemical details, the practical approach is to study families of
models of variable levels of realism®2. Figure 3.1 illustrates this process
schematically in the context of an industrially important class of saturated




3.1 Schematic representation of three levels of chain models considered -
and the coarse-graining procedure. The top level is an atomistic model
of polyolefins. The second level shows two intermediate models: site
overlapping semiflexible chain(with bending energy eb) and freely-
jointed branched chain. The bottom level is the Gaussian thread chain.

R R'
\/ \/ \ /

A\ C/C\




hydrocarbon polymers(polyolefins). Three general levels of chain models
are illustrated. (1) An atomistic level where there may be multiple
symmetry-inequivalent sites within a monomer repeat unit. For
polyolefins, sites may be a methylene, methyl , or methyne group, and
Angstrom level structure is explicitly accounted for. (2) A single site
intermediate level "semi-flexible chain” (SFC) model, or multiple site
"freely-jointed” branched chain. Such models correspond to a modest
degree of coarse-graining. (3) The extreme, heavily coarse-grained
"Gaussian thread model" where the polymer is crudely treated as a thin,
fully flexible, ideal random walk space curve. It is at this level that self-
consistent field theoretic approaches describe polymer structure2-4.

In the next two sections we consider melt structure, as embodied in the
intermolecular site-site radial distribution functions and the total structure
factor describing collective density fluctuations in Fourier space, as a
function of degree of coarse-graining. Possible "mappings" which relate the
different chain models are briefly mentioned®2. Purely repulsive(generally
hard core) interchain site-site potentials are employed corresponding to an
athermal melt situation. At high liquid densities, structure is expected to be
dominated by such purely steric packing forcesd,11, Use of the structural
information to compute thermodynamic properties is addressed in section

C.

A. Single Site Homopolymers

Consider first linear polymers composed of identical spherical sites
which interact intermolecularly via a pair decomposable site-site hard core
potential of diameter d. The dimensionless reduced fluid density is pmd3,
where pm = Np is the site number density.

1. Gaussian Thread Chains
At the most coarse-grained level the polymer is described as an ideal

random walk on all length scales. The intramolecular structure factor
matrix is Gaussian and given by2-4 By (k) = exp(-k202 | —y1/6) where ©
is the so-called "statistical segment length". Physically, it represents a
length scale beyond which real chain units are orientationally
uncorrelated. The mean square end-to-end distance, R , and radius-of-
gyration, Rg, are given by <R2> =N o2, and Ry =R /+/6, respectively,

10




where N is the number of statistical segments. The single chain structure

N
factor 6J(k)=N"26)W(k), is easily computed in closed form. Numerically-
.y

obtained PRISM predictions of g(r) and the dimensionless collective density
fluctuation structure factor, Sk) = 6)(k)+pmﬁ(k), for such a model have been
presented for a wide range of N and reduced densities6,25,30. Gaussian
ring polymers have also been studied6,25. As expected physically, for large
N only minor structural differences between ring and chain melts are
found on macromolecular length scales, and identical behavior is predicted
for the local region of g(r) .

A further model simplification, corresponding to taking a type of
"continuum limit" (commonly employed in field theoretic approachesz'4 in
the large N regime), can be taken in order to obtain analytic results which
capture all the essential physical features of the Gaussain chain
model25,30, The single chain structure factor is approximated by a
Lorentzian3

1
(k262 /12)+ N1

ak) = 3.1)

This form neglects the self-scattering term appropriate for the ko — o
regime, but which is irrelevant in a continuum-of-sites description. Eq(3.1)
very accurately describes the exact Gaussian A(k) for the ko<1 regime of
interest in a continuum model. In particular, it exactly reproduces the k=0

value and the "self-similiar" intermediate scaling regime,®(k) =12 (ko)-2 '
for Rg‘1<< k<< o-1. In real space, this self-similiar behavior corresponds to
power law , or critical-like, correlations, o(r) < r-1. This is a polymeric
effect associated with the ideal random walk chain statistics on
intermediate length scales, and is widely exploited in the "scaling theory"
approach to polymer physics problems2‘4. The second simplification is to
take the "thread" limit, corresponding to d—0 and pm—>e such that the
reduced fluid density is finite and nonzero. This simplification reduces the
hard core impenetrability constraint to a point condition , g(r=0) = 0. Thus,

within the PY closure approximation the site-site direct correlation
function reduces to a delta-function form : C(r)=Cy3(r), where




Co = C(k =0) is a parameter to be determined by application of the PRISM
integral equation and the core exclusion condition25,30,

The resulting PRISM integral equation is analytically solvable for the
Gaussian thread model. The structural predictions are25,30

gn-1= np:czr [exp(—r 18,)—exp(-r/ éc)] (3.2)

S(k) = (k) +pLh(k)
_12(E, / ) (3.3)
1+(k§p)2
The fundamental length scales are the density screening length, &p , given

by
= TRa0 e (3.4

which controls the local packing of threads,and the "correlation hole"
length scale &¢ = Rg/\/2. Eq(3.2) shows the correlated part of g(r) consists of a
local and macromolecular contribution. "Negative" correlation is predicted
on all length scales, i.e. g(r) < 1 for all r, and simple-liquid like solvation
shells are entirely absent. Remarkably, these general features survive
qualitatively in more chemically realistic, even atomistic, models of
polymer structure due to thermal conformational disorder and destructive
interference between the packing consequences of multiple local length
scales(see section IIB). For the simple thread model the local contribution
to g(r) is directly related to S(0) = 12(2§p/0')2 and hence the isothermal
compressibilty, x, via the thermodynamic relation é(O) = pmKkBT K. The
simple Yukawa forms in Eqs(3.2) and (3.3) are a consequence of the
technical simplifications invoked by the Gaussian thread model. Hence, the
precise details of g(r) in the local region will change as more chemically
realistic models are employed.

The depth of the local correlation hole is predicted to be controlled by a
so-called "packing length" (Pmcz)_l
re-definition of a coarse-grained segment (or re-grouping of real

. This quantity is invariant to arbitrary

12




monomers). Under melt conditions and for normal temperatures (T=250-
500 Kelvin), the packing length falls typically in the range of 1.7 - 5.5
Angstroms for a very wide class of semiflexible polymers52’53.

The predicted power law relation(for large N) of Eq(3.4) between the
density screening length and pm is in excellent agreement with
experiments, scaling arguments, and field theories for dense solutions but
not melts®2,54. However, under many solution conditions the "ideality"
approximation breaks down and the effective statistical segment length,
and hence Rg , acquires a polymer concentration dependence. This aspect
has been incorporated by using the fully self-consistent version of
PRISM(see Sec.VIII), or more simply by combining field theoretic and/or
scaling predictions2,3 for single chain size(e.g., G o p’l/ 8 in good solvents)
with the PRISM analysis of intermolecular packing®4.

The second contribution to g(r) in Eq(38.2) is called the correlation hole

effect by deGennes®

, and is associated with the longer wavelength universal
aspects of chain connectivity and interchain repulsive forces. On
intermediate length scales it has a critical power law form due to chain
conformation self-similiarity, and this simple analytic form remains an
excellent representation even for chemically realistic models when intersite
separations exceed an intrinsic(N-independent) distance of the order of 3-5
site diameters.2°

The dimensionless collective structucture factor, é(k) in Eq(8.3),is of a
purely decaying, or "diffusive" , form ; no large angle peaks( which must be
present in real dense fluids) are present. Again, this is a consequence of the
idealized Gaussian thread model, although the diffusive form is in general
accord with experiments(in the ko<l regime) and field theoretic predictions
for moderately concentrated ("semidilute") polymer solutions2,3.

The analytic Gaussian thread model has been generalized to
approximately treat nonzero chain thickness (d#0) in a simple average
manner30. This generalization is called the "Gaussian string model”, and
results in a g(r) and é(k) of the same form as Eq(8.2) but the density-density
screening does not obey Eq(8.4). For long chains all the basic structural and
thermodynamic features remain the same as the thread model, although
the contact value, g(d), is now nonzero and this has important implications
for particular physical problems. The Gaussian string model has been

shown to generally be in remarkable agreement with numerical PRISM
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predictions for discrete, nonzero thickness Gaussian chains30. This
agreement suggests that a type of "self-averaging” process occurs in
polymer fluids, i.e. the essential part of C(r) is its long wavelength,
integrated strength C, = C(k =0).

9. Semiflexible Chain Models
The most fundmental aspects of real polymer structure are : (a) nonzero

chain thickness, (b) semi-flexibility, i.e. a system-specific and
thermodynamic state dependent tendency for chain bending or coiling due
to rotational isomerism, and (c) an overall size strongly correlated with the
degree of polymerization. As displayed in Figure 3.1, the discrete
semiflexible chain(SFC) model includes these features by introducing (a) a
site diameter, d ; (b) a local bending energy b which controls the "chain
persistence length”, defined as £p =Xg< 11 * lg, >/ Ip ,which for the large N is
given by &p = Ip/{1+<cos(8)>} where lp is the magnitude og the nearest
neighbor rigid bond length; and (c) a degree of polymerization, N, which
determines the overall size <RZ2> = 1 (2Ep-DN (for large N). The ratio lp/d
controls the amount of exposed surface area available for interchain site-
site interactions or packing.

Summarizing, the structure of a fluid of hard core SFC polymers is
characterized by four dimensionless variables which can be chosen to be :
pmd3 (reduced density) or total site packing fraction n,I'= Ep/d (chain
aspect ratio) , Ip/d , and degree of polymerization, N. Novel approximate,
but accurate and computationally convenient, numerical procedures have
been developed by Honnell et. al.55 for the calculation of the single chain
structure factor, ®(k), of the SFC model. In the polymer field jargon, the
SFC model is the discrete, finite thickness generalization of the "worm-like-
chain" or "Koyama" model4,56  which interpolates between the rigid rod
and ideal random walk chain models. The approximate calculation of ak)
is based on a cumulant expansion and rigorous evaluation of the second
and fourth moments of rgy, or equivalently <cos(6)> and <c0s2(0)>. In
addition, it is possible to exactly compute the next nearest neighbor
correlations43, ®o,0+2(r), and this extension is generally adopted and
accounts for the most local part of the intramolecular excluded volume
interactions.
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Details of the rotational potentials, chemical bond lengths, bond
angles, and nonspherical monomer structure are ignored in the SFC model
and thus can only be mimicked by judicious choice of SFC model
parameters. However, it has been recently demonstrated by Schweizer et.
al.52 that by appropriate choice of SFC parameters both the single chain
and interchain packing of real polymer liquids can be reproduced to
surprising accuracy by the SFC model. Although inherently nonunique,
specific procedures for "mapping” a real polymer onto the SFC have been
formulated and successfully applied. Here we present a few representative
results and refer the reader to the original literature for the details52.

Figure 3.2 shows the predicted g(r) at melt-like density for N=1000
chains , Ip/d = 0.5, and a range of aspect ratios(of order unity) relevant to
typical flexible polymers of experimental interest®2. For these cases g(r) is
relatively featureless and slowly varying in rough accord with the simple
Gaussian thread model behavior. There is both a local and global
correlation hole, and g(r) < 1 for all r. These features are in qualitative
accord with atomistic calculations. Moreover, the form of g(r) appears to be
a remarkably good, coarse-grained representation of the site-averaged
correlations predicted by atomistic PRISM theory(see subsection 4 and B
below) and atomistic simulations®7-59. Such agreement is not because real
polymers are Gaussian on all length scales as assumed by the thread
model. Rather, it is the multitude of local chemical lengths, and thermal
conformational disorder associated with chains composed of real
monomers, which frustrates the development of well-defined solvation
shells and positive correlation in g(r)92.

Another important structural feature in Fig 3.2 is that the local
correlation hole is very sensitive to aspect ratio. As expected physically, it
deepens as the chain becomes more flexible and less able to efficiently pack
with neighboring polymers. This feature has important consequences for
thermodynamic properties(e.g.,cohesive energy density)and the miscibility
of polymer mixturesS2,

As the chain aspect ratio is significantly increased above I" =1.4, and/or
the accessible site surface area is enhanced by increasing 1p/d, more well-
defined solvation shells develop and "positive correlation” (g(r) >1) occurs.
The extreme limit is the rigid rod polymer. The predicted packing of such
models(not shown) begins to resemble a smeared version of the g(r) of
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3.2 PRISM results for the site-site g(r) of a N=1000, h =0.5 SFC model
liquid and several experimentally relevant choices of chain aspect ratio
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simple atomic liquids, particularly in the "tangent" SFC limit55 where
lp=d. Thus, such a tangent model appears to be a poorer coarse-grained
representation(relative to the Ip/d<1 SFC models) of the g(r) of real polymer
fluids.

The "tangent" SFC model with chain aspect ratio of I'=1.4 has been
studied in recent large scale molecular dynamics and Monte Carlo
simulations of dense melts by several groups51’60. Comparisons of PRISM
theory predictions with these benchmark simulations has shown
agreement at roughly the same level obtained for atomic and small
molecule(RISM) liquids(e.g. 10-20% errors at contact and much better as r
increases). This is significant since it shows that the standard site-site PY
closure for hard core fluids suffers no obvious loss of accuracy as the chains
become longer. For linear chain solutions and melts interacting via pure
hard core potentials the site-site PY closure appears to be the most accurate
closure for g(r) as judged by overall comparison with computer
simulationsB0. At the highest melt-like densities, Yethiraj and Schweizer61
have shown that PRISM theory with the PY, HNC and MS closures yield
the most similiar results for g(r). However, the PY closure is the most
robust since under certain density and chain length conditions the HNC ,
MS, and diagramatically proper closures38-40 can fail to converge and/or
result in extremely poor descriptions of collective structure and density
fluctuations especially on long length scales. Theoretical arguments for
this have been suggestedS1. Very recent simulation studies by Yethiraj62 of
hard core fluids composed of rather stiff chains of larger aspect ratios
(roughly T>2 ) reveals that PRISM theory predicts the local (near contact)
behavior of g(r) very well, but longer range aspects associated with liquid
layering and solvation shell structure is not accurately described.

An example of a comparison by Honnell et. al. 55 of PRISM theory with
the molecular dynamlcs simulations of Kremer and Grest®l are shown in
Figure 3.3. Details of the model are given elsewhered1,55, Briefly, a melt-
like density was studied for N = 50 - 150 unit chains. The linear polymers
were modeled as freely-jointed beads with a purely repulsive, shifted
Lennard-Jones interaction between all segment pairs. The corresponding
chain aspect ratio is I'=1.4. PRISM theory with the PY closure(plus a
standard correction for repulsive force softness) was applied for two choices
of the intramolecular structure factor &d(k) : (i) a SFC chain model with
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bending energy chosen to reproduce the simulated value of the chain end-
to-end distance, and (i) the exact, simulation result for the single chain
quantity ®(k). The second approach involves the fewest statistical
mechanical approximations, and provides a precise check on the accuracy
of the PRISM/PY theory for interchain packing. Errors of the size of 15%
are found at small separations, which become much smaller as r
increases. Calculation (i) is in the best agreement with the N=50
simulation. This is partially fortuitous, i.e. errors in PRISM theory and
errors in the approximate calculation of @(k) have largely canceled to yield
nearly perfect agreement for N=50, 100(not shown) and 150. Calculations
for a simpler ideal freely-jointed chain model have also been
performed51’55 (not shown here) , and are in the poorest agreement with
simulation since this fully flexible ideal model ignores the very local
intrachain excluded volume interactions between monomers separated by
two bonds. Thus, chain size is underestimated leading to the strong
underestimation of g(r) locally.

The trends of g(r) with decreasing fluid density are qualitatively
similiar to decreasing aspect ratio at melt density®9. Single chain
conformational entropy becomes increasingly more important relative to
interchain packing entropy as the fluid becomes more dilute, resulting in a
g(r) which is less structured with a much deeper local correlation hole.
Many examples have been given in the literature®,25,55, However, as true
for RISM theory of simple moleculesd, the quantitative accuracy of PRISM
theory is reduced as the fluid density is lowered even if the exact, simulated
®(k) is employed60,61. Similiarly, at fixed density and aspect ratio, the
chains pack more poorly (less solvation shell structure and deeper hole
locally in g(r)) as N is increased6,25,55 However, a stable long chain limit is
approached in the local region of g(r), and this occurs more quickly as the
density and/or chain aspect ratio is increased.

3. Atomistic Models
The structurally simplest polymer, and one of the most commercially

important, is polyethylene. It consists of a linear chain of CH9 units, which
we model as single spherical sites in the single sife homopolymer spirit.
There exist well-developed ideal rotational isomeric state chain modelsl3
where the bond rotational degrees of freedom are represented as discrete
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trans and gauche isomers. Numerical calculation of the required single
chain structure factor can be achieved via Monte Carlo simulation, or
using the recently developed computationally convenient approximate
methods of McCoy and coworkers63.

The predictions of PRISM theory for melts of (- CHg—)y chains based
on purely hard core intermolecular potentials have been numerically
obtained, including a systematic study of the n-alkanes by Honnell et. al.
(N=4-20)64,65_ Detailed comparisons with wide angle x-ray scattering
measurements of Narten and Habenschuss have been carried out, and
excellent agreement between theory and experiment has been
demonstrated®4-66, This agreement has motivated theoretical extensions
which employ PRISM theory of the liquid as input to treat melt
thermodynamic properties(PVT equation-of-state, compressibility, thermal
expansion coefficient)67, and the development and application of novel
polymeric density functional theories of crystallization68 and polymer near
surfaces and interfaces. For the strongly first order crsytallization
transition, it has been found by McCoy et. al. that the atomistically realistic
description of polyethylene is required for a proper description of the phase
transition68. This is not surprising since crystallization is a phenomenon
exquisitely sensitive to local molecular structure and packing.

Figure 3.4 shows the predicted melt methylene-methylene g(r) for a
range of temperatures52. The experimental density and a temperature-
dependent hard core diameter associated with the repulsive Lennard-Jones
methylene interactions(computed according to the standard Barker-
Hendersen procedure)5’11 has been employed in the calculations. Although
there is some fine local structural details for r<20 Angstroms, they are
rather weak and g(r) crosses over to the long range correlation hole form
for larger separations [ h(r) o r-1]. Random behavior corresponding to g(r)
= 1 is attained only when r > Rg. As the temperature is raised, the
reduction of local packing efficiency occurs due to the lower liquid density
and enhanced conformational disorder(more twisted gauchez
conformers). Comparison of the predicted dimensionless collective
structure factor, é(k), with wide angle scattering data is shown in Figure
(3.5)64,66. Excellent agreement is obtained for the chemically sensible value
of 8.9 Angstroms for the methylene hard core diameter. Comparable




g(r)

r/d

3.4 PRISM predictions for the site-site radial distribution function of an
N=1000 RIS model of a hard core polyethylene melt at various

temperatures52. Distances are scaled by the effective(T—dependent)
hard core diameter.
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agreement between theory and experiment has been found for the entire
alkane series69.

The most significant feature of Figure 3.5 is the strong first diffraction
peak or "amorphous halo" which is influenced by both inter- and intra-
molecular pair correlations64-66. The very large angle scattering reflects
single chain correlations which are input to the theory. Agreement of the
theoretical prediction for the collective structure factor at k=0 with the
measured data point is partially fortuitous since the attractive
intermolecular interactions present in the real fluid have not been included
in the calculation of this thermodynamic property.

The broad message of all the atomistic PRISM studies of linear
hydrocarbons is that the theory is capable of an essentially quantitative, ab

initio description of melt structure for the structurally simplest case of
(- CHo-)ny-

4. Coarse-graining and Relationship of Different Chain Models

The collective density fluctuation melt structure factor, é(k), has been

computed for a wide range of single site models and chain
parameters6:25,55,64'66,68. There are two primary packing related features
of interest: the zero angle scattering é(O), and the first strong diffraction
peak. These basic density correlation features are qualitatively the same for
all chain models since they are not intrinsically of polymeric origin.
However, clear differences exist with rather well-defined trends. For
example, at fixed fluid packing fraction ,chain length, and chain
persistence length, both the inverse zero angle scattering amplitude and
the amplitude and sharpness of the amorphous halo increase as the
monomer structural model includes more local structural features55,64-66,
Within the SFC modeld9, these features also increase as the chain aspect
ratio increases and/or N decreases since local packing is enhanced,
although a saturation behavior occurs for sufficiently large I and/or N.

The ability to construct coarse-grained models in such a way as to
mimic, or reproduce, selected properties of real polymers or atomistic
computations is a goal of both computational and conceptual value.
Recently, some progress has been made in this direction using PRISM
theory92. Briefly, in its minimalist implementation the key ideas employed
to select the parameters of the coarse-grained model are as follows. @8]
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Require an identical aspect ratio as the atomistic model or real
experimental polymer ; this parameter has been argued to be the primary
one in determining the average interchain packing efficiency. (2) Set N
equal to the degree of polymerization on a monomer basis. (3) Choose the
reduced density such that S(0) is equal to the experimental value; part of
the motivation here is the intriguing direct connection between Q(O) and
the local g(r) suggested by the Gaussian thread analytic results, and
empirically verified for more realistic chain model studies. In the initial
studies based on the SFC model, a purely hard core interaction has been
employed with a common value of d and 1p/d=0.5.

The results of this approach as applied to polyethylene are shown in
Figure 3.6. Remarkable agreement between the atomistic model g(r) and
the SFC g(r) is found. Moreover, even the Gaussian thread result seems
reasonable as an "interpolation” through the atomistic g(r). For integrated
thermodynamic quantities, such as the cohesive energy density associated
with intermolecular attractive forces, remarkably close agreement is found
between all three approaches92.

Generalization of this mapping scheme to polymers of more complex
monomer structure, such as polypropylene, also yield promising results®2
for the chain-averaged carbon-carbon radial distribution gav(r). Although
there will undoubtably be systems and phenomena where such a "pre-
averaging" of chemical structure detail will incur significant(and perhaps
fatal) errors, such a mapping scheme allows one to construct and study
coarse-grained SFC models for a very large number of materials. Thus,
this approach has significant potential for making PRISM theory a
"molecular design tool" in the sense that many possible materials systems
can be quickly studied based on input of a small amount of conformational
and related information. This approach has been recently implemented by
Schweizer and coworkers with considerable success for understanding and
predicting melt solubility parameters and polyolefin blend miscibility92,69,

B. Multiple-Site Vinyl Polymers

In order to capture the nonspherical nature of monomers for polymers
more complicated than polyethylene, one can use additional independent
sites to build the monomer structure. An example is shown in Fig. 3.7 for a
vinyl polymer. Note that the sites can be overlapping to maintain the correct
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----- SFC, I'=1.2
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3.6

r/d

Predicted interchain radial distribution function for a hard core
polyethylene melt described by 3 single chain models : atomistic RIS at
430 Kelvin, overlapping(l/d=0.5) SFC model with appropriately chosen
aspect ratio and site number density(see text), and the Gaussian

thread model (shifted horizontally to align the hard core diameter with
the value of r/d=1).




Polyethylene

3.7 Schematic representation of a three site model for describing vinyl
polymers contrasted with a one site model for polyethylene.




bond lengths, angles and steric volume of the atoms or groups of atoms
making up each site. We use a united atom scheme26 to construct a vinyl
monomer from three independent sites where site A represents a CH2
group, site B represents a CH group, and site C depicts a side chain
substituent. PRISM theory in Egs. (2.3) - (2.5) now yields six integral
equations for the six independent radial distribution functions gaa(r),
gBB(r), gcclr), gaB(r), gac(r), and gec(r) which characterize the
intermolecular packing.

As a first approximation26 one can model the vinyl polymer as a freely-
jointed, tangent hard sphere chain as depicted on the second line of Figure
3.1. Thus each bond(of fixed length) is completely flexible with each site,
including the side group site C, acting as a universal joint. Invoking the
Flory ideality hypothesis, the intramolecular structure functions f-)-ow (k) in

Eq. (2.4) become26

Gy (0)=53, 5

iea je

kd gy

where m(i,j) is the number of bonds between a pair of sites i and j on the
same chain. The summations in Eq. (3.5) can be performed in a
straightforward manner and are detailed in reference 26.

In reality it is known from computer simulation®1 that the
intramolecular excluded volume is not completely screened out in a
polymer melt, even at high density. Overall the chains will exhibit ideal
scaling with Rg~N1/ 2 characteristic of a chain with no long range

repulsions, but the chain expands locally due to intramolecular overlaps.
This is confirmed in self-consistent calculations43-47 as discussed in
section VIIIL In order to quantitatively compare PRISM calculations for the
intermolecular structure with computer simulations, it is necessary to
compensate for this local chain overlap. This can be accomplished by using
the intramolecular structure functions SA)(XY (k) obtained from the full many

chain simulation. Alternatively one can compute .(.A)ay(k) from a single

chain calculation or simulation in which only local, short range repulsions
are included. Figure 3.8 shows selected components of the intramolecular
structure factor matrix for vinyl chains of 33 monomers obtained from
Monte Carlo simulations of Yethiraj and coworkers’9. The points are from
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the full, many chain simulation, whereas the curves were obtained from a
single chain Monte Carlo simulation in which sites separated by 2 bonds
are prohibited from overlapping. Interactions between sites separated by
more than two bonds are set to zero based on the physical expectation that
long range excluded volume is screened under melt conditions. It can be
seen from this figure that the intramolecular structure of a chain, with

local repulsions only is an excellent approximation of a chain in a melt.
Using these results for f).ow(k) as input to PRISM theory, the six

coupled equations resulting from Egs. (2.2) and (2.5) can be solved
numerically using a straightforward Picard iteration scheme26. The
intermolecular packing of vinyl chains of 38 monomers is compared with
the simulations of Yethiraj’0 in Figs. 3.9. While the agreement is not
quantitative, it can be seen that the PRISM theory certainly captures the
essential features of the intermolecular packing. The comparison with
simulation in Figs. 3.9 was carried out at a packing fraction characteristic
of a concentrated solution(n= 0.35). We anticipate that the agreement
between PRISM and theory would improve as the packing fraction
increases to 1\~ 0.5 characteristic of a neat polymer melt.

It is instructive to examine the details of the 6 intermolecular radial
distribution functions in Figs. 8.9. Note that on long length scales (Rg~3) all
the gqoy(r) are essentially identical in the correlation hole regime. This
verifies that the local monomer architecture does not affect the packing on
intermediate and long length scales. On the other hand, on short length
scales near contact, significant local packing differences are seen between
the different types of sites making up each monomer. We observe from Fig.
3.9a that goc(r) is much larger than all the other local correlations. This is
a consequence of the fact that the C sites are situated on the outside of the
chain and hence can easily approach each other near contact.

By contrast, ggg(r) is small near contact because of screening effects.
The B site is located on the chain backbone underneath the C groups and
therefore is strongly shielded by the surrounding sites. These qualitative
screening ideas26,70 can be carried further to explain the relative order of
all the radial distribution functions near contact:
gcc(d) > gac(d) > gpe(d) > gaa (d) > gag(d) > gpp(d). Not surprisingly the
local packing, characterized by the 6 different 8oy (r), is a sensitive function

of the detailed monomeric structure. For example ggc(r) is seen26,70 to
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systematically increase near contact when the hard core diameter of the C
site is increased. For typical nonpolar van der Waals interactions the
attractive interactions between sites are spatially short range. For this
reason one expects the local intermolecular packing details are important
in determining the thermodynamic properties(e.g., cohesive energy) of the
polymer liquid.

The structure of a polymer melt can be probed by x-ray or neutron
scattering experiments. The intensity of scattering I(k) is given by

1(k) = ¥ boby Sqy (k) (3.6)
oy
where by, is a scattering cross section of species o, and the éow (k) are the
partial structure factors making up a structure factor matrix defined
analogously to Eq. (3.3)
S$k) = Q&) +H (k)

3.7

~ -1 ~
=(1—fz(k)-c<k)) O(k)

The second equality in Eq. (8.7) follows from Eq. (2.2). The summations in
Eq. (3.6) run over the v independent sites making up the monomer.
Assuming for the moment that the scattering cross sections of each site are
equal, then the scattering intensity of a three site vinyl polymer melt is
proportional to the average structure factor defined according to

Say (k) =4 385y ) (3.8)
oy

éav (k) is plotted in Fig. 8.10 for a tangent-hard-sphere, freely-jointed
chain melt26 for various diameters dcg of the side group site labeled as C.
Note that when there is no side chain group (dgcc =0) the vinyl chain
reduces to a one site, freely-jointed polyethylene type chain. In this case the

main structural feature at low wave vector is seen from Fig. 3.10 to occur at
kdpp =7 corresponding to the nearest neighbor distance (=2n/k). When a

side group substituent is added, however, a new peak grows in below
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kdaa =2. This low angle peak grows in intensity and shifts to smaller
wave vectors as the size of the side group increases. Curiously, this low
angle feature corresponds to packing distances in real space of
approximately 8 hard core diameters. Such a "pre-peak” has been reported
for some vinyl polymer melts like polystyrene71, however, recent x-ray
scattering measurements’2 on isotactic polypropylene show no indication
of a pre-peak. ExaminationZ6 of the partial structure factors reveals that
the pre-peak is arising from relatively long range interchain correlations
between backbone carbon centers which are modulated by the presence of
the side groups.

It should be emphasized that Fig. 3.10 was calculated for an idealized
freely-jointed chain melt in which the site diameter and bond length are the
same. In order to make quantitative contact with experiments, it is
necessary to more faithfully represent the monomer architecture through
the intramolecular functions f)ay (k). A model which captures more of the

local chemical structure of real polymer chains is the well known
rotational isomeric state modell3. In order to mimic a chain in a theta
solvent or a melt, intramolecular repulsions are included between sites
separated by less than or equal to 4 bonds (the "pentane effect”)13.

Detailed PRISM calculations32 were performed by Rajasekaran,
Curro and Honeycutt on the stereochemically regular isotactic
polypropylene (i-PP) of N=200 monomers employing the rotational isomeric
state model of Suter and Flory’3 to compute the required f).ay (k). The

characteristic ratio of a linear chain is defined as Ce = <R2>/Np lec2
where N}, is the number of backbone carbon-carbon bonds of length lcc -
According to the Suter - Flory rotational isomeric state calculation for i-PP,
Coo = 4.0 at 473 K. SANS measurements’4, however, indicate that C_,, =6.2
for i-PP in the melt state. In order to compensate for this discrepency in
chain dimensions, the rotational state energies (or equivalently the
temperature T=286 K) was rescaled to obtain the experimental C,.
Although the moments of the distribution can be computed in closed form,
the single chain structure functions cannot be computed analytically for the
rotational isomeric state model. Thus, a Monte Carlo simulation of a single
chain was employed to obtain the six functions flay (k).




The six intermolecular radial distribution functions for i-PP were then
deduced from PRISM calculations using the single chain simulation
results as input. The diagonal correlation functions are shown in Fig.
8.11a, and the off-diagonal components are given elsewhere32. It can be
seen that the i-PP correlation functions are qualitatively similar to the
idealized chain results in Figs. 8.9. An interesting feature of the BB radial
distribution function for the atomistically realistic model is that because of
shielding effects, and the added constraints of the local chain architecture,
gpp(r) approaches zero at a distance greater than the dgg =3.9 Angstrom
hard core diameter. In other words, because of local steric constraints, the
CH sites on different chains are restricted from coming into direct contact.

The resulting x-ray scattering pattern of the i-PP melt was found to be
in some disagreement with the wide angle scattering measurements of
Habenschuss and Londono’2 in the region k=1 AL, This led Curro and
coworkers?5 to introduce further realism into the single chain structure by
performing single chain Monte Carlo simulations in which the internal
rotational angles ¢ were allowed to vary in a continuous manner. This
additional realism in the local chain architecture leads to excellent
agreement with scattering measurements on i-PP melts, as discussed
elsewhere 5.

A comparison at fixed liquid packing fraction of the chain-averaged
carbon-carbon radial distribution function, gav(r), for polyethylene (Coo =
7), isotactic polypropylene(with 2 values of Cw ), and syndiotactic
polypropylene are shown in Figure 3.11b92. The polymers i-PP and s-PP are
regular multiple site homopolymers of different stereochemistry and
significantly different characteristic ratios(Ceo = 10.5 for s-PP) . The clear
differences among all the systems demonstrates the sensitivity of local
packing in polymer melts to monomer shape, stereochemistry or tacticity,
and backbone stiffness. Finally, as discussed in depth elsewhere, the
1/d=0.5 SFC model of section B reproduces the structural variations quite

well based on the effective aspect ratio mapping idead2.

C. Thermodynamics

Having determined the structure of the polymer liquid, it is in
principle possible to compute most thermodynamic properties of interestS,5.
Whereas the structure or radial distribution functions at liquid density are

25



.Nmmqowaoaﬁom
9I30®J0SI JO SUOIJoUN] UOIINQLI}SIP [eIped sjeuoderp ¢ °YJ,

¢0

¥°0

90

80

¢l

‘sugeoAod jo sjepow STy 2TJSTUIONE 8100 PI8Y JI0J suorjorpaxd NSIUd ®IT'S

( ,I) L'DB




‘swsayjuaIed Ur UMOYS 848 JJ J0f pefojdure S[opowr QTY 93 Jo orjBaI
onseoRIBYD 9y, ‘mgousiAdoxdAod orgoejorpuls pue ‘oustAdoxdLod
913083081 ‘eusihygediod jo s[epowr 0op= 9N] 0§ UIA[9Y] gL% e suorjouny
uonnqrisip [eIpel o31s-031s paFp.2an ureys Jo uostredurod v

¢0

¥'0

90

80

¢l

'suye(o4[od o s[opow STy OIISTWOJE 8100 PRy 10y suororpaad WSTHS qIT'e

(1)6



primarily controlled by the repulsive part of the intersite potentials,
thermodynamic quantities will also be sensitive to the attractive potentials.
In the case of a one component melt, thermodynamic quantities of interest
include the pressure P, isothermal compressibility k, and the internal or
cohesive energy U. Since in general one theoretically knows g(r) only
approximately, the thermodynamic properties derived from the structure
will be approximate. Moreover, integral equation theory leads to
thermodynamically inconsistent results in the sense that the predictions
depend on the particular thermodynamic route used to relate the
thermodynamic quantity to the structured,S.

1. Equation-of-State
Thermodynamic inconsistency is particularly apparent for the

pressure of polymer fluids67. There are at least three routes which relate
the pressure to the structure. Perhaps the easiest method to implement is
the so-called "compressibility route” :

P Pm dp

PmkpT (J, 5.0 (0) (8.92)

where p2kpTk=S,,(0). The analog of the virial route of monatomic
pm B av

liquids for the pressure of a molecular liquid is the "free energy charging
formula". For hard core potentials one can write9,8

F-F,
Vi, T

—27tpm d g(”(?»d )A2dA (3.9b)
oy

where gm (Mdgy) is the contact radial distribution function for a hard core
diameter Kday F and Fo are the Helmholtz free energies of the fluid of

interest and a corresponding ideal gas, respectively. In Eq. (3.9b) the hard
core diameter is turned on as the "charging parameter" A changes from 0
to 1. The pressure follows from differentiation of F' with respect to volume.
Yethiraj and coworkers®7 calculated the hard core contribution to the
equation-of-state of polyethylene by various thermodynamic routes using
PRISM theory. It can be seen from the results plotted in Fig. 3.12 that very
large differences are found between the compressibility and charging

26




‘UI9)848 90UaISJed Y] S8
oAInO ([IH oY} Sursn L109y) uoreqinired Aq suoIjoBI}jR SIPNOUL 95UL

ou, "(YSep/op) 4D Pue ‘(peysep) [[eA ‘(PIOs IoMO]) Aqqiqssoaduod
‘(pifos aeddn) A3isue 99I] :89)NO0I T BULPOWISY] SNOTIBA

£q 6Z79=N Pu® 3 08¥=], 18 sue[dyjedfod 10y ,gpendmod Lyisuep ping
peonped Jo uoouNy B 58 (Y 6'¢=p) 9e3s-jo-uorjenbs exeyds piey oYy, ZT'S

1 “d/d



routes. Qualitatively similar results are seen for ethane and n-butaneb7,
however, the thermodynamic inconsistency appears to increase
significantly with N. One contributing reason for this large, N-dependent
thermodynamic inconsistency is traceable to the fact that RISM theory7’8,
unlike the PY theory? for atomic liquids, is not exact in the low density
limit. Both Egs. (8.92) and (3.9b) effectively integrate the structure of the
fluid over the complete range of density. A route which uses only structural
information at liquid-like density, where RISM theory is accurate, might
produce better results.

Based on an argument by Percus?6, another route to the pressure was

proposed by Dickman and Hall77 making use of the density of sites ina
nonuniform molecular liquid at a hard wall py 0):

P =y (0)kgT (3.9¢)

Yethiraj and Hall78 developed a "wall PRISM" theory to compute Py (0).

The wall PRISM theory prediction for hard sphere polyethylene is also
shown in Fig. 8.12. It can be seen that pressures intermediate between the
charging and compressibility route predictions are found.

Also plotted in Fig. 3.12 is the predictions of a statistical
thermodynamic approacg : the generalized Flory dimer equation-of-state
(GFD) of Dickman, Hall and Honnell79 suitably modified by Yethiraj and
coworkers to rotational isomeric state chains of overlapping sites67. Monte
Carlo studies?9 have documented the accuracy of the GFD equation-of-state
for chain molecule liquids at high densities. It can be seen from Fig. 3.12
that the wall PRISM and GFD predictions for hard core polyethylene chains
are in reasonable accord at densities pmd3 ~ 2 characteristic of polyethylene
melts. It can be seen from the slopes of the curves, however, that the
isothermal compressibility from wall PRISM calculations is somewhat
higher than from the GFD model. Recently density functional theory has
been combined with PRISM theory by McCoy and coworkers80 as an
alternative to wall PRISM in computing the density profile of sites near a
wall. This approach avoids the wall-PRISM assumption of intramolecular
chain ideality in the vicinity of the wall. Preliminary caleulations80 for the
pressure by this approach are in close agreement with corresponding GFD
calculations. Direct comparisons of PRISM predictions for the equation-of-
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state of hard core n-alkane fluids with simulations have been recently
carried out by Yethiraj81a, and for the interchain structure by Dodd and
Theodorou81b,

Although the intermolecular packing of a dense polymeric melt is
generally believed to be controlled by the repulsive part of the potential,
attractions will have a strong influence on the equation-of-state. The
conceptually and computationally simplest way to incorporate the effects of
attractions on the pressure is through thermodynamic perturbation theory®
about a hard core reference system. For convenience we employ the Barker
- Henderson®,82 version of perturbation theory in which the intersite
Lennard-Jones potential v(r) is divided into a repulsive branch vo(r) and an
attractive branch va(r).

v(r) = 48[(0/ )2 - (G/r)6] (3.10)

Vo(r)=v(r); r<o

=0; r>0
Va(r)=0; T<O
=v(r); r>o0

The Helmholtz free energy can then be written to first order as

—_=Tms g a02 (Yaly gy 3.11
T it FPR) et ©.10

where Fps and go(r) are the free energy and intermolecular radial
distribution function of the corresponding hard core reference system. Eq.
(3.11) is written for a single site monomer but is easily generalized to
monomers consisting of multiple sites. The pressure is then found by
differentiation of Eq. (8.11) with respect to volume. The optimum diameter
d of the hard core reference system is given by

d= T{l —exp[-v,(r)/ kBT]}41tr2dr (38.12)
0

Any of the four hard core equation-of state-curves in Fig. 8.12 could be
used in conjunction with Eq. (8.11) to obtain the pressure of a polyethylene
melt at any desired temperature. The method which appears to be most
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accurate is to use the GFD equation-of-state for the reference system and
PRISM theory for the structure go(r) of the reference system. The results67
of this procedure are shown in the inset of Fig. (8.12) along with
experimental PVT data of Olabisi and Simha83. In calculating the
polyethylene pressure curve the hard core diameter d was maintained at
3.9 A in order to be consistent with x-ray scattering measurements64,66 on
polyethylene at 430 K. The Lennard-Jones well depth parameter was then
adjusted in order to fit the experimental data ; this procedure yields e/kp =
38.7 K, which fixes ¢ = 4.36 Angstrom according to Eq(8.12). It can be seen
from the inset in Fig. 3.12 that excellent agreement is obtained with
experiment. However, this approach is not completely satisfying since
PRISM theory is not used for the equation-of-state of the reference system.
On the other hand, the simulation studies of Yethiraj and Hall have shown
that the use of the PRISM theory go(r) leads to an accurate prediction of the
attractive potential contribution to the pressure within a perturbative HTA
framework.84

Reasonable ab initio results have also been obtained for the thermal
expansion coefficient and isothermal compressibility(é(k:O)) of
polyethylene melts52,67. The latter was computed using the experimental
T-dependent density, and the assumed dominance of soft repulsive forces.
The resulting S(0) was found to be roughly 20% larger than the
experimental values, although excellent agreement was obtained for the
relative temperature dependence52 over the entire experimental range of T
= 380 - 525 Kelvin.

Finally, analytic predictions for the osmotic pressure of polymers in
good and theta solvents can be derived based on the Gaussian thread model,
PRISM theory, and the compressibility route30. The qualitative form of the
prediction for large N is94 : BP o (po2)3 , which scales as p3 for theta
solvents and p9/4 for good solvents. Remarkably, these power laws are in
complete agreement with the predictions of scaling and field theoretic
approaches, and also agree with experimental measurements in
semidilute polymer solutions2-4.

2. Melt Solubility Parameters
The internal or cohesive energy density U is also a useful

thermodynamic parameter for polymer melts. It is defined as89
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U =5 3 puy ) Vo (1) (G (3.132)
oy

where the integration is carried out over the attractive branch of the
potential in Eq. (8.10). In first order perturbation theory the radial
distribution function is approximated by its reference hard core melt value
ggw (r) thereby yielding

: ) .
U=z 72 PPy | Vo (T)gq, (r)dr (3.13b)
oy

In the absence of correlations, or the random mixing limit,the radial
distribution functions are all unity. In this "mean field" limit the cohesive

energy density reduces to : Uyy =%n8p12n03 for the Lennard-Jones

potential.
The melt solubility parameter § can be computed from85

§=+-U (3.14)

For small molecule liquids 8 can be measured directly from the heat of
vaporization. For polymer melts the solubility parameter can only be
indirectly estimated from solubility data in various solvents86, group
contribution tables87, or model-dependent fitting of PVT measurementsS8.

The cohesive energy density for polyethylene as a function of
temperature has been computed from Eq. (3.13b)52. In agreement with
experiment, [Ul was found to decrease nearly linearly with
temperature89. This trend arises from the fact that the correlation hole of
polyethylene deepens as the temperature is increased due to the combined
effects of decreased density, and an increase in the number of gauche states
of the polyethylene chain backbone(see Fig. 8.4). The magnitude of the
predicted solubility parameter is in good agreement with experimentally
inferred values for polyethylene in the range 15 - 19 (J/em3)12 based on PVT
measurements4d and group contributions87.

The cohesive energy of isotactic polypropylene has also been calculated
from Eq. (3.13a) using the intermolecular structural information in Fig.
3.11 for the hard core system. The united atom Lennard-Jones potentials of
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Jorgensen and coworkers90 for CHo, CH, and CH3 groups with o= Cay

were employed, along with appropriate values for the CH2 group well depth
energy £=¢ep and relative values for the CH3 and CH groups of

e e
xl_,/ C%AA , x2_1/ B%AA (3.15)

Based on the Jorgenson parametersgo, the relative solubility parameter is
predictedd2 to be Spg / Spp = 1.24. If as a simplfying approximation one sets
A =X, =1 then dpg /O1pp = 1.26 is predicted®2. These predicted ratios are
in good agreement with dpg/8pp = 1.20 inferred by Rodgers et. al.88 from
equation-of-state data for isotactic polypropylene. For the case of
syndiotactic polypropylene one finds®2 that 8pg /Sgpp = 1.07 under the
assumption A; =\, =1. Thus, polypropylene is predicted to have a smaller
solubility parameter than polyethylene because of differences in packing on
local length scales(see Figure 11b).

Schweizer and coworkers92 have estimated the cohesive energy of a
range of polymers of varying chain architecture usihg both the single-site
semiflexible chain model, and the analytic Gaussian thread model. Model
calculations of the reduced solubility parameter are shown in Figure 3.13.
As discussed in section II.B.2, for experimental applications a system-
specific effective aspect ratio was employed to map the semiflexible chain
model to a particular polymer of interest. As described in detail
elsewhered2, the relative solubility parameters computed with the SFC
approach are in good agreement with the atomistic values quoted above for
both polyethylene and the various tacticities of polypropylene. Moreover,
predictions for many other hydrocarbon polymer melts have also been made
and compared with experimental solubility parameters87,88,91. Good
agreement is found which provides a simple understanding of how local
polymer structure influences melt solubility parameters52.

The Gaussian thread model, in conjunction with a Yukawa form for
the attractive interchain potential of spatial range a :

—r/a

v(r)=—eaS—, £>0 (3.16)
r
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3.13 Reduced solubility parameter as a function of chain aspect ratio for
the 1/d=0.5 SFC model and the analytic Gaussian thread model®2. Two
choices of polyethylene aspect ratio at 430 Kelvin are shown. The liquid
density is determined by the calibration procedure discussed in ref.52.
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yields a simple analytic expression for the reduced solubility parameter.
The result can be written in several alternative, but equivalent , forms®2

1 _ 1 _ 1
1e—3 5 148 () \ﬁ+i1“'2
PO~ a a\l 12 2am

This form is plotted in Figure 3.183 for two experimentally relevant choices®2

5=

(8.17)

of the parameter d/2an. The prediction of a direct connection between
polymer density, aspect ratio(or packing length (pmcz)'l), and spatial
range of the attractive potential is intuitively reasonable. Eq(3.17) has been
shown by Lohse to provide an excellent representation of experimentally
deduced solubility parameters of polyolefin melts92.

As a cautionary remark, we note that significant quantitative
differences between the SFC and Gaussian thread model predictions are
evident in Figure 3.18. These differences are not surprising, and reflect the
poorer local packing of Gaussian threads relative to semiflexible chains.
These differences also highlight the potential subtleties of the proposed
mapping schemes, i.e. the need to separately "calibrate” the different
coarse-grained model parameters against experimental data or atomistic
PRISM computations52.

IV. ATHERMAL POLYMER BLENDS

Mixtures of polymers, or "blends", are of major scientific and
materials engineering interest.98-95 Moreover, the phase behavior of high
polymer blends is very subtle due to the enormous reduction of the
ideal(combinatorial) entropy of mixing due to chain connectivity.l
"Athermal” blends are defined to be mixtures of two or more polymer
components for which the heat of mixing is zero. An example of such a
blend is one in which all intermolecular site-site interactions are entirely
repulsive hard core in nature. Although athermal blends do not exist in
reality, their behavior is important from a theoretical point of view. Based
on studies of atomic9:11 and small molecule liquids8 the structure of one-
component liquids at high density is believed to be primarily determined by
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the repulsive part of the potential. This suggests that a useful strategy for
describing general polymer blend thermodynamics might be to treat the
attractive interactions by a perturbation expansion about an athermal
reference system. Thus the problem of determining the intermolecular
packing in athermal polymer blends is a fundamental one and forms the
basis of the simplest conceivable general blend theory. In addition, the role
of excess entropic effects on mixing, and possible athermal phase
separation, are questions of basic statistical mechanical interest.

The well known mean field incompressible Flory-Huggins theoryl of
polymer mixtures assumes random mixing of polymer repeat units.
However, it has been demonstrated that the radial distribution functions
g (r) of polymer melts are sensitive to the details of the polymer
architecture on short length scales. Hence, one expects that in polymer
mixtures the radial distribution functions will likewise depend on the
intramolecular structure of the components, and that the packing will not
be random. Since by definition the heat of mixing is zero for an athermal
blend, Flory-Huggins theory predicts athermal mixtures are ideal solutions
which exhibit complete miscibility.

In this section we examine athermal binary mixtures using PRISM
theory. Tests of both the structural and thermodynamic predictions of
PRISM theory with the PY closure against large scale computer
simulations are discussed in section A. Atomistic level PRISM calculations
are presented in section B, and the possibility of nonlocal entropy-driven
phase separation is discussed in section C at the SFC model level. Section D
presents analytic predictions based on the idealized Gaussain thread
model. The limitations of overly coarse-grained chain models for treating
athermal polymer blends are briefly discussed.

A. Comparison with Computer Simulations

An important question is whether PRISM theory can predict the
packing in athermal blends with the same good accuracy found for one-
component melts. To address this question Stevenson and coworkers96
performed molecular dynamics simulations on binary, repulsive force
blends of 50 unit chains at a liquid-like packing fraction of N=0.465. The
monomeric interactions were very similar to earlier one-component melt
simulations by Grest and Kremer®l, which served as benchmark tests of
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melt PRISM theory. Nonbonded pairs of sites (both on the same and
different chains) were taken to interact via shifted, purely repulsive
Lennard-Jones potentials. These repulsive potentials were adjusted so that
the effective hard site diameters, obtained from Eq. (3.12), were
d,, =1.015 and dgg =1.215 for the chains of type A or B respectively. Chain
connectivity was maintained using an intramolecular FENE potentialdl
between bonded sites on the same chain. The resulting chain model has
nearly constant bond lengths which are nearly equal to the effective hard
core site diameter.

The three intermolecular radial distribution functions
gaa (1), 825 (1), gpp(r) in the blend were obtained from the simulation as a
function of the concentration. Corrections were made for finite size effects
in the simulation96. Likewise, the intramolecular structure factors
Q,, (k) and fZBB(k) were obtained from the simulation and used as input for
PRISM calculations on the athermal blend. In the PRISM calculation the
PY closure of Eq(2.5a) was used for the same soft repulsive potentials as in
the simulation. A comparison between the results from the molecular
dynamics simulation and PRISM theory is shown in Fig. 4.1 for the case of
volume fraction of A chains ¢ =0.368. Although deviations are seen at
small distances, overall the agreement is quite good and comparable to
similar studies51,60 done earlier on one-component polymer melts(see Fig.
3.3). Similar agreement was found at other blend concentrations96.

The simulations of Stevenson and coworkers allow a direct test of the
random mixing approximation. Strictly speaking, at the structural level
the random mixing approximation in its polymeric Flory-Huggins forml
implies that all the radial distribution functions in the mixture are
identically unity, g, (r)=1. As can be seen from Fig. 4.1 this is obviously a
poor approximation. A less restrictive definition of random mixing might

be that the packing is the same for both species in the blend, in other words
all the g, (r) are the same. We can probe this approximation by defining an

excess correlation function Ag(r) based on the differences in radial

distribution functions between species.

Ag(r) =g, (1) + 8o (r) - 28,5 (T) 4.1)
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This function quantifies the tendency for "pairing” or physical clustering of
like species. Figure 4.2 depicts Ag(r) for the ¢ = 0.368 case obtained from
the simulation. Significant departures from random mixing, caused by
local differences in monomer size, are evident at short length scales.
Remarkably, PRISM theory is able to capture these subtle packing effects as
seen by the solid line in Fig. 4.2.

Another important question regarding the structure of athermal
blends is whether the single-chain conformation changes with
composition. In the molecular dynamlcs simulations?6, small changes (at
most 10-15 %) were observed in $,, (k) and in the mean square end-to- end
distance <R2> of the chains in the blend. However, such changes are barely
within the statistical error of the simulation. The collective partial
structure factors were also monitored in the simulation and no evidence for
incipient phase separation was detected in this athermal mixture96,

Benchmark Monte Carlo simulations of a different class of athermal
polymer mixtures have recently been carried out by Weinhold and Kumar97
An equimolar(¢=0.5), constant volume binary blend was considered. The
polymers were modeled as semiflexible, tangent bead chains of equal
degrees of polymerization, N, interacting via a purely hard core potentlal of
the same diameter for all sites. The reduced fluid density was pmd =0.65
(n = 0.34) representative of a concentrated solution. The only difference
between and A and B species was the local chain bending energy which
controls the chain aspect ratio. A statistical segment length was defined as
a= (6Rg2/N)1/ 2  and an aspect ratio as '=a/d. The A ("flexible") chain
aspect ratio was fixed at I'f = 1.5, and the B ("stiff") chain aspect ratio was
varied over the wide range of I's = 1.7 - 4.2. Various model blends were
studied for N=20 with the "stiffness asymmetry" of each characterized by
the variable & = 2(T's-T'f)/(Ts+T'f). Besides providing exact results to test
PRISM theory for athermal blends, these studies were motivated by
scientific questions related to the relevance of a purely entropic "packing
frustration” mechanism for phase separation in chemically similiar
polymer blends such as the saturated polyoleﬁns98’100.

Here representative examples are given of the PRISM/simulation
comparisons and the main conclusions are summarized?’. The PRISM
calculations were carried out assuming conformational ideality, and the
required single chain structure factor was computed using the discrete,
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tangent site Koyama model®d adjusted such that it reproduced the radius-
of-gyration of the chains in the one-component meli. To within the
statistical errors of the simulations, no changes in single chain
conformation on going from the melt to the equimolar mixture were
detected. ’

The agreement of PRISM theory with simulations for the three blend
pair correlation functions, gss(r) , gff(r), and gfs(r), was found to be typical
of prior studies of dense melts, i.e. errors of roughly 10-20% close to contact,
but much more accurate as r increases. More importantly, the relative
form of the three g(r)'s, and their changes with increasing blend stiffness
asymmetry, were accurately described by PRISM theory.97 One simulation
was carried out for N=200 and & =0.28. No loss of accuracy of PRISM for
structural properties was found as N was increased from 20 to 200.

Blend thermodynamic properties were also computed. Comparisons of
PRISM theory and simulation for the partial excess(interaction entropic)
free energies of mixing per site, AFmix i , are listed in Table 1 for N=20 and

200.

Table 1. Comparison of theory(computed based on free energy charging
method) and simulation values of excess partial free energy of mixing
changes defined in text?7. The statistical uncertainties of the simulation
values is roughly + 0.005. Subscripts "s" and "f' denote stiff and flexible
components. The flexible statistical segment length, af, is fixed at 1.50+0.01
and the stiffness asymmetry variable is £ = 2(ag-af)/(ag+af). PBAFexc is total
excess free energy of mixing predicted by PRISM theory ; to within
statistical uncertainty this quantity is found to be zero in the simulations for
all cases shown. All results shown are for N=20, except for the one N=200

case.
Simulation Theory

g BAFs  PAFf BAFs  PAFf PAFexc
0.024 - - -0.0063 0.0063 0.00003
0.14 -0.022  0.020 -0.0175 0.0179 0.0004
0.28 -0.032 0.031 -0.0276 0.0296 0.0017
N=200: -0.065 0.069 -0.0539 0.0549 0.0010
041 -0.036 0.035 -0.0306 0.0337 0.0031




0.53 -0.038 0.036 - - -
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The PRISM results are based on the free energy charging route
expressions, which for ¢=1/2 are given by97

431
BAF A mix = @-2— g sz[gkA('/\dJr) +gha () -2g55 (kd*)] (4.2)

for the A species. The B-species expression is obtained by interchanging A
and B labels in Eq(4.2). Surprisingly good agreement between theory and
simulation is obtained for all stiffness asymmetries and both values of N.
Note that the "stiff' and "flexible" excess free energy of mixing are opposite
signs, which implies that the flexible(stiff) chain is destablized(stabilized)
upon transfer from the melt to the blend. Such behavior reflects local
packing differences and equation-of-state effects93,101 which cannot be
described within an incompressible theory as often employed in polymer
science2. Note, however, the tofal net excess free energy was extremely
small in all cases(even much smaller than the ideal entropy of mixing per
segment = N-11n(2)).

Thus, for the short and moderately long chains studied the athermal
stiffness blend behaves as a nearly ideal mixture in a thermodynamic sense
even though there are significant differences in segmental packing among
the different species consistent with the MD simulations described above?6,
PRISM computations of an effective interaction (or "chi" in polymer
science) parameter based on the free energy or compressibility route have
also been shown to be in surprisingly good agreement with simulation?7,
and are very small thus supporting the above conclusions.

We note that there are hints in Table 1, and structural fluctuation
quantities such as Ag(r) discussed elsewhere97, that as N or stiffness
mismatch increase the excess free energy of mixing also increases and the
blend is less stable. Thus, the possibly of entropy-driven phase separation
due to packing frustration of dissimiliar flexibility chains as N increases
beyond 200 remains open based on the simulation studies of ref.97.

Summarizing, the major conclusion of this section is that PRISM
theory provides an excellent description of the structure and (constant
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volume) free energy of mixing of high density athermal polymer blends
composed of the short and modest chain length molecules presently
accessible to computer simulation. This has motivated the application of the
theory to experimentally relevant situations such as long chains(N=103)
and chemically-realistic atomistic models.

B. Multiple Site Homopolymer Blends

It was demonstrated in section ITIB for one-component melts that
subtle screening effects resulted from the packing of nonspherical
monomers. It is natural to expect that similar screening effects would also
be operable in athermal blends of vinyl polymers. In order to probe this
aspect at a chemically realistic level Rajasekaran, Curro, and Honeycutt32
studied an athermal mixture of polyethylene and isotactic polypropylene.
The chains in this mixture were modeled as illustrated in Fig. 3.7 with
three sites (A, B, C) making up a polypropylene monomer, and a single D
site representing the CH2 group of polyethylene. Application of Egs. (2.2) - (
2.5) lead to a set of 10 coupled integral equations which were solved
numerically using standard Picard iteration techniques.

Assuming that the intramolecular structure of the chains in the
athermal blend is independent of composition, then the elements of the 4x4
fzw (k) intramolecular matrix for the blend are already available from the

corresponding one-component melt intramolecular structure functions.
The f)m (k)for o,y =A,B,C were obtained from Monte Carlo simulations of

a single, rotational isomeric state chain using the parameterization of
Suter and Flory?3 discussed in section IIIB. Likewise, Q. (k) was
obtained from the RIS calculations of Honnell and coworkers for
polyethylene63:64.

Fig. 4.3 depicts the intermolecular packing in the athermal PE/i-PP
blend for chains of 200 monomers at a volume fraction of polyethylene sites
of $=0.50. Although there are 10 independent correlations, only the
diagonal components are shown. The radial distributions in the blend are
qualitatively similar to those in the one-component melt (see Fig. 3.11).
However, as demonstrated elsewhere32, the detailed structure is found to
be significantly composition dependent. For example, the local peaks in the
polyethylene gp,(r) increase monotonically in magnitude as more

polypropylene is added to the mixture(by roughly 80% at ¢ = 0.1 relative to
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the pure PE melt). This suggests a tendency of the polyethylene to cluster in
the mixture as a result of unfavorable cross correlations between the PE
and i-PP chains. Despite this clustering tendency, no thermodynamic
evidence was found for macroscopic phase separation in the athermal
mixture at any composition.

From a knowledge of the radial distribution functions in the blend as a
function of composition, one can obtain the various thermodynamic state
functions by applying the analysis of Kirkwood and Buffl02, For the present
case the following relationship for the entropy of mixing AS ; can be

derived32

4.3)

(azAsmix) _ ~ky(M/ VPV
00> o [9¢2.§AA(0)-6¢(1-¢)éAD(0)+(1—¢)2.§DD(0)]

where 1 is the overall blend packing fraction and v is the volume of one of
the sites (assumed to be all equal). If incompressibility (k — 0) and random
mixing (g, (r)=1) are enforced, then the continuous space analog of the

Flory-Huggins or ideal solution relationship is obtained32

32AS ; (n) [ 1 1 ]
Z 2 mix =-knl—=|V 4.4
( 29? jTV B\v)" | 2Npgt * 3Npp(1-0) “a

Calculations by Rajasekaran and coworkers32 of the entropy of mixing
derivative for the polyethylene/polypropylene blend using Eq. (4.3) predict a
smaller entropy stabilization of the mixture, by approximately a factor of
two, relative to ideal solution behavior32. Thus, excess entropic effects do
destabilize this PE/APP blend relative to the ideal solution behavior, but no
athermal phase separation is found even for this very structurally

asymmetric case. Experimentally, an equimolar PE/PP mixture is
immiscible for all accessible temperatures and values of Nmon far less
than 200. Thus, explanation of the experimental behavior requires
consideration of thermal effects(attractive forces) as discussed in Section V.

It should be mentioned that Eq. (4.3) is only one of several possible
thermodynamic routes to the entropy of mixing in the athermal blend.




Another possible route is through the "charging formula" of Chandler8
used earlier in Eq. (3.9b) for the one-component polymer melt.

C. Semiflexible Blends and Entropy-Driven Phase Segregation

Motivated by both scientific questions related to the origin of phase
separation in saturated polyolefin alloys97-100 and the basic statistical
mechanical question of entropy-driven phase segregation, Singh and
Schweizerl00 have carried out a detailed numerical PRISM study of the
structure and phase behavior of the binary athermal "stiffness" blend
discussed in section A. A wide range of chain aspect ratios of the tangent
SFC chain, fluid density, blend composition, and ratio of A and B site
diameters were investigated. Liquid-liquid spinodal phase separation is
defined as when all the partial collective structures at zero wavevector,
éMM' (k =0), simultaneously diverge. This condition is precisely given as

0=1-paNaCas —ppNBCrB +PAPBNANE(CaaCBB - CiB) (4.5)

where Cy = Cvm(0). For the cases of interest here NA=Np=N, pA =¢p,
pB = (1-9) p, and p is the total site number density of the binary blend.

The possibility of "entropy-driven" phase separation in purely hard
core fluids has been of considerable recent interest experimentally,
theoretically, and via computer simulations. Systems studied include
binary mixtures of spheres(or colloids) of different diametersl03, mixtures
of large colloidal spheres and flexible polymers104, mixtures of colloidal
spheres and rodsl05 and a polymer/small molecule solvent mixture under
infinite dilution conditions(here an athermal conformational "coil-to-
globule" transition can occur)106. For the latter three problems, PRISM
theory could be applied, but to the best of our knowledge has not. The first
problem is an old one solved analytically using PY integral equation theory
by Lebowitz and Rowlinsonl07. No liquid-liquid phase separation was
found, i.e. the hard sphere mixture is completely miscible. Recent
simulations and experiments suggest this is not true for highly size-
asymmetric cases103, and modifications of the atomic closures have been
proposed to account for the observed phase separationlos. For the polymer
problem, we are also using the site-site PY closure. However, entropy-
driven phase separation, if it occurs, is associated with the difficulty of
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packing chains of different stiffnesses or bending rigidity. In analogy with
liquid crystal systemslog, one might expect phase separation if the
"packing frustration” is sufficiently great(although for mixtures of rods
and coils segregation into an isotropic and nematic phase generally
occurs). Relevant variables for such an entropy-driven phenomenon would
include the individual chain aspect ratios, overall packing fraction, and
degree of polymerization.

Here only a few of the highlights of the extensive studyl00 will be
mentioned for the simplest case of equal A and B chain site hard core
diameters, and an equimolar mixture of chains of N sites each(¢p=1/2). The
A chain aspect ratio is fixed at approximately 1.3, which is representative of
a polymer such as polyethylene52. Thus, the structural asymmetry variable
¢ =2(I'B-TA)/(I'B+TA) < 0 for most experimental polyolefin mixtures since
unbranched polyethylene generally has the largest aspect ratio of the
saturated hydrocarbon polymers52,97’100. Figure 4.4 shows spinodal phase
boundaries based on Eq(4.5) for two reduced densities representative of a
dense melt and concentrated solution(as studied by simulation)?7. There
are several important features100,

(1) No phase separation is found for a stiffness asymmetry variable less
than roughly 0.4, or for low values of N and any value of stiffness
mismatch(consistent with simulation)97. Since experimentally one expects
£ < 0, this result suggests purely entropy-driven mechanism cannot
account for the facile tendency of polyolefins to demix. Moreover, for chain
parameter values typical of most semiflexible polymers of interest, the
excess entropic effects appear small and much weaker than enthalpy
related consideration associated with local packing differences between
species(see Section V).

(2) Phase separation can occur at large enough N under the
appropriate conditions. It seems clear that since large N is required, the
predicted phase separation is driven by spatially long range, or nonlocal,
aspects of polymer connectivity and excluded volume interactions. Thus,
nonlocal entropy-driven phase segregation requires a large enough N and
sufficient absolute stiffness and aspect ratio mismatch of the polymer
backbones. This deduction seems natural in that packing frustration is
created locally and then propagated to macromolecular length scales via a
backbone stiffness dependent chain connectivity mechanism. This scenario
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is further reinforced by the fact that PRISM theory studies to date have
found no athermal phase separation for highly flexible chain models such
as Gaussian or freely-jointed models27-29(see also section D below) which
lack completely the local rod-like stiffness on length scales comparable and
shorter than the chain persistence length.

(3) The effect of fluid density is relatively weak but phase separation is
enhanced at higher density consistent with intuition.

A structural interpretation of the predicted nonlocal entropy-driven
phase separation can be deduced by examining the spatially-resolved pair
correlation function measure of incompatibility or clustering, Ag(r) defined
in Eq(4.1). Figure 4.5a shows this function for the case of fixed chain aspect
ratios and several values of N and fluid packing fraction. As the chains
become longer, local clustering of like segments is enhanced but tends to
"saturate" at large N. However, the growth of a much larger amplitude and
longer spatial range component is dramatic. It coincides with increasingly
large long wavelength concentration fluctuations and ultimately spinodal
phase separation. This N-dependent correlation feature is associated with
the chain connectivity and inpenetrability on intermediate "correlation
hole" length scales.

The dependence of Ag(r) on chain stiffness mismatch at fixed N=100 is
shown in Figure 4.5b. Again, local segregation increases with stiffness
mismatch but tends to saturate. However, nonlocal segregation continues
to grow in both amplitude and range ultimately resulting in phase
separation. The latter behavior is particularly striking since at fixed N the
size of the polymers, and hence the spatial range the correlation hole
associated with melt-like density fluctuations, is nearly fixed. This plot also
illustrates an intriguing empirical observation that the contact value
Ag(r=d) tends to acquire a common critical value at the spinodal phase
boundary( roughly 0.1 in the cases of Figures 4.5) which is nearly
independent of how the phase transition is driven(increasing N at fixed y=
I'B/T'A or increasing vy at fixed N)100.

The detailed nature of single phase blend correlations, effective
interaction parameters, and the entropy-driven phase separation
phenomenon have been found to be sensitive to system-specific factors such
as composition, differences in A and B site diameter, density, and local
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4.5a Intermolecular pairing function in the equimolar athermal stiffness

blend100. Except as explicitly noted all curves are for the melt like
packing fraction of 0.5. Results for fixed aspect ratio asymmetry of y =
I'BTA = 1.49 and various values of N. (b) Dependence on aspect ratio
asymmetry for Fixed N=100. From top to bottom the curves

correspond to v = 2.319(spinodal boundary), 2.199,1.979,1.734,1.343
and 1.219.



45b Intermolecular pairing function in the equimolar athermal stiffness
blend100, Except as explicitly noted all curves are for the melt like
packing fraction of 0.5. Dependence on aspect ratio asymmetry for
Fixed N=100. From top to bottom the curves correspond to Yy =
2.319(spinodal boundary), 2.199,1.97 9,1.734,1.343 and 1.219.




architectural details100. However, the basic conclusions summarized above
seem qualitatively general.

A limited number of numerical studies have been carried out using
the free energy charging approach to blend thermodynamics instead of the
compressibility route described abovel00, In the miscible region,
quantitative differences in the excess free energy of mixing, or interaction
parameter, have been found but these differences are generally no more
than a factor of 2 or 8. More work is required to establish the severity of the
thermodynamic inconsistency problem for this athermal stiffness blend
system. Another caveat is that it is well known that PRISM does not
properly incorporate "nematic-like" orientational corrleations in the one
phase fluid8,39,40, This should represent a technical limitation to
describing liquid-liquid phase separation which becomes more severe as
the chain aspect ratios increase. Description of isotropic-nematic phase
separation is not possible. However, for the experimental applications to
conformationally flexible polyolefins and polydienes of current interest,
strong nematic correlations seem improbable.

D. Analytic Gaussian Thread Model

PRISM theory for the athermal "stiffness asymmetric blend" model
described in section C can be analytically solved29,30 in the idealized
Gaussian thread limit for N —e. For many physical problems(e.g.,
polymer solutions and melts, liquid-vapor equilibria, and thermal polymer
blends and block copolymers), the Gaussian thread model has been shown
to be reliable in the sense that it is qualitatively consistent with many
aspects of the behavior predicted by numerical PRISM for more realistic
semi-flexible, nonzero thickness chain models. However, there are classes
of physical problems where this is not the case. The athermal stiffness
blend in certain regions of parameter space is one case, both in the bulk100
and near surfacesl10. Nevertheless, even for this problem the thread model
does correctly capture certain aspects, and when it does fail this provides
considerable insight into the key factors which control the behavior of real
polymer systemsloo.

Employing the simplified Gaussian forms of Eq(3.1), and enforcing the
three point-like core conditions within the PY closure
approximation(gym(r=0)=0) , results in three nonlinear transcendental
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equations for the three direct correlation parameters Cym'. In the long
chain limit, the Gaussian chain structure factors take on a perfectly self-
similiar form : &, (k) = 12(kop)2, and no large k crossover to locally rigid
behavior ,®(k) < (kép)'l, occurs. This mathematical feature allows an exact
analytic solution which has a scaling form?29,30,100

Cpe=7*Caa . Cap=7°Caa (4.6)

3
02 Can(#) = "TE— [0+ 17 (1-¢)] @)

where I = oca/d and y=oB/ca is the "structural or conformational”
asymmetry variable. The perfect scaling relations among the blend
composition-dependent CpyM' are a consequence of the self-similiar
intrachain correlations and the PY closure treatment of the (point-like)
excluded volume constraints.

Eq(4.6) predicts the repulsive effective potential between segments of
like species, -kBT CmM, is larger in the blend for the conformationally
stiffer chain than the more flexible one. This result is in accord with
physical intuition and is mathematically required to satisfy the local hard
core (point) exclusion constraint. Moreover, the repulsive pseudopotential
between the more flexible(stiffer) species is predicted to increase(decrease)
upon transfer from a one-component melt to the blend environment. This
trend is intuitively sensible, consistent with the signs of the species-
dependent effective chi-parameters derived elsewherel00, and agrees with
numerical SFC PRISM calculations and Monte Carlo simulations of the
partial excess free energies of mixing and effective chi-parameters97.

The thread model is predicted to be miscible under all conditions due to
the perfect scaling relations of Eq(4.6). Although this complete miscibility
conclusion is in agreement with numerical SFC PRISM for low aspect ratio
chains(those best described by a Gaussian model), it misses the entropy-
driven phase separation phenomenon found numerically for sufficiently
stiff polymerleO. This point emphasizes the limitations of the thread
model: it ignores the consequences of local chain rigidity on packing which
appears to be central to the athermal phase segregation phenomenon.
Another example of the limitations of the Gaussian thread model is its
prediction29>30 of interchain random mixing, or conformal solution
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behavior, corresponding to gMm'(r) = geff(r;$). Again, this is a consequence
of the (assumed) perfectly self-similiar Gaussian single polymer structure
and the d—0 idealization. In reality, there are always differences in the
gvmr(r) functions due to local, nonuniversal breaking of the self-similiar
chain correlations.

Finally, field theoretic approaches?? have recently predicted athermal
phase separation driven by nonlocal-entropic considerations for
incompressible blends of Gaussian thread polymers. This prediction is at
odds with PRISM theory in the thread limit. However, for the effective chi-
parameter PRISM theory has been shownl00 to be equivalent to the field
theory if the free energy route is employed in conjunction with the
extremely simple RPA closure(not PY). ‘The RPA closure, Cym'(r) =
-Bup(r) for all r, is known to be very poor for repulsive force systems and
violates the hard core impenetrability condition. Thus, the field theoretic
prediction has been suggested to be a consequence of the combined use of a
long wavelength incompressibility approximation in conjunction with
anRPA closurel00,

V. THERMAL EFFECTS IN POLYMER BLENDS:
PERTURBATION APPROACH

In reality, polymer mixtures are not athermal and attractive
interactions can play a crucial role in determining their miscibility and
thermodynamic properties1,93'95. This fact is evident in the mean field
Flory-Huggins theory where phase separation and the interaction
parameter are entirely of an enthalpic origin. For a binary blend of A and B
single site chains composed of N repeat units the free energy of mixing per
segment is given in the incompressible Flory theory asl

BAF pix = ¢ lnoa + ¢p In¢p +XodADB (56.1a)
Na Np

where oa+0p =1, and the interaction or "chi" parameter in its off-lattice

version is of an extremely simple, purely energetic mean field form
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Here, viym'(r) are the (generally attractive) tail potentials between species
M and M'. The spinodal instability corresponds to a vanishing of the second
compositional derivative of the free energy of mixing yielding the condition

2%0sNO(1-0) =1 (5.2a)

where ¢ =, and Ny = Np =N. This implies a liquid-liquid spinodal phase
separation temperature of

keT, = Nﬂ’(;—'@ [ P2V, (1) = Van (1) = Vg (1)] (5.2b)

The critical composition is ¢A = ¢B = 1/2 by symmetry.

The two prime predictions of Flory theory are as follows. (i) Tg o< N due
to the extreme loss of ideal entropy of mixing associated with global chain
connectivity. Hence, it is correctly predicted to be generally very difficult to
create a miscible polymer blend93-95, (ii) Immiscibility is promoted as the A
and B monomers become more chemically distinct as quantified by their
intermolecular tail potentials (e.g. London dispersion interactions).

Eq(5.1) includes only the ideal, combinatorial entropy of mixing and
the simplest conceivable "regular solution” type estimate of the enthalpy of
mixing based on completely random mixing of monomers : gMM'(®) = 1in
the liquid state language. yo is refered to as the "bare” chi-parameter since
it ignores all aspects of polymer architecture and interchain nonrandom
correlations. For these reasons, the model blend for which Eq(5.1) is
thought to be most appropriate for is an interaction and structurally
symmetric polymer mixture. The latter is defined such that the only
difference between the A and B chains is a vAB(r) tail potential which favors
phase separation at low temperatures. The closest real system to this
idealized mixture is an "isotopic blend" where the A and B chains are
hydrogenated and deuterated versions of the same polymerlll. The
symmetric model has played a central role in theoretical and simulation
studies due to its great simplicity from a chemical viewpoint112,
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In real systems, nonrandom mixing effects, potentially caused by
local polymer architecture and interchain forces, can have profound
consequences on how intermolecular attractive potentials influence
miscibility. Such nonideal effects can lead to large corrections, of both
excess entropic and enthalpic origin, to the mean-field Flory-Huggins
theory. As discussed in section IV, for flexible chain blends of prime
experimental interest the excess entropic contribution seems very small.
Thus, attractive interactions, or enthalpy of mixing effects, are expected to
often play a dominant role in determining blend miscibility. In this section
we examine these enthalpic effects within the context of thermodynamic
pertubation theory for atomistic, semiflexible, and Gaussian thread
models. In addition, the validity of a Hildebrand-like molecular solubility
parameter approach based on pure component properties is examined.

A. Thermodynamic Perturbation Theory

For dense nonpolar polymers the intersite interactions are of the van
der Waals type and one anticipates that the attractive branch of the
potential may exert little influence on interchain packing. Although
obviously true if the tail potentials are weak relative to kgT, such "repulsive
force screening"9:11 may also be operative in polymer mixtures for several
reasons discussed below. Although there will undoubtably be errors made
by such a simplification, it represents a conceptually and computationally
convenient starting point. In such a thermodynamic perturbation , or high
temperature approximation(HTA), approach the polymer liquid structure
is assumed to be determined solely by an appropriately constructed
repulsive reference system.

The starting point is the the reduced Helmholtz free energy of the blend
in the standard "charging parameter” form8

BF _BF, , 1 ‘ ;o
V: v, +E;papy_([d}“J.Bvay(r)g?;y(r)dr (53)

where the attractive branch of the potential Aw,, (r) is gradually turned on
as the charging parameter A varies from 0 to 1. Fy is the free energy of the

corresponding athermal, or reference repulsive force, system and may
depend on temperature implicitly through the density, single chain
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conformation, and/or effective hard core diameter. Eq(5.3) ignores single
chain intramolecular contributions associated with the attractive branch of
the potentials. This generally represents an additional approximation, but
within the the context of the conformational ideality simplification such
contributions would only contribute terms linear in polymer concentration
and blend density. Such terms then cancel out in the free energy of mixing
relevant to blend mixing thermodynamics. Since all PRISM work on blend
thermodynamics to date has employed this conformational ideality
assumption, Eq(5.8) is appropriate. Future work based on the "self-
consistent” formulation of PRISM discussed in Section VIII needs to be
done in order to investigate the corrections to blend thermodynamics due to
nonideal conformational effects(e.g., changes in polymer structure on
going from the melt to blend, or mixture composition-dependent
conformational changes).

Within the HTA scheme, the liquid structure of the mixture is
approximated by the structure of the athermal system, ie. gﬁy (r) = gg, (v).

Thus to first order Eq. (5.3) can be approximated as

U

F BF, 1 -
BV BV +-§§papy [ BV, (g2, (r)dF (5.4)

Such a HTA might be expected to be particularly accurate for polymers
since the critical temperature grows without bound as N increases. Thus,
the literal perturbative condition that Bvoy(r) << 1 might be expected to hold
in the one phase region for long chains. Although this argument is sound
in principle, in practice the éxperimentally accessible temperatures are
restricted to T = 200 -500 Kelvin so such a weak coupling condition will not
necessarily be valid for laboratory blends for which the demixing transition

is measurable.
At constant pressure P, the Gibbs free energy of mixing AG,;, of the

blend relative to the pure components can be expressed as

AG,, =AF . +PAV,_, (5.5)

mix

where AV_. is the volume change of mixing. In first order perturbation

theory, the Helmholtz free energy of mixing of the reference athermal
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system is entirely due to the entropy of mixing, ie. AFS. =-TAS,,,. Thus,
from a knowledge of the structure of the athermal reference blend one can
calculate the free energy of mixing and phase behavior of the general blend.
Any theory based on Eqs(5.4) and (5.5) is expected to yield classical critical
exponents.

Incompressible Flory mean field theoryl is recovered from Eq(5.4) and
(5.5) if one assumes : (i) No excess volume of mixing, (ii) a blend
composition-independent total packing fraction, (iii) the athermal reference
system is an ideal solution, i.e. zero excess entropy of mixing, and (iv)
literal random mixing, i.e. gmm(r) =1.

In the PRISM studies carried out to date, simplification (i) has been
invoked. An effective interaction or chi-parameter can be defined in the
usual manner as the second derivative of the excess free energy of mixing

192
=_§W[..TAS.;*;g;+AHmix] (5.6)
=XatXB

where the third line defines excess entropic and enthalpic interaction
parameters. Spinodal phase boundaries are determinable from this

quantity.

B. Phase Behavior of Atomistic Models

Rajasekaran and coworkers32 applied Eq. (5.4) to the PE/i-PP blend
using the 10 radial distribution functions determined from the athermal
mixture as discussed in section IVB. For this case Eq. (5.5) can be written
in the form

BAG ;. ___ASmix (_11) a BPAV ..
v - kBV+ - xg®(l (fl>)+———V (5.7)

with an enthalpic interaction parameter ¥ defined implicitly in terms of

the heat of mixing. Alternative definitions of an effective chi-parameter,
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such as Eq(5.6), are equally valid since as a matter of principle a single
interaction parameter cannot completely characterize the nonideal aspects
of a compressible binary mixture. For purposes of computing the spinodal
phase boundary the precise definition of a homogeneous phase interaction
parameter is irrelevant. For the PE/i-PP blend, x; can be written in the

form
1
xu@)=-7 (%)[AHPE + AHpp — 2AHpg/pp | (5.82)

with the various contributions to the heat of mixing taking the form

AHpe = (1= 0)" [ Bvoo| 9B" — 0050 |dT (5.8b)
1< m o Ta=
AHpp = z jBVab[ga:“ -(1- ¢)gab]d r (5.8¢c)
9¢ ab=A
1L -
AHpgpp = 3 2 j BV.pGapdT (5.8d)
a=A

where the arguments of the relevant functions have been suppressed. In
the literal random mixing limit, in which all the radial distribution
functions are unity, Eqgs. (5.8) reduces to the continuum analog of the Flory-
Huggins "bare" chi parameter

3 2
% = 167Pec (ﬂ)(nxl +A, _1) (5.9)
9 \% 3

where the A's are ratios of attractive well depth parameters as defined in
Eq. (3.15), and ¢ and € are the Lennard-Jones parameters for interactions
between a pair of methylene sites.

Using Eq. (4.3) for the second derivative of the entropy of mixing
together with Egs. (5.8) for the heat of mixing permits the evaluation of the
Gibbs free energy of mixing as a function of volume fraction ¢ of
polyethylene. In their application to the PE/i-PP blend, Rajasekaran and
coworkers32 approximated the volume change of mixing as zero. This is
equivalent to approximating the partial molar volumes in the mixture by
the pure component molar volumes. It should be emphasized that making
the assumption that AV =0 does not neglect the effect of density
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fluctuations (or equation-of-state effects), which are still present in the free
energy of mixing through the composition dependence of the packing
fraction n(¢). If the polarizability ratios are estimated from group additivity
tables86, or from Jorgensen's potential functions90 for alkanes, the heat of
mixing for PE/i-PP is found to be positive. Furthermore the critical
temperatures found from PRISM theory32 are much higher than the
corresponding Flory-Huggins estimates. This can be seen from the
spinodal curves plotted in Fig. 5.1 obtained using Small's estimate86 for A
and A,. The critical temperature for this mixture is predicted by PRISM
theory to be approximately 11 times larger than from the corresponding
mean field Flory value. This is in qualitative accordance with experimental
observations indicating a high degree of incompatibility between
polyethylene and polypropylene. Thus, one concludes that local nonrandom
packing effects, induced by local structural asymmetries in the monomeric
structure of PE and i-PP, lead to gross (primarily enthalpic) destabilization
of the blend.

In the case of polyolefin chains one expects the site polarizability
increases with the number of hydrogens present. For example the
polarizability of CHS3 is larger than for a CH group. Thus, in terms of
Eq(3.15) A, >1 and A, <1 for polyolefins. It is interesting to observe that if
A, and A, are switched (keeping the bare Flory-Huggins chi parameter in
Eq. (6.9) unchanged), then PRISM theory predicts a negative heat of mixing
and a miscibility for this hypothetical PE/iPP blend. Such an intriguing
possibility of "compensation” of the demixing consequences of structural
and interaction potential differences between species was first discovered by
Singh and Schweizer113 as described in the next section.

Finally, Honeycutt114 has applied blend PRISM theory at an atomistic
RIS model level to study the effect of tacticity(stereochemical differences) on
the phase behavior of a commercially important binary polymer mixture.
Tacticity is found to result in significant changes of the computed spinodal
boundaries, which serves to again emphasize the importance of monomer
structure and local packing on the free energy of mixing.

VI. SOLVATION POTENTIALS AND SELF-CONSISTENT PRISM
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All the theoretical work described so far has assumed "conformational
ideality". That is, the intramolecular pair correlations are presumed to be
independent of fluid density(and composition in an alloy) and can be
computed based on a chain model which only accounts for "short range"
interactions between monomers close in chemical sequence. This
assumption can fail spectacularly in dilute "good” solution where the
effective intrachain monomer-monomer interaction is repulsive in a second
virial coefficient sensel-4. For such good solvent conditions, the polymer
mass/size relationship no longer obeys the ideal random walk scaling law
R « NV2 but follows the "self-avoiding walk"(SAW) law R o< NV with v=3/5
corresponding to the "swollen" coil behavior. As the dilute solution is
concentrated by increasing a dimensionless measure of monomer
concentration (e.g., p), the polymers begin to interpenetrate and the
excluded volume swelling effect is progressively screened. The precise
manner this occurs is predicted by scaling theories2 to be of a power law
form under large N, semidilute solution conditions, R o< p‘l/ 8, for p* << p
<< 1. Here, p = 1 corresponds to the neat melt, and in good solvents p* e« N~
4/5 which represents the "semidilute overlap" density when different
chains just begin to touch. The semidilute regime is characterized by
strong interchain overlap conditions, but still small overall concentration of
polymer. At high, melt-concentrations the polymer behaves as an ideal
random walk, and it is widely believed(but not proven) that chain
dimensions "saturate", i.e. become p independent1-3.

Phenomenological scaling theories, based on analogies with critical
phenemena, have been developed to qualitatively describe semidilute
solutions in the asymptotic long chain limit(N— )2 Self-consistent field
theoretic approaches have also been constructed by Edwards and co-
workers to describe the physical behavior summarized above3. However,
such theories are based on the most idealized Gaussian thread chain
model, and integrable delta-function two and three body psuedopotentials
between monomers. The latter can loosely be identified as describing
offective monomes-monomer interactions in solution at the second and
third virial coefficient level; in practice they are treated as empirical
parameters. Neither scaling nor field theoretic approaches are appropriate
for dense solutions and melts.
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As Edwards has recently emphasized115, a truly microscopic theory of
phenomena such as discussed above would be very valuable since it would
provide not only quantitative system-specific information, but also could
establish the range of validity of phenomenological scaling ansatzes. In this
section we summarize recent progress towards this goal in the framework
of PRISM and liquid state theory. We note that Chandler and Pratt carried
out pioneering work in this area by developing a statistical mechanical
framework for the self-consistent calculation of single molecule
conformation within the RISM formalism8,12,

The effective single macromolecule potential surface, U(R), consists of
three physically distinct contributions43

UR)=U,+Ug+W(R) 6.1)

where R denotes a complete set of coordinates required to specify the

configuration of a polymer molecule composed of N sites. The first term, Ug
, describes the "bare” local intramolecular interactions which specify
chemical bonding constraints(e.g., fixed bond length and bond angle) and
local chain flexibility(e.g., dihedral angle rotations in an atomistic model or
bending energy in a SFC model). All the "ideal" models discussed in
Section III contain only this type of energy term. The second contribution,
Ug , describes non-bonded “"long range" (in chemical sequence) excluded
volume type intramolecular interactions which are taken to be pair-
decomposable. Under good solvent conditions, Ug favors chain swelling to
reduce intramolecular repulsive contacts. The third term, W(R), describes
the "solvation free energy", i.e. the reversible work required to achieve a
configuration R in the condensed phase due to intermolecular solute-
solvent potentials only. In principle, this solvation potential is an N-body
function. However, mathematical tractability would seem to require
reduction to an (effective) pair-decomposable form, i.e.

N
WR = Y Woy(Fa~Fy) 6.2)

o<y=1
All work to date has employed this simplification.
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Pratt, Chandler, and others have developed and applied approximate
"solvation potentials" for flexible n-alkane fluids such as butane and
decane and other relatively small molecules2,116,117  The original
approaches invoked a "superposition” approximationl2, which in its most
naive form corresponds to assuming pair decomposability of W(R) and
calculation of the effective pair potential based solely on consideration of the
two sites. A more accurate solvation potential approach was then developed
by Chandler and coworkers23,24 in the context of a quantum electron in
dilute (classical) solution which led to new and more accurate self-
consistent approximations for the effective pair potential in W®R)L117, This
work represents the starting point for our self-consistent PRISM-based
studies of polymer fluids,and the development of novel solvation potential
approximations required for an adequate qualitative treatment of some
macromolecular systems.

A. Solvation Potential Theories
Chandler et.al have proposed a self-consistent pair interaction, called
the "Gaussian fluctuation"(GF) potential, of the form?23,24

BW oy (r) ==, [ aF'[ 4" Cop, (F — F'PSap (F' - FDCoy ") 6.3)
A

where Sgy(r) is the total density-density correlation function between sites c.
and vy separated by a distance r. For molecules composed of symmetry
equivalent sites Eq(6.3) simplifies in Fourier space to

~BW(k) = -C2(k)S(k) (6.4)

This approximate form can be derived many ways : from renormalized
second order perturbation theory23, Gaussian(linear response) density field
theory23, or via density functional expansions44,118. Pictorially, the
medium-induced potential between a pair of tagged sites is determined by
coupling to the surroundings via an effective potential (direct correlation
function) which is mediated by density fluctuations of the condensed phase.
The integrated strength of the medium-induced potential is



W(k) = ~kpTE2(0)8(0) = —— (6.5)

pKT

where the second equality follows from use of the PRISM Eq(2.2). Eq(6.5)
shows W(r) is (on average) attractive favoring compressed polymer
conformations, and hence will tend to cancel or "screen" the expansive
consequences of the bare intramolecular repulsions. Thus, the effective
attraction is expected to become stronger as fluid density increases, chain
length decreases, and/or polymer backbone stiffness increases, since all
these changes enhance intermolecular packing and reduce bulk
compressibility. Moreover, W(r) becomes increasingly structured(e.g.
oscillatory) as the above changes are made24,43,

The basic feature of a self-consistent mean pair approximation such as
Eqs(6.2) and (6.3) is that the effective interaction between two sites on the
polymer depends on their instantaneous position, and only on the entire
macomolecule conformation in an average (implicit) sense via the direct
and collective pair correlations. This simplification does no¢ preclude
describing situations of broken conformational symmetry, such as polymer
collapse, solvated electron localization, or inhomogeneous conformational
characteristics such as occur in star polymers(see section IX
below)23,24,46,

Grayce and Schweizer46, based on graph theoretical and hueristic
arguments, suggested a modified form for the solvation potential("PY-
style") which is in the spirit of the Percus-Yevick closure

BWEY () =~ In[ 1+ [ dF' [ F"C(F - FPS(F'-FDOG")| 6.6)

Eq(6.3), by contrast, was argued to be in the HNC closure spirit ("HNC-
style” solvation potential). On general grounds, one expects the PY-style
solvation potential to be weaker (e.g., less compressive) than its HNC-style
analog. However, the two solvation potentials do become equal in the limit of
weak interactions, BW(r) << 1. This limit may occur for many reasons such
as high temperature, low fluid density, and/or large intersite separations.
Moreover, the theoretical model adopted (e.g. thread, SFC,RIS) and/or the




statistical mechanical approximations invoked may result in such a weak
coupling regime for differing regimes of thermodynamic state.

For simple fluids®, the PY and HNC closure approximations are
aseful in different contexts, and this is probably also true of the
corresponding solvation potentials. Based on analogies with atomic and
small molecule liquids, and homopolymer fluids, one might expect the PY
potential is better for bare interactions which are spatially short-ranged
and repulsive46. This is the situation for the polymer/good solvent system of
present interest. However, one might expect that the HNC-style potential is
useful for longer-range, more slowly varying potentials such as Coulombic
or possibly Lennard-Jones attractive tails. The role of macromolecular
architecture(or precise single polymer model) in such qualitative ideas may
be subtle and is not well understood at present.

B. Self-Consistent Solution of Single Macromolecule Problem

Implementation of self-consistent PRISM theory requires addressing
the difficult technical question of how to iteratively solve the effective N-body
single polymer problem with "long range” intramolecular interactions, in
conjunction with PRISM theory for interchain pair correlations and hence
the solvation potential itself. For the homopolymer/good solvent problem,
successful field theoretic approximate approaches have been developed2'4.
However, these methods explicitly rely on the use of an integrable, delta-
function psuedopotential description of segment-segment interactions
within an effective Gaussian thread framework. The use of more realistic
models with local chemical constraints and a finite chain thickness (hard
core constraint) requires the development of different approaches.

Over the past several years, we and our collaborators have constructed
and applied several approaches‘l?"‘l'7 which vary greatly in both
computational convenience and level of statistical mechanical
approximation. These various approaches often have distinct(and often
limited) regimes of applicability and level of accuracy. Here we sketch the
essential physical features and statistical mechanical approximations of
the different numerical approaches.

1. Single Chain Monte Carlo



The most rigorous and computationally demanding approach to
solving the statistical mechanics of an effective Hamiltonian given by
Eqs(6.1) and (6.2) is to perform a single chain Monte Carlo simulation in the
framework of a self-consistent PRISM calculation. This approach was first
explored by Melenkevitz et.al. using a standard "kink-jump” algorithm44,
and subsequently by Grayce, Yethiraj and Schweizer4”? using the more
accurate "pivot algorithm"119.

Although straightforward in principle, and much simpler than a
many chain simulation, there are several practical difficulties associated
with proper sampling and equilibration. For example, at high fluid
densities the solvation pair potential is strong and oscillatory (see Figure
6.1) which makes sampling and equilibration difficult. Early work using
the kink-jump method was found to fail at such high densities#4, and the
pivot algorithm with its "long range moves" was required for proper
statistical sampling4”.

9, Free Energy Variational Approaches

A simpler, analytic approach is to employ the standard idea of
replacing the real system with a computationally tractable "reference
system" (polymer chain model in our case), the parameters of which are
variationally optimized using an approximate single chain free energy
expression. Two such schemes have been explored45,47, which differ in
both the choice of reference-chain model and the form of the approximate
free energy.

Earlier work by Melenkevitz et. al.45 was based on the standard Gibbs-
Bogoliubov inequality for the single chain free energy

N
BF <BF°+ [ dFBAGey ()G, (r) (6.7)
a<y=1

where ©Oqy(r) is the reference system intrachain pair correlation function
matrix, and A¢gy(r) is the difference in single chain effective interaction
pair potential between the real and reference systems.

In numerical applications, the "solvent" is treated as a vacuum, ie. it
enters solely in determining the polymer concentration or packing fraction
1. Thus, the real two-component polymer/solvent mixture is abstracted to a
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one-component polymer fluid of variable density. For the
homopolymer/good solvent system, the reference system is chosen to be an
ideal SFC(as computed with the discrete Koyama approximation)®® with an
effective, or "renormalized”, bending energy er. The repulsive interactions
between sites separated by two bonds (cooa,a-;.z(r)) is also included in the
reference system and treated exactly. Thus, the effective bending energy
describes both the bare bending efficiency of the real chain, plus the
combined consequences of the bare intramolecular repulsions and
medium-induced potential. Since the explicit effect of intrachain excluded
volume is absent in the ideal SFC model, it is introduced approximately by
defining an effective bond length , leff, determined such that in the dilute
solution limit SAW scaling for <R2> is recovered. This approach is in the
spirit of field theoretic studies3, and is capable of treating the entire
polymer concentration regime in good solvents. Values of the density-
independent quantity leff as a function of N are determined from Monte
Carlo simulation of a single self-avoiding chain4®. Explicit forms of Eq(6.7)
for this model and variational theory are given elsewhere4? ; it is important
to mention that the bare (singular) intrachain repulsions are omitted in the
evaluation of A¢eyy(r) in Eq(6.7).

More recently, a second free energy variational approach has been
developed by Grayce,Yethiraj and Schweizer4? An approximate single
chain free energy is constructed in the spirit of a functional expansion
about an ideal reference state with an explicit accounting of intrachain
excluded volume. The latter cannot be naively treated via perturbation
theory since it is singular and nonintegrable for the finite hard core
diameter models of interest. Rather, a virial-like treatment of the
nonbonded intrachain repulsions and medium-induced potentials is
employed by carrying out an expansion about an ideal reference system
through second order in the appropriate Mayer f-bonds.

In applications, the reference system is again chosen as an ideal SFC
with renormalized bending energy er ,and next-nearest neighbor pair
correlations, moa,oH.z(r), exactly computed. The resulting approximate

single chain free energy is47




BF(,€4q) = BFO(e,) +B[ AT Y, 02 012(1i8)  Adygua(r)

a=1

- 3 0, (rie,)[ -1+ exp(-BAd, (r)]

a+2<y

(6.8)

where Ay (r) =u(r)+ W(r;geq) for la—yl=8 (where u is the bare
intrapolymer "excluded volume" potential), and Adgy (r) also includes the

difference between the bare and renormalized bending potential for |o—yl
= 2. Here, geq and gr must be determined self-consistently by free energy
minimization and a recursive generating functional procedure47. Under
certain conditions it is possible to bypass this process by treating W not as
an external field but as a functional of the intrachain correlations, and
therefore directly minimizing F. That is, geq = €r is enforced at the start of
the self-consistent iteration procedure and F(er) is mimimized. Such a
"direct" method47 is generally much faster to numerically implement than
the full recursive procedure. As a matter of priniciple it does not yield the
same predictions as the recursive approach, but in applications studied to
date based on the PY-style solvation potential the results are quite
similiar(see section C).

Both the accuracy of variational approaches and their range of
applicability are expected to depend strongly the physical problem,
thermodynamic state conditions, and the choice of reference system and
form of the approximate free energy. The approach of Melenkevitz et. al .45
is relatively crude, but is exbected to be qualitatively useful over the entire
range of polymer concentration and degree of polymerization. The
approach of Grayce et. al.47 is more general with regards to describing the
chemical structure of macromolecules, but by construction is not capable of
recovering the SAW dilute solution behavior due to the perturbative(in an f-
bond sense) treatment of intrachain excluded volume interactions. Thus,
this approach is expected to be most appropriate for dense solutions and
melts, and hence is complementary to the heavily coarse-grained scaling
and field theoretic approaches2‘4.

3. Optimized Perturbation Theory
The first self-consistent PRISM studies by Schweizer, Honnell and
Curro43 considered only the HNC-style solvation potential and were based
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on an "optimized pertubative”, not variational, determination of the ideal
reference system effective bending energy. The starting point is a simple
functional expansion of the true single chain free energy about an ideal
reference system43

F
&f oy (1)

where the full and reference Mayer f-bonds are

fay(r)E@+(r—d)exp[—B(vb(eo)+W)]—1, lo-y!1=2 (6.9b)
=0, -d)exp(-pW)-1, la-y123 '
fgw(r)E®+(r—d)exp[—[3vb(er)]—-l, loe-yl=2

=0, la-vl23

, where £o is the bare SFC bending energy which quantifies the potential vb,
and ey is the corresponding renormalized value of the reference system.
The required functional derivative (evaluated in the reference system) is
easily determined. The reference system effective bending energy is chosen
by requiring the first correction to F-FO vanishes. This scheme is analagous
to well-known "blip-function” theories of Chandler, Weeks and
Andersen®,11 for determining a hard core diameter of soft repulsive force
simple fluids. Such a simple approach is not adequate for low polymer
densities and does not recover SAW scaling in the dilute limit. It is believed
to be most adequate for describing "small" nonideal conformational
corrections, e.g. nearly melt-like conditions. Moreover, this non-variational
approach can only be implemented for ideal reference systems
characterized by only one parameter, and it has been shown to not properly
describe the rigid rod limit where all condensed phase modifications of
chain conformation must vanish43.

C. Theory/Simulation Comparisons for Homopolymer Good Solutions

The best test of self-consistent PRISM theory and the different solvation
potential approximations is via comparison of its predictions against exact
computer simulation studies of the same model. The drawback is that
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present computer power limits such comparisons to short and intermediate
length chains(N less than roughly 200). Many detailed comparisons have
been carried at all levels of approximation discussed in section B. Here we
give a few examples and along with summarizing remarks. The reader is
refered to the original papers for details and a complete discussion.

Two similiar freely-jointed(zero bare bending energy) models of a
homopolymer/solvent system have been studied by many-chain simulation.
Yethiraj and Hall60 investigated a purely hard core, tangent bead model for
N = 20 -100 and monomer packing fractions of 1 = 0.1 - 0.35(concentrated
solution). A shifted repulsive Lennard-Jones model of nearly tangent
chains has been studied by Kremer and Grest(N=20-200 at fixed n = 0.45)
and by Gao and Weinerl88(N=16, 7 = 0.1 - 0.47). The intramolecular
structure factor®(k) and chain-averaged g(r) were monitored, along with
average chain dimensions R and Rg. Here we focus on Rg, which for dense
solutions is also a direct measure of the chain persistence length or
stiffness.

We begin with the most "rigorous" version of self-consistent PRISM
based on a Monte Carlo evaluation of the effective single chain problem.
Theoretical predictions of Grayce, Yethiraj and Schweizer4? are compared
with many chain simulation results for the mean square end-to-end
distance of the hard core chain model as a function of polymer packing
fraction in Figures 6.2 for N=20 and 100. (The corresponding estimates of
the dilute-semidilute crossover points are n* = 0.06 and 0.015, respectively.)
Over the many chain simulation range of density studied, the
PRISM/Monte Carlo results based on the pivot algorthim and full self-
consistent evaluation of (k) are in good (but not perfect) agreement with
the simplified self-consistent PRISM/Monte Carlo approach of Melenkevitz
et. al.45 based on the kink-jump algorithm. Moreover, the theoretical
predictions based on both the HNC-style and PY-style solvation potential are
in qualitative agreement with the exact results. Motivated by blob scaling
arguments for semidilute solutions2, the density dependence of <R2> was
fit to a power law form : <R2> o« 1™ for 0.1 < 1 < 0.35. Over this very limited
range, the power law form is adequate and an exponent in agreement(to
within statistical error) with the many chain simulation valueb0 of 0.25 +
0.1 was found. The latter value is consistent with the long chain blob
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scaling prediction, but the agreement may be accidental since the chains
studied are rather short and the density regime very limited.

Quantitatively, the calculations based on the HNC-style solvation
potential appear to be superior for the density range studied by the full
many chain simulations. This is misleading, however, since(as seen in
Figure 6.2) the more compressive HNC-style solvation potential leads to a
very strong, rapidly varying reduction of chain dimensions at high
concentrations. This behavior conflicts with basic Flory argumentsl‘3 and
the limited experimental data available suggesting that chain dimensions
tend to saturate, or at least become very slowly varying in dense
melts121,122, Examination of typical chain configurations in the PRISM
Monte Carlo calculation based on the HNC style solvation potential reveals
a form of local collapse, or condensation, of closely bound sites along the
chain44:47.

Further comparisons are given in Table 3 for relatively dense solutions
and two values of N. Note that the polymer size is very different than the
ideal freely-jointed, ideal Koyama with local swelling, or the self-avoiding
walk behavior. The accuracy and predicted trends of the HNC-style and PY-
style approaches are relatively(but not completely) insensitive to N over the
range of 20-100 for the choice of purely hard core interactions.
Summarizing, it appears the HNC-style solvation potential predicts too
strong a compressive solvation force at high densities and is inadequate in
this regime. Based on all the studies to date44,47, the PY-style solvation
potential coupled with PRISM/Monte Carlo seems qualitatively sensible
under all conditions, and typically makes errors of 10-20% in the prediction
of the absolute magnitude of R2 and Rg2. Relative trends seem to be
predicted significantly more accurately.

R e ekl Rk ok kR sk

...........

Table 3. Mean squared end-to-end distances, R2, in units of the hard core
diameter of N=20 and 100 linear hard core chains at several packing
fractions 1. The many chain simulation results of Yethiraj and Hall60 are
listed along with theoretical predictions based on various approximate
implementations of the self-consistent PRISM scheme described in detail in
the text47. MC refers to the single chain Monte Carlo method and F refers
to the variational generating functional method. The HNC or PY in
parentheses refers to the style of solvation potential approximation
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employed. Percent error of the theoretical predictions relative to the
simulation values are also listed. For the simulation data the percentage
error gives the statistical margin of error.

n=02,N=100 n=03, N=100 n=035,N=20
Method RZ  %error R2 9%error R2  %error
Simulation  242.5 +2.7 220.1 +2.1 32.2 +13.3
MC (HNC) 299.6 23.5 276.7 25.7 35.7 10.7
MC((PY) 305.4 26.0 288.3 31.0 38.6 19.9
FHNC) 206.1 -15.0 185.7 -15.6 28.2 -12.5
FPY) 206.5 -14.9 188.4 -144 29.6 -8.2
FHNC)a 221.2 -8.8 201.3 -8.5 30.4 -5.6
FPY)2a 220.8 -8.9 200.6 -8.8 30.7 -4.8
SAWD 348.5 43.7 348.5 58.3 50.8 57.6
FJ.Cc 99.0 -59.2 99.0 -55.0 19.0 -41.1
SF.c.d 164.1 -32.3 164.1 -25.4 30.8 -4.5

aUsing a direct minimization of F' as described in text and Appendix of ref.
47

bValue for a self-avoiding random walk

CValue for an ideal freely-jointed chain.

d Value for the SFC model with local intrachain repulsion between next

nearest neighbors included. -
************************************************************************

The predictions of the variational free energy method(see Eq(6.8)) of
Grayce et. al.47 are also listed in Table 3. Results are shown for both the
rigorous generating functional approach and the more approximate, but
computationally simpler, "direct” minimization scheme. Reasonable
agreement between the two technical implementions are found. Generally,
the generating functional method predicts consistently smaller polymer
sizes than found based on the Monte Carlo method. This is true for both the
HNC and PY-style potentials, and presumably reflects nonideality effects
lost by the truncation of the virial expansion in Eq(6.8) and by the
assumption of ideal trial conformations invoked by the generating
functional approach. For the shifted repulsive Lennard-Jones models(not
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employed. Percent error of the theoretical predictions relative to the
simulation values are also listed. For the simulation data the percentage
error gives the statistical margin of error.

1n1=0.2, N=100 n=0.3,N=100 n=0.35,N=20
Method R2 % exrror R2 %error RZ %error
Simulation  242.5 +2.7 220.1 +2.1 32.2 +13.3
MC (HNC) 299.6 23.5 276.7 25.7 35.7 10.7
MC(PY) 305.4 26.0 288.3 31.0 38.6 19.9
F(HNC) 206.1 -15.0 185.7 -15.6 28.2 -12.5
FPY) 206.5 -14.9 188.4 -14.4 29.6 -8.2
F(HNC)2 221.2 -8.8 201.3 -8.5 30.4 -5.6
FPY)2a 220.8 -8.9 200.6 -8.8 30.7 -4.8
SAWD 348.5 43.7 348.5 58.3 50.8 57.6
FJ.CC 99.0 -59.2 99.0 -55.0 19.0 -41.1
SF.Cc.d 164.1 -32.3 164.1 -25.4 30.8 -4.5

aUsing a direct minimization of F as described in text and Appendix of ref.
47
bValue for a self-avoiding random walk
cValue for an ideal freely-jointed chain.
d Value for the SFC model with local intrachain repulsion between next
nearest

neighbors included.

The predictions of the variational free energy method(see Eq(6.8)) of
Grayce et. al.47 are also listed in Table 3. Results are shown for both the
rigorous generating functional approach and the more approximate, but
computationally simpler, "direct” minimization scheme. Reasonable
agreement between the two technical implementions are found. Generally,
the generating functional method predicts consistently smaller polymer
sizes than found based on the Monte Carlo method. This is true for both the
HNC and PY-style potentials, and presumably reflects nonideality effects
lost by the truncation of the virial expansion in Eq(6.8) and by the
assumption of ideal trial conformations invoked by the generating
functional approach. For the shifted repulsive Lennard-Jones models(not
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shown), the PY-style approach is much more accurate than the HNC-style,
and significantly more accurate(typical errors of 5-8%) in an absolute sense
than for the hard core models(typical errors of 14-19%).

The gross qualitative trend of the HNC-style potential predicting much
too small, "collapsed" conformations at high density is again found based
on the approximate variational/generating functional approach of Grayce
et.al.47 A more traditional polymer science demonstration of the origin of
this fact is the trend with polymer density of the monomeric second virial
coefficient, defined in normalized dimensionless form as

v, 5_4303 [ dF[exp[-B{u(r) + W(n)}I—1] (6.10)

where u(r) is the bare intrachain, and W(r) is the solvation, pair potential
between nonbonded sites. Traditionally, vo is taken as a measure of "solvent
quality" , with positive values indicating a good solvent and coil swelling,
negative values indicating a poor solvent and a collapsed conformation, and
a zero value defining an ideal, "theta" statel-4. It has been shown based on
the generating functional approach that vo > 0 for the PY-style potential,
and approaches zero gradually at high melt densities consistent with the
Flory concept of the melt as a theta solvent47. However, for the HNC-style
potential vo changes from positive to negative around m = 0.4-0.45,
consistent with the observation of overly compressed polymer dimensions.

Comparisons between theory and exact many-chain simulations have
also been carried for the structural properties g(r) and ®(k) by Grayce,
Yethiraj and Schweizer based on the PY-style potential and the variational
generating functional method47. An example is given in Figures 6.3 for
N=100 and the medium-density case of 1 = 0.3. The general shape of &(k) is
well-predicted by the effective SFC ideal model, although the "plateau” at
intermediate wavevectors is too high since the theory underpredicts chain
dimensions(see Table 3) and hence local stiffness. Other comparisons
suggests improved agreement of both g(r) and &(k) (see, for example, Fig.
3.3) at higher, melt-like densities where the chains are conformationally
more ideal, and where the differences between self-consistent and non-self-
consistent PRISM predictions become incresingly small.



Based on the all the above results, and many others not shown, it has
been demonstrated that the generating functional method(with PY-style
solvation potential) is more accurate at high densities than the single chain
Monte Carlo/PRISM method when compared against the exact many chain
simulation results. This suggests the additional approximations employed
by the generating functional method compensate for other errors in the
PRISM-based theory. Thus, the generating functional method at high
density seems complementary to the PRISM/Monte Carlo method since the
computational demands of the latter become very heavy at high densities
and /or high N. ’

Application and generalization of the self-consistent PRISM theory to
flexible trimer fluids, and detailed comparison with many molecule
simulations, has also been performed by both Grayce and dePablo42, and
Yethiraj 123,

Finally, we briefly summarize the first application of self-consistent
PRISM theory by Schweizer, Honnell and Curro based on the HNC-style
potential and a simple optimized pertubation("blip function”) approach43.
Detailed comparisons of the predicted chain dimensions and g(r) for the
N=50,100 and 150 repulsive Lennard-Jones fluid model of concentrated
solutions studied by Kremer and Grest51 have been carried out. R2 was
predicted to be 8-7% too small, and in all cases deviations from ideal
behavior(SFC with next nearest neighbor 1-3 repulsions explicitly
accounted for) was extremely weak. The self-consistently determined g(r)
was in excellent agreement with simulations except near the first peak
where the theory underestimated the maximum by roughly 10% as a
consequence of the underpredicted chain dimensions and hence local
stiffness. A key finding here is that at very high melt-like densities, all but
the most local aspects of intrachain repulsion (and concommitant swelling)
are screened out consistent with the basic tenets of the Flory ideality ansatz.
Thus, as expected, the need for a fully self-consistent theory becomes far
less important under high density conditions. However, the fact that such
"reasonable” behavior is found based on the HNC-style potential is again an
indication of the subtle role played by the approximate single chain theory,
choice of reference system, and solvation potential in determining the
theoretical predictions for the screening problem.




D. Numerical and Analytic Model Calculations

Besides benchmark comparisons with exact simulation results, model
calculations have been performed to numerically explore additional issues.

(1) The large N behavior, inaccessible to many chain simulation(and
very difficult for PRISM/Monte Carlo), but relevant to experiments and field
theoretic and scaling predictions, has been studied numerically based
mainly on the HNC-style/variational approach of Melenkevitz, Curro and
Schweizer.45 For fixed large N of the order of 103, a power law scaling
behavior of <R2> with density has been found for intermediate(semidilute)
solution densities in rough accord with phenomenological scaling
predictionsz. The question of global screening of intrachain excluded
volume interactions, as quantified in the effective exponent v in the
relationship <R2> o« NV, has also been studied. Over a range of N values
less than or equal to 2000, Melenkevitz et. al.45 find v = 0.56 for n=0.4
(intermediate between the ideal 0.5 and SAW 0.6 values) , v=0.51 for n=0.54
(melt-like), and v = 0.50 for higher liquid packing fractions in agreement
with the Flory ideality hypothesis. The latter result has also been derived
based on the Edwards psuedopotential field theoretic method3, but is a
highly nontrivial achievement for a microscopic theory based on
nonintegrable, singular hard core interactions between monomers. Thus, a
truly microscopic basis for the ideality and semidilute scaling ideas has
been established, and the nature of the corrections and limitations of these
simple concepts can be elucidated.

(2) The subtle question of "incomplete" screening of the excluded
volume swelling at very high densities has been studied by several PRISM
based approaches43:45,47. At issue is whether chain dimensions approach
a density-independent value, and whether it is truly "ideal", in the high
packing fraction limit. Experiments are unclear on this point122, and
PRISM studies yield differing conclusions depending on solvation potential
choice and approximate free energy based scheme to evaluate the effective
single chain problem. Benchmark simulations which address this question
would be of great value.

(8) The subtle question of whether the relative changes in polymer
dimensions as a function of solution density become N-independent in the
semidilute and concentrated regime has been considered by Grayce et.al.47
within the PY-style/generating function framework.
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(4) The question of how variable bare chain stiffness(aspect ratio)
influences the predicted nonideal conformational corrections. Predictions
of the renormalized persistence length, relative to its bare value, have been
obtained by Grayce and Schweizer124 based on the PY-style solvation
potential and the variational generating functional method, and also by
Schweizer, Honnell and Curro43 Dbased on the optimized perturbation
approach and the HNC-style potential. At high densities the predicted
renormalizations are rather modest(typically + 10 % or less). The most
interesting feature is the nonmonotonic dependence of the renormalization
ratio or bare persistence length, indicating a crossover from the condensed
phase effects favoring chain compression(relative to the ideal limit) to a
type of "induced rigidity". The latter is a subtle consequence of the
emergence of strong solvation shells in the liquid for stiff polymers at high
density. However, we do not overly emphasize this feature for two reasons:
(i) for high aspect ratio chains nematic/orientational correlations are
expected to become increasingly important, a physical feature not properly
described by RISM-based approache58>38'40 ; (ii) the theories43,47 do not
properly recover the "trivial” rod limit where the renormalization ratio
should approach unity. Many chain simulations would be particularly
helpful in guiding the further development of the self-consistent approach
for such semiflexible polymer systems.

Finally, we point out that analytic results have been derived and
discussed based on the HNC-style solvation potential in the idealized
Gaussian thread limit43. The variational free energy theory of Melenkevitz
et. al. has also been worked out within the analytic thread model
framework45. Interesting connections and differences between the thread
PRISM theory, the field theoretic approaches of Edwards, Muthukumar
and others3, and blob scaling arguments? have been established. The work
of Melenkevitz et. al.49 is novel in the sense that it combines the liquid state
PRISM approach to effective interactions(direct correlations, solvation
potentials) with field theoretic schemes for solving the effective single chain
problem in a manner which is qualitatively correct for all density. The
construction of "hybrid" liquid state/field theoretic approaches, applicable
for large N macromolecular systems, is an attractive direction for future
development.




E. Other Applications

There are many other physical problems and macromolecular systems
for which the self-consistent PRISM approach should be useful. The
following represents an incomplete list of problems for which preliminary
work has been done or which appear to be attackable based on the present
state-of-the-art.

(1) Theta and poor solvents. A key question here is how to generalize
the intermolecular closure approximation and the intramolecular solvation
potential to simultaneously treat the competing repulsive and attractive
bare forces. The problem of low temperature polymer collapse in dilute
solution is a classic problem in this area.

(2) Polymer Alloys. Perturbation of melt-like conformation upon
transfer to a multicomponent environment is not understood. The influence
of proximity to phase boundaries, coupled density and concentration
fluctuations, and mixture composition on both single chain dimensions
and miscibility are problems which have begun to be addressed within the
PRISM formalism for the simple "symmetric" blend model by Singh and
Schweizerl63 and symmetric diblock copolymer model by David and
Schweizerl140, and other more coarse-grained field theoretic
approaches 126, (Comparisons with the few available
simulations126,130,146-148 have also been performed. However, the
experimentally relevant conformationally and interaction asymmetric alloy
cases140 remains to be carefully considered.

(8) Atomistic Models. Self-consistent conformational calculations at
the atomistic level have not been studied although a tractable scheme for
RIS models has been proposed43. One might expect much less perturbation
of single chain structure at an atomistic level where there are constant
bond lengths, bond angles etcetera. However, rotational isomers generally
differ in energy only by of order kT, so a priori it is not clear what happens
for specific polymer systems.

(4) Constrained Polymers. The conformation of polymers constrained
in various ways, e.g. grafted to a flat surface("brush"), adsorbed on a
spherical colloidal particle, or tethered to a central branch point as in
"star" polymers]-27. All such problems involve potentially large "nonideal”
conformational effects, and also introduce additional complications



associated with site inequivalence within the PRISM formalism. Progress
for star polymers is briefly described in the next section.

VII. STAR-BRANCHED POLYMER FLUIDS

Star polymers represent an interesting and important class of
macromolecules of nonlinear global architecture. They consist of "f" linear
chains or arms ( with Na monomers per arm) connected at a central
branch structure, as schematically shown in Figure 7.1. This architecture
is characterized by a spatially inhomogeneous single molecule density
which decreases as one moves away from the star center. Thus, relative to
linear chains, a new and stronger form of site nonequivalency is present
which results in spatially nonuniform screening of the intramolecular
excluded volume interactions. In particular, the reduced exposure of the
central "core” regions of the star to other polymers suggest less screening
and hence more “"swollen" conformations near the star center. However,
very far from the branch point the star is still a low density fractal object,
and hence is expected to display conformational behavior similiar to the
linear chain case.

The above physical features imply a fully self-consistent treatment of
intramolecular and intermolecular pair correlations is more important for
star polymers than linear chains, and the concept of "ideality" is expected
to be of much less utility even at high melt densities. The treatment of star
polymers within a self-consistent PRISM formalism has been very recently
pursued by Grayce and Schweizer128,129 Here we give a brief description
of some of the essential theoretical modifications required to treat stars, and
a few conformational and structural results which emphasize the
distinctive new phenomena characteristic of the star architecture. We note
that the star polymer fluid is a model for other physical systems such as
spherical micellar fluids and sterically-stabilized colloids127.

A. BasicModel and Theory

The basic theory of star polymer fluids developed by Grayce and
Schweizer is general in its ability to treat polymer models of variable
chemical detaill28. For simplicity, we discuss the theory in the context of

69




"J%83 93} Ul paqLIosap
se A[[eUoIjeLIEA POUIILIoNep ST pue TN Pojousp st §9)1s 0109, JO IOQUITHE
oy, "(T+BN)J ST rejs oyj Sursraduwoo s83Is JO Joqumu 8303 8L “UMOYS
ordurexs oY) Ul 9=} JoqUNU WLIE 8} pue WLIe Jod $971S JO JOQUNU Y}
ST BN] 210Uy ‘Iejs BN X 3, Ue Jo [9pout DS queSue) poyouelIq-1e}s 3YJ, T'L

T
O
-

Fag=_ g

|-speeq 9100 IN—

QIMONIS
eI

peaq -f




the tangent, semiflexible chain model. As true for most of the results
discussed in Section VIII, the bare bending energy is set equal to zero and
pure hard core interactions(athermal or good solvent conditions) are
employed in numerical studies carried out so far.

A sketch of the model star polymer is shown in Figure 7.1. Site
equivalence is clearly broken by the presence of the central branch point,
and in principle one expects the local stiffness of the arms varies
continuously as one proceeds from the star core to its outer "corona" region.
The development of a technically tractable theory requires some
simplification, or "preaveraging", of this complete site inequivalence. As
indicated in Figure 7.1, a "8-region" scheme has been adopted motivated by
both conceptual simplicity, and by analogy with coarse-grained polymer
physics type approachesl30,131. The model star has a rigid branch point
structure consisting of f sites(site type 0), a "core” region of fN1 sites(site
type 1), and an outer arm or "corona” region(site type 2, Na-N1 sites per
arm).

For the "8-site” model there are 6 independent intramolecular partial
structure factors, radial distibution functions, and solvation pair potentials
which must be determined self-consistently. PRISM theory has been
implemented at the level of the variational generating functional theory of
Grayce et.al.47 as described in section VIILB.2 using the PY-style solvation
potential. However, two new features arise for star polymers. (i) Two
distinct effective bending energies , €1 and €2, associated with the core and
corona regions, respectively, are required. (ii) The number of sites which
comprise the core region is not a priori known, but is treated as a
variational parameter in the free energy minimization process. Thus, there
are 3 variational parameters to be determined self-consistently128,

B. Conformation and Liquid Structure

Detailed numerical predictions have been obtained for average
conformational properties such as the mean square end-to-end distance of
the core region, the overall star radius-of-gyration, the number of sites in
the core, the effective persistence lengths of the core and corona regions,
and the single star structure factor ®(k). The influence of variables such as
number of arms(f=4-12), arm degree of polymerization, and fluid packing
fraction on these properties has been established128. In a rough qualitative

70




sense, the chain segments which comprise the corona region behave
similiarly to the analogous linear chain case. However, the core region is
always found to be strongly swollen relative to the "ideal" state even at melt
densities, and results in a transfer of monomer density outwards from the
central region of the star to the coronal region. As a consequence, there is
an increase of overall star dimensions, and distinctive changes in the star
collective structure factor and intramolecular radial distribution function
occur, relative to either the analogous linear chain case or the ideal
Gaussian star model behaviorl28,

The predicted overall star dimensions as a function of (concentrated)
fluid packing fraction and arm number is shown in Figure 7.2 for a
macromolecule of modest size(Nz=100). A simple power law form, Rg2 oc
£0.38 11-0.3, fits the numerical results very well. Curiously, the predicted
density scaling exponent is rather close to the scaling theory2 exponent of
0.25 for long chains in semidilute solution, although the significance of this
near agreement is unclear. Note that no density-independent chain
dimensions are attained, in conflict with common assumptions of ideal
behavior at high melt-like densities.

Both the core swelling, and the fraction of arm sites in the core, grow
as the fluid density decreases, the number of arms increases, and/or the
arm molecular weight increases128. The latter trend is rather surprising
since the core size appears to (weakly)increase without bound as arm
degree of polymerization increases according to the power law <R12> o<
Nal/3. Convincing physical interpretation of this intriguing behavior is
lacking.

The fundamental origin of all the conformational trends discussed
above is the strong reduction of the solvation potential, and hence
screening effect, in the core region relative to the corona region. An
example of the predicted self-consistent solvation pair potentials Wij(r) is
given in Figure 7.3.

The predicted nonideal conformational effects can be probed by SANS
experiments, and theoretical/experimental comparisons are given
elsewherel28. A detailed physical picture of the origin of the nonideal
conformational behavior in terms of the thermodynamic forces a star
experiences has been constructed. Comparison of the self-consistent
PRISM theory results with phenomenological scaling and other coarse-
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grained polymer physics approaches has also been presented, and

distinctive qualitative and quantiative differences have been identified128.
The self-consistently determined intermolecular pair correlations,

gij(r), and collective partial structure factors, éij(k), also display several

unique physical features due to the star-branched architecture129, An
example for the pair correlations is shown in Figure 7.4 for a melt-like
density. The corona region is quite similiar to the analogous linear tangent
SFC55 case : a local solvation shell regime followed by a power law
correlation hole region out to intersite separations of order Rg. However,
the central branch structure and core region pair correlations show
reduced local ordering(as expected), plus two new structural features : (i) a
broad intermediate region where h(r) grows in a nearly linear fashion with
increasing site-site separation, and (i) a weak oscillation in the vicinity of
the global chain dimension separation. The latter feature is hard to see on
the scale of Figure 7.4, but is clearly visible on an expanded scale. Close
examination reveals the characteristic oscillation wavelength scales as
N41/3, a distance corresponding to the mean separation of cores on
different stars within the correlation volume containing of order N, 1/2
interpenetrating star molecules.

The macromolecular scale solvation shell feature is clearly seen in the
partial and total structure factors in Fourier space. An example is given in
Figure 7.5. The very small and high k regions are weakly dependent on
arm number, and are nearly identical to the analogous linear chain case.
However, the low angle broad maximum at k¥ o« Ng-1/3 is a unique star
feature which becomes more intense, and shifts to slightly smaller
wavevector, with increasing arm number. This feature implies there is a
type of macroscale colloidal ordering in star polymer melts, which is also
predicted to occur ander semidilute and concentrated solution
conditions129,

The signature of macroscale colloidal ordering in semidilute star
polymer solutions has been found experimentally using SANS132, and
these measurements are in good agreement with the PRISM predictions.
Moreover, phenomenological scaling type arguments have been advanced
by Witten and Pincusl31 which also predict such a low angle scattering
maximum at k¥ o Rg’l oc Na‘3/ 5 put only under semidilute( p=p*), long

arm, good solvent conditions. In the latter situation, the stars do not
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74 Diagonal components of the self-consistently determined
intermolecular site-site pair correlation functions, bjj(r) = gjj(r)-1 for a
dense melt (1=0.55) of 8 x 400 star polymers. The overall star radius-of-
gyration is indicated.
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interpenetrate appreciably and hence behave roughly as fuzzy spheres.
However, PRISM theory predicts the colloidal ordering feature is a generic
consequence of the star architecture and persists in dense solutions up to
the melt state. Appropriate experiments to test the melt PRISM predictions
have apparently not yet been carried out.

VIII. DISCUSSION AND FUTURE DIRECTIONS

This report has focused on describing progress made over the past 3
years on developing microscopic liquid state theories of the conformation,
structure, thermodynamics, and phase transitions of macromolecular
fluids within the context of interaction site models and the RISM integral
equation method. Although much progress has been made, there remain
many physical problems and systems which have either not been addressed
at all, or are just beginning to be seriously attacked, from a liquid state
integral equation perspective. An incomplete list is as follows. (1) Charged
polymers, polyelectrolytes, and ionomers(strong dipolar interactions). The
appropriate closure approximations and treatment of self-consistency in
the presence of both hard core forces and long range Coulombic
interactions are major unsolved problems. (2) Short range orientational
correlations in isotropic fluids, and nematic and other liquid crystalline
phases, of rigid and semiflexible polymers. (8) Incorporation of quenched
disorder(beyond naive pre-averaging) associated with intramolecular
features such as tacticity variations, molecular weight polydispersity, and
sequence disorder in copolymers. (4) Polymer gels, rubbers, and associating
fluids where strong intermolecular "attractive" interactions can result in
network-like and/or fractal structures which can be either quenched in or
thermoreversible. (5) Self-assembly of intermediate-sized molecules(e.g.
surfactants) ‘into supramolecular structures(e.g., micelles,
microemulsions). (8) Ternary and more complex mixtures of
homopolymers and copolymers where there is a competition between
macrophase and microphase separation. A related phenomenon is the role
of low concentration additives on phase stability.

All the above problems represent challenges to the further
development of a general microscopic liquid state theory of macromolecular
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systems, but we are hopeful that significant progress can be made in the

near future.
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